Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance
<p>Chromosome location of <span class="html-italic">LecRLK</span> gene family of <span class="html-italic">Avena sativa</span>; L-type (red), C-type (yellow), and G-type (blue) subfamilies are shown. Chromosome numbers are shown at the left. Center of chromosomes shows the overall gene density. <span class="html-italic">LecRLK</span> gene locations are shown on the right.</p> "> Figure 2
<p>Phylogenetic relationships of LecRLK proteins in <span class="html-italic">Avena sativa</span> and three RLK Pelle family proteins in animals. The phylogenetic trees were constructed using the maximum-likelihood method based on predicted protein sequences. L-type (red), C-type (yellow), G-type (blue), Pelle (green).</p> "> Figure 3
<p>Domain structure prediction of AsaLecRLKs showing the number of genes (right column) with each structure. G-type AsaLecRLKs contain bulb lectin domain, S-locus glycoprotein domain, and PAN domain at the N-terminus and protein kinase domain and DUF3403 domain at the C-terminus; L-type AsaLecRLKs contain the legume lectin domain at the N-terminus and protein kinase domain and adh_short domain at the C-terminus; C-type AsaLecRLK contains the calcium-binding lectin domain at the N-terminus and protein kinase domain at the C-terminus.</p> "> Figure 4
<p>Synteny analyses of <span class="html-italic">LecRLK</span> gene family between <span class="html-italic">Arabidopsis thaliana</span> and <span class="html-italic">Avena sativa</span> (<b>A</b>), <span class="html-italic">Oryza sativa</span> and <span class="html-italic">A. sativa</span> (<b>B</b>), <span class="html-italic">A. longiglumis</span> and <span class="html-italic">A. sativa</span> (<b>C</b>), and <span class="html-italic">A. insularis</span> and <span class="html-italic">A. sativa</span> (<b>D</b>). Lines represent collinear gene pairs between genomes of <span class="html-italic">A. sativa</span> and other species. Blue line: A genome; red line: C genome; green line: D genome.</p> "> Figure 5
<p>Expression profiles of <span class="html-italic">AsaLecRLK</span> genes under different levels of salt stress in root and leaf. RNA-sequencing data on salt stress for <span class="html-italic">AsaLecRLKs</span>. The heatmap was generated on the Log2 of (FPKM+1) values using TBtools. Color bar represents normalized FPKM values: red, high expression level; blue, low expression level.</p> "> Figure 6
<p>Relative expression level of <span class="html-italic">AsaLecRLK</span> genes under salt stress after 0 h, 6 h, 12 h, 24 h and 48 h in root and leaf tissue. Expression level of each gene at 0 h is set as reference. The data represent the mean values of three replicates ± SD. Statistical significance of differences was tested by one-way ANOVA analysis (<span class="html-italic">p</span> < 0.05) and is indicated by lowercase letters.</p> "> Figure 7
<p>The subcellular localization of <span class="html-italic">AsaLecRLK-L-type-43</span>, <span class="html-italic">AsaLecRLK-L-type-44</span>, and <span class="html-italic">AsaLecRLK-G-type-45</span>. Bars = 25 μm. The figures show confocal images of GFP fluorescence, plasmalemma localization (mCherry), bright field, and composite field.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of LecRLK Gene Family Members in Oat
