Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Abiotic stress responses in maize: a review

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Maize (Zea mays) is the most widely grown crop throughout the world. Its response against various environmental stress factors is quite complex and dynamic, and can be either elastic (reversible) or plastic (irreversible) in nature. Climatic change on the other hand is expected to increase the intensity and frequency of both abiotic and biotic stress factors. In this context, we review the literature on climate change consortium with abiotic stress highlighting the scenario of this nutritionally valuable crop plant and its elicited responses at morphological, physiological, biochemical and phytochemical levels. Besides, ‘omic’ architecture of the plant toward multiple stress factors is also discussed as a report of its first kind. Despite significant knowledge gaps that still exist, it is evident that climate change is going to influence the abiotic stress tolerance mechanisms in plants in general and maize in particular. While broad generalizations are not yet possible, because the specific plant responses towards one type of stress at one time or multiple stresses differ considerably. However, a better understanding of underlying response mechanisms regulated in the face of climate change-associated abiotic stress is needed to safeguard the optimal resilience and productivity of the maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The review does not contain any data which is to be submitted.

References

  • Abdallah NA, Moses V, Prakash C (2014) The impact of possible climate changes on developing countries: the needs for plants tolerant to abiotic stresses. GM Crops Food 5:77–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdelgawad Z, Khalafaallah AA, Abdallah M (2014) Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agric Sci 5:1077

    Google Scholar 

  • Ahmad I, Ahmad TKA, Basra SM, Hasnain Z, Ali A (2012) Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. Afr J Biotechnol 11:1127–1137

    CAS  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Ali Q, Ashraf M (2007) Athar H-U-R exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot 39:1133–1144

    Google Scholar 

  • Ali ML, Luetchens J, Singh A, Shaver TM, Kruger GR, Lorenz AJ (2016) Greenhouse screening of maize genotypes for deep root mass and related root traits and their association with grain yield under water-deficit conditions in the field. Euphytica 207:79–94

    Article  CAS  Google Scholar 

  • Ananiev E, Phillips R, Rines H (1998) Complex structure of knob DNA on maize chromosome 9: retrotransposon invasion into heterochromatin. Genetics 149:2025–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade FH, Echarte L, Rizzalli R, Della Maggiora A, Casanovas M (2002) Kernel number prediction in maize under nitrogen or water stress. Crop Sci 42:1173–1179

    Article  Google Scholar 

  • Anjum S, Wang L, Farooq M, Hussain M, Xue L, Zou C (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Aslam M, Zamir I, Shahid M, Afzal I, Yaseen M (2013) Morphological and physiological response of maize hybrids to potassium application under drought stress. J Agric Res 51

  • Baker NR, Farage PK, Stirling C, Long S (1994) Photoinhibition of crop photosynthesis in the field at low temperatures photoinhibition of photosynthesis from molecular mechanisms to the field. Bios Scientific Publisher, Oxford, pp 349–363

    Google Scholar 

  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Mexico, DF: Cimmyt

  • Barton B, Clark SE (2014) Water & climate risks facing US corn production: how companies & investors can cultivate sustainability. A Ceres Report Boston, MA

  • Bassu S et al (2014) How do various maize crop models vary in their responses to climate change factors? Glob Change Biol 20:2301–2320

    Article  Google Scholar 

  • Baszczynski CL, Walden DB, Atkinson BG (1983) Regulation of gene expression in corn (Zea mays L.) by heat shock. II. In vitro analysis of RNAs from heat-shocked seedlings. Can J Biochem Cell Biol 61:395–403

    Article  CAS  PubMed  Google Scholar 

  • Bechoux N, Bernier G, Lejeune P (2000) Environmental effects on the early stages of tassel morphogenesis in maize (Zea mays L.) Plant. Cell Environ 23:91–98

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Benešová M et al (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7:e38017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berberich T, Sano H, Kusano T (1999) Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol Gen Genet MGG 262:534–542

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Tong JK, Schreiber SL (2000) Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci 97:13708–13713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhati-Kushwaha H, Malik C (2013) Applications of nanotechnology in the field of medicine. LS 2:14–25

    Google Scholar 

  • Blande JD, Holopainen JK, Niinemets Ü (2014) Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ 37:1892–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonham-Smith PC, Kapoor M, Bewley JD (1987) Establishment of thermotolerance in maize by exposure to stresses other than a heat shock does not require heat shock protein synthesis. Plant Physiol 85:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brevik EC (2013) The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3:398–417

    Article  Google Scholar 

  • Burke JJ (2007) Evaluation of source leaf responses to water-deficit stresses in cotton using a novel stress bioassay. Plant Physiol 143:108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke MB, Miguel E, Satyanath S, Dykema JA, Lobell DB (2009) Warming increases the risk of civil war in Africa. Proc Natl Acad Sci 106:20670–20674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton AL, Johnson J, Foerster J, Hanlon MT, Kaeppler SM, Lynch JP, Brown KM (2015) QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Theor Appl Genet 128:93–106