2.2. Chromosomal Distribution and Phylogenetic Analysis of LecRLK Gene Family Members
2.3. Conserved Domain, Conserved Motif and Gene Structure Analysis of AsaLecRLKs
2.4. Cis-Acting Element Prediction of AsaLecRLKs
2.5. Expansion and Selection Pressure Analysis of AsaLecRLKs
2.6. Collinearity Analysis of AsaLecRLK Genes
2.7. Gene Expression Analysis of AsaLecRLKs’ Response to Salt Stress Treatments
2.8. Subcellular Localization Analysis of AsaLecRLK-G-type-45
3. Discussion
4. Materials and Methods
4.1. Database Search and Retrieval of Lectin Receptor-like Kinase (LecRLK) Protein Sequences in Avena sativa, Avena insularis, and Avena longiglumis
4.2. Phylogenetic and Alignment Analysis
4.3. Analysis of Motifs, Gene Promotor, Gene Structures, and Conserved Domains
4.4. Chromosomal Distribution, Gene Duplication, and Ka/Ks Calculation
4.5. Plant Material, Growth Conditions, and Treatment
4.6. RNA Extraction, cDNA Reverse Transcription, and RT-qPCR Analysis
4.7. RNA-seq Data Analysis
4.8. Subcellular Localization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Feng, Z.; Bai, Q.; He, J.; Wang, Y. Melatonin-Mediated Regulation of Growth and Antioxidant Capacity in Salt-Tolerant Naked Oat under Salt Stress. Int. J. Mol. Sci. 2019, 20, 1176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, Q.; Zheng, J.; Li, Z.; Li, Y.; Feng, Y.; Han, Y.; Li, Y. GmLecRlk, A Lectin Receptor-like Protein Kinase, Contributes to Salt Stress Tolerance by Regulating Salt-Responsive Genes in Soybean. Int. J. Mol. Sci. 2022, 23, 1030. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Sharma, A.; Upadhyay, S.K. Analysis of Lectin Receptor-Like Kinases and Their Functions in Higher Plants. In Plant Receptor-Like Kinases; Upadhyay, S.K., Shumayla, Eds.; Academic Press: New York, NY, USA, 2023; pp. 139–154. [Google Scholar]
- Vaid, N.; Pandey, P.K.; Tuteja, N. Genome-Wide Analysis of Lectin Receptor-Like Kinase Family from Arabidopsis and Rice. Plant Mol. Biol. 2012, 80, 365–388. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qiao, Z.; Muchero, W.; Chen, J. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. Front. Plant Sci. 2020, 11, 596301. [Google Scholar] [CrossRef] [PubMed]
- Paetsch, M.; Mayland-Quellhorst, S.; Neuffer, B. Evolution of the Self-Incompatibility System in the Brassicaceae: Identification of S-locus Receptor Kinase (SRK) in Self-Incompatible Capsella grandiflora. Heredity 2006, 97, 283–290. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, X.H.; Gao, Y.H.; Jiao, J.; Sun, Y.; Zhu, D.Z.; Yang, J.J.; Wu, F.L.; Su, H.Y. Genome-Wide Analysis of Lectin Receptor-Like Kinases (LecRLKs) in Sweet Cherry (Prunus avium) and Reveals PaLectinL16 Enhances Sweet Cherry Resistance with Salt Stress. Environ. Exp. Bot. 2022, 194, 104751. [Google Scholar] [CrossRef]
- Shumayla; Sharma, S.; Pandey, A.K.; Singh, K.; Upadhyay, S.K. Molecular Characterization and Global Expression Analysis of Lectin Receptor Kinases in Bread Wheat (Triticum aestivum). PLoS ONE 2016, 11, e0153925. [Google Scholar] [CrossRef]
- Vaid, N.; Pandey, P.; Srivastava, V.K.; Tuteja, N. Pea Lectin Receptor-Like Kinase Functions in Salinity Adaptation without Yield Penalty, by Alleviating Osmotic and Ionic Stresses and Upregulating Stress-Responsive Genes. Plant Mol. Biol. 2015, 88, 193–206. [Google Scholar] [CrossRef]
- Wang, Y.J.; Subedi, S.; de Vries, H.; Doornenbal, P.; Vels, A.; Hensel, G.; Kumlehn, J.; Johnston, P.A.; Qi, X.; Blilou, I.; et al. Orthologous Receptor Kinases Quantitatively Affect the Host Status of Barley to Leaf Rust Fungi. Nat. Plants 2019, 5, 1129–1135. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, Y.; Guo, J.; Du, B.; Chen, R.; Zhu, L.; He, G. A Rice Lectin Receptor-Like Kinase That Is Involved in Innate Immune Responses Also Contributes to Seed Germination. Plant J. 2013, 76, 687–698. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Ni, X.; Wang, Q.; Jia, Y.; Xu, X.; Wu, H.; Fu, P.; Wen, H.; Guo, Y.; et al. Structural Basis for the Activity Regulation of Salt Overly Sensitive 1 in Arabidopsis salt tolerance. Nat. Plants 2023, 9, 1915–1923. [Google Scholar] [CrossRef]
- Liu, C.; Mao, B.; Yuan, D.; Chu, C.; Duan, M. Salt Tolerance in Rice: Physiological Responses and Molecular Mechanisms. Crop. J. 2022, 10, 13–25. [Google Scholar] [CrossRef]
- Ahmad, R.; Hussain, S.; Anjum, M.A.; Khalid, M.F.; Saqib, M.; Zakir, L.; Hassan, A.; Fahad, S.; Ahmad, S. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In Plant Abiotic Stress Tolerance; Hasanuzzaman, M., Hakeem, K.R., Eds.; Pantanal Editora: Nova Xavantina, Brazil, 2019; pp. 191–205. [Google Scholar]
- Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Vashisht, D.; Cletus, J.; Sakthivel, N. Plant β-1,3-Glucanases: Their Biological Functions and Transgenic Expression Against Phytopathogenic Fungi. Biotechnol. Lett. 2012, 34, 1983–1990. [Google Scholar] [CrossRef]
- Kayani, S.I.; Shen, Q.; Rahman, S.; Fu, X.; Li, Y.; Wang, C.; Hassani, D.; Tang, K. Transcriptional Regulation of Flavonoid Biosynthesis in Artemisia Annua by AaYABBY5. Hortic. Res. 2021, 8, 257. [Google Scholar] [CrossRef]
- Watanabe, M.; Tohge, T. Species-Specific ‘Specialized’ Genomic Region Provides the New Insights into the Functional Genomics Characterizing Metabolic Polymorphisms in Plants. Curr. Opin. Plant Biol. 2023, 75, 102427. [Google Scholar] [CrossRef] [PubMed]
- Smit, S.J.; Lichman, B.R. Plant Biosynthetic Gene Clusters in the Context of Metabolic Evolution. Nat. Prod. Rep. 2022, 39, 1465–1482. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.L.; Xiong, G.; Ye, L.H.; Gornall, R.; Wang, Z.W.; Heslop-Harrison, P.; Liu, Q. Genome-Wide Analysis of Flavonoid Biosynthetic Genes in Musaceae (Ensete, Musella, and Musa Speices) Reveals Amplification of Flavonoid 3′,5′-Hydroxylase. AoB Plants 2024, 16, plae049. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Lu, X.; Zhao, B.; Liu, J. Integrative Analysis of Transcriptome and Metabolome Reveal Mechanism of Tolerance to Salt Stress in Oat (Avena sativa L.). Plant Physiol. Biochem. 2021, 160, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Qian, X.; Chen, C.; Cheng, S.; Jia, B.; Zhu, Y.; Sun, X. Ectopic Expression of GsSRK in Medicago Sativa Reveals its Involvement in Plant AArchitecture and Salt Stress Responses. Front. Plant Sci. 2018, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.L.; Yu, Q.Y.; Tang, L.L.; Ji, W.; Bai, X.; Cai, H.; Liu, X.F.; Ding, X.D.; Zhu, Y.M. GsSRK, A G-type Lectin S-receptor-Like Serine/Threonine Protein Kinase, is a Positive Regulator of Plant Tolerance to Salt Stress. J. Plant Physiol. 2013, 170, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Wang, G.; Zhao, J.L.; Zhang, L.Q.; Ai, L.F.; Han, Y.F.; Sun, D.Y.; Zhang, S.W.; Sun, Y. The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice. Plant Cell 2014, 26, 2538–2553. [Google Scholar] [CrossRef] [PubMed]
- Shiu, S.H.; Bleecker, A.B. Receptor-Like Kinases from Arabidopsis form a Monophyletic Gene Family Related to Animal Receptor Kinases. Proc. Natl. Acad. Sci. USA 2001, 98, 10763–10768. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and Analyzing DNA and Protein Sequence Motifs. Nucleic Acids Res. 2006, 34, W369–W373. [Google Scholar] [CrossRef]
- Rombauts, S.; Déhais, P.; Van Montagu, M.; Rouzé, P. PlantCARE, A Plant Cis-Acting Regulatory Element Database. Nucleic Acids Res. 1999, 27, 295–296. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Y.; Zheng, Y. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. Int. J. Mol. Sci. 2021, 22, 6125. [Google Scholar] [CrossRef]
- Xue, Y.; Qian, F.; Guan, W.; Ji, G.; Geng, R.; Li, M.; Li, L.; Ullah, N.; Zhang, C.; Cai, G.; et al. Genome-Wide Identification of the ICS Family Genes and its Role in Resistance to Plasmodiophora Brassicae in Brassica napus L. Int. J. Biol. Macromol. 2024, 270, 132206. [Google Scholar] [CrossRef]
- Ahmed, F.F.; Dola, F.S.; Islam, M.S.U.; Zohra, F.T.; Akter, N.; Rahman, S.M.; Sarkar, M.A.R. Genome-Wide Comprehensive Identification and In Silico Characterization of Lectin Receptor-Like Kinase Gene Family in Barley (Hordeum vulgare L.). Genet. Res. 2024, 2024, 2924953. [Google Scholar] [CrossRef]
- Wang, Q.; Li, B.; Qiu, Z.; Lu, Z.; Hang, Z.; Wu, F.; Chen, X.; Zhu, X. Genome-Wide Identification of MYC Transcription Factors and Their Potential Functions in the Growth and Development Regulation of Tree Peony (Paeonia suffruticosa). Plants 2024, 13, 437. [Google Scholar] [CrossRef]
- Basu, D.; Butler, C.; Rollins, M.B.; South, P. Identification and Functional Characterization of Cis-Regulatory Elements of Key Photorespiratory Genes in Response to Short-Term Abiotic Stress Conditions. Methods Mol. Biol. 2024, 2792, 251–264. [Google Scholar] [PubMed]
- Chen, L.; Yang, W.; Liu, S.; Meng, Y.; Zhu, Z.; Liang, R.; Cao, K.; Xie, Y.; Li, X. Genome-Wide Analysis and Identification of Light-Harvesting Chlorophyll a/b Binding (LHC) Gene Family and BSMV-VIGS Silencing TaLHC86 Reduced Salt Tolerance in Wheat. Int. J. Biol. Macromol. 2023, 242, 124930. [Google Scholar] [CrossRef]
- De Coninck, T.; Van Damme, E.J.M. Plant lectins: Handymen at the Cell Surface. Cell Surf. 2022, 8, 100091. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.; Li, L.; Tan, X.; Wei, Z.; Li, Y.; Li, J.; Yan, F.; Chen, J.; Sun, Z. A Rice LRR Receptor-Like Protein Associates with Its Adaptor Kinase OsSOBIR1 to Mediate Plant Immunity Against Viral Infection. Plant Biotechnol. J. 2021, 19, 2319–2332. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Labbé, J.; Muchero, W.; Yang, X.; Jawdy, S.S.; Kennedy, M.; Johnson, J.; Sreedasyam, A.; Schmutz, J.; Tuskan, G.A.; et al. Genome-Wide Analysis of Lectin Receptor-Like Kinases in Populus. BMC Genom. 2016, 17, 699. [Google Scholar] [CrossRef]
- Kamal, N.; Tsardakas Renhuldt, N.; Bentzer, J.; Gundlach, H.; Haberer, G.; Juhász, A.; Lux, T.; Bose, U.; A Tye-Din, J.; Lang, D.; et al. The Mosaic Oat Genome Gives Insights into A Uniquely Healthy Cereal Crop. Nature 2022, 606, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ye, L.; Li, M.; Wang, Z.W.; Xiong, G.; Ye, Y.S.; Tu, T.Y.; Schwarzacher, T.; Heslop-Harrison, P. Genome-Wide Expansion and Reorganization During Grass Evolution: From 30 Mb Chromosomes in Rice and Brachypodium to 550 Mb in Avena. BMC Plant Biol. 2023, 23, 627. [Google Scholar] [CrossRef]
- Moummou, H.; Kallberg, Y.; Tonfack, L.B.; Persson, B.; van der Rest, B. The Plant Short-Chain Dehydrogenase (SDR) SuperFamily: Genome-Wide Inventory and Diversification Patterns. BMC Plant Biol. 2012, 12, 219. [Google Scholar] [CrossRef]
- Wang, C.; Huang, X.; Li, Q.; Zhang, Y.; Li, J.L.; Mou, Z. Extracellular Pyridine Nucleotides Trigger Plant Systemic Immunity Through a Lectin Receptor Kinase/BAK1 Complex. Nat. Commun. 2019, 10, 4810. [Google Scholar] [CrossRef]
- Peng, J.; Liu, S.; Wu, J.; Liu, T.; Liu, B.; Xiong, Y.; Zhao, J.; You, M.; Lei, X.; Ma, X. Genome-Wide Analysis of the Oat (Avena sativa) HSP90 Gene Family Reveals Its Identification, Evolution, and Response to Abiotic Stress. Int. J. Mol. Sci. 2024, 25, 2305. [Google Scholar] [CrossRef]
- Keren, H.; Lev-Maor, G.; Ast, G. Alternative Splicing and Evolution: Diversification, Exon Definition and Function. Nat. Rev. Genet. 2010, 11, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.B.; Zhang, X.J.; Zhong, M.C.; Dong, X.; Hu, J.Y. Genome-Wide Identification of WD40 Genes Reveals A Functional Diversification of COP1-Like Genes in Rosaceae. Plant Mol. Biol. 2020, 104, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, Y. Insights into Plant Salt Stress Signaling and Tolerance. J. Genet. Genom. 2024, 51, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhu, C.; Xuan, W.; An, H.; Tian, Y.; Wang, B.; Chi, W.; Chen, G.; Ge, Y.; Li, J.; et al. Genome-wide Association Studies Identify OsWRKY53 as A Key Regulator of Salt Tolerance in Rice. Nat. Commun. 2023, 14, 3550. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Elucidating the Molecular Mechanisms Mediating Plant Salt-Stress Responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Krzywińska, E.; Kulik, A.; Bucholc, M.; Fernandez, M.A.; Rodriguez, P.L.; Dobrowolska, G. Protein Phosphatase Type 2C PP2CA Together with ABI1 Inhibits SnRK2.4 Activity and Regulates Plant Responses to Salinity. Plant Signal Behav. 2016, 11, e1253647. [Google Scholar] [CrossRef]
- Chen, L.J.; Wuriyanghan, H.; Zhang, Y.Q.; Duan, K.X.; Chen, H.W.; Li, Q.T.; Lu, X.; He, S.J.; Ma, B.; Zhang, W.K.; et al. An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice. Plant Physiol. 2013, 163, 17521765. [Google Scholar] [CrossRef]
- Passricha, N.; Saifi, S.K.; Kharb, P.; Tuteja, N. Marker-free Transgenic Rice Plant Overexpressing Pea LecRLK Imparts Salinity Tolerance by Inhibiting Sodium Accumulation. Plant Mol. Biol. 2019, 99, 265–281. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Xu, N. Ligand Recognition and Signal Transduction by Lectin Receptor-Like Kinases in Plant Immunity. Front. Plant Sci. 2023, 14, 1201805. [Google Scholar] [CrossRef]
- Motone, K.; Kontogiorgos-Heintz, D.; Wee, J.; Kurihara, K.; Yang, S.; Roote, G.; Fang, Y.; Cardozo, N.; Nivala, J. Multi-Pass, Single-Molecule Nanopore Reading of Long Protein Strands. Nature 2024, 633, 662–669. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Wang, K.; Li, S.; Yang, Z.; Chen, C.; Fu, Y.; Du, H.; Sun, H.; Li, J.; Zhao, Q.; Du, C. L-Type Lectin Receptor-Like Kinase OsCORK1 as an Important Negative Regulator Confers Copper Stress Tolerance in Rice. J. Hazard Mater. 2023, 459, 132214. [Google Scholar] [CrossRef]
- Liu, Q.; Xiong, G.; Wang, Z.; Wu, Y.; Tu, T.; Schwarzacher, T.; Heslop-Harrison, P. Chromosome-level Genome Assembly of the Diploid Oat Species Avena longiglumis. Sci. Data 2024, 11, 412. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, H. GrainGenes. Methods Mol. Biol. 2007, 406, 301–314. [Google Scholar] [PubMed]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2022, 51, D418–D427. [Google Scholar] [CrossRef]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein Domain Annotations on the Fly. Nucleic Acids Res. 2004, 32, W327–W331. [Google Scholar] [CrossRef]
- Hallgren, J.; Tsirigos, K.D.; Pedersen, M.D.; Almagro Armenteros, J.J.; Marcatili, P.; Nielsen, H.; Krogh, A.; Winther, O. DeepTMHMM Predicts Alpha and Beta Transmembrane Proteins Using Deep Neural Networks. bioRxiv 2022, 487609. [Google Scholar] [CrossRef]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Ivica, L.; Peer, B. Interactive Tree of Life (iTOL) v4: Recent Updates and New Developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Minin. Mol. Plant. 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, J.; Wu, J.; Zhang, H.; Liu, G.; Wang, X.; Dai, L. ParaAT: A Parallel Tool for Constructing Multiple Protein-Coding DNA Alignments. Biochem. Biophys. Res. Commun. 2012, 419, 779–781. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genom. Proteom. Bioin. 2010, 8, 77–80. [Google Scholar] [CrossRef]
- He, W.; Yang, J.; Jing, Y.; Xu, L.; Yu, K.; Fang, X. NGenomeSyn: An Easy-to-Use and Flexible Tool for Publication-Ready Visualization of Syntenic Relationships Across Multiple Genomes. Bioinformatics 2023, 39, btad121. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, G.; Cui, D.; Tian, Y.; Schwarzacher, T.; Heslop-Harrison, J.S.; Liu, Q. Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance. Int. J. Mol. Sci. 2024, 25, 12754. https://doi.org/10.3390/ijms252312754
Xiong G, Cui D, Tian Y, Schwarzacher T, Heslop-Harrison JS, Liu Q. Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance. International Journal of Molecular Sciences. 2024; 25(23):12754. https://doi.org/10.3390/ijms252312754
Chicago/Turabian StyleXiong, Gui, Dongli Cui, Yaqi Tian, Trude Schwarzacher, John Seymour Heslop-Harrison, and Qing Liu. 2024. "Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance" International Journal of Molecular Sciences 25, no. 23: 12754. https://doi.org/10.3390/ijms252312754
APA StyleXiong, G., Cui, D., Tian, Y., Schwarzacher, T., Heslop-Harrison, J. S., & Liu, Q. (2024). Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance. International Journal of Molecular Sciences, 25(23), 12754. https://doi.org/10.3390/ijms252312754