    Article  PubMed  Google Scholar 

  • Cairns JE, Hellin J, Sonder K, Araus JL, MacRobert JF, Thierfelder C, Prasanna B (2013) Adapting maize production to climate change in sub-Saharan Africa. Food Security 5:345–360

    Article  Google Scholar 

  • Camacho R, Caraballo D (1994) Evaluation of morphological characteristics in Venezuelan maize (Zea mays L.) genotypes under drought stress. Scientia Agricola 51:453–458

    Article  Google Scholar 

  • Cambier V, Hance T, de Hoffmann E (2000) Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53:223–229

    Article  CAS  PubMed  Google Scholar 

  • Cantao FRDO, Durães FOM, de Oliveira AC, Soares ÂM, Magalhães PC (2008) Morphological attributes of root system ofmaize genotypes contrasting in drought tolerance due to phosphorus stress. Revista Brasileira de Milho e Sorgo 7(2):113–127

    Article  Google Scholar 

  • Cantao FRDO, DURÃES FOM, DE OLIVEIRA AC, SOARES ÂM, MAGALHÃES PC (2010) Morphological attributes of root system of maize genotypes contrasting in drought tolerance due to phosphorus stress Revista Brasileira de Milho e Sorgo 7

  • Carmo-Silva AE, Keys AJ, Beale MH, Ward JL, Baker JM, Hawkins ND, Arrabaça MC, Parry MA (2009) Drought stress increases the production of 5-hydroxynorvaline in two C4 grasses. Phytochem 70(5):664–71

  • Casaretto JA, El-kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi Y-M, Rothstein SJ (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genom 17:312

    Article  CAS  Google Scholar 

  • Ceccarelli S et al (2010) Plant breeding and climate changes. J Agric Sci 148:627–637

    Article  Google Scholar 

  • Challinor AJ, Simelton ES, Fraser ED, Hemming D, Collins M (2010) Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ Res Lett 5:034012

    Article  Google Scholar 

  • Challinor AJ, Watson J, Lobell D, Howden S, Smith D, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4:287

    Article  Google Scholar 

  • Charlton AJ, Donarski JA, Harrison M, Jones SA, Godward J, Oehlschlager S, Arques JL, Ambrose M, Chinoy C, Mullineaux PM, Domoney C (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4(4):312–327

  • Chavas DR, Izaurralde RC, Thomson AM, Gao X (2009) Long-term climate change impacts on agricultural productivity in eastern China. Agric for Meteorol 149:1118–1128

    Article  Google Scholar 

  • Chen Y, Cao Y, Wang L, Li L, Yang J, Zou MJBP (2018) Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biol Plant 62:222–230

  • Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R (2004) Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochem 65(15):2197–204

    Article  CAS  Google Scholar 

  • Diffenbaugh NS, Krupke CH, White MA, Alexander CE (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3:044007

    Article  Google Scholar 

  • Ding H, Zhang A, Wang J, Lu R, Zhang H, Zhang J, Jiang M (2009) Identity of an ABA-activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: partial purification, identification and characterization. Planta 230:239–251

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadian A, Modarres Sanavy S, Sharifi M (2009) Alleviation of water deficit stress effects by foliar application of ascorbic acid on Zea Mays L. J Agron Crop Sci 195:347–355

    Article  CAS  Google Scholar 

  • Du H et al (2013) Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res 20:437–448

  • Elad Y, Pertot I (2014) Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28:99–139

    Article  CAS  Google Scholar 

  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273

    Article  CAS  PubMed  Google Scholar 

  • Faostat FJQ (2017) Available online: http://www.fao.org/faostat/en/#data. Accessed Dec 2019

  • Farooq M, Aziz T, Wahid A, Lee D-J, Siddique KH (2009) Chilling tolerance in maize: agronomic and physiological approaches Crop and Pasture. Science 60:501–516

    Google Scholar 

  • Fedoroff NV et al (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer C, Höll W (1991) Food reserves of Scots pine (Pinus sylvestris L.). Trees 5:187–195

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fracheboud Y, Leipner J (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: Practical applications of chlorophyll fluorescence in plant biology. Springer, Boston, MA pp 125–150

  • Frendo P, Didierjean L, Passelegue E, Burkard G (1992) Abiotic stresses induce a thaumatin-like protein in maize; cDNA isolation and sequence analysis. Plant Sci 85:61–69

    Article  CAS  Google Scholar 

  • Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler JP, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55(4):687–97

    Article  CAS  PubMed  Google Scholar 

  • Fu J et al (2012) Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS ONE 7:e31101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleadow RM, Evans JR, McCaffery S, Cavagnaro TR (2009) Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2. Plant Biol 11:76–82

    Article  CAS  PubMed  Google Scholar 

  • Gohari A, Eslamian S, Abedi-Koupaei J, Bavani AM, Wang D, Madani K (2013) Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Sci Total Environ 442:405–419

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Yang L, Tai F, Hu X, Wang W (2014) “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS 18:714–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González EM, Gálvez L, Arrese-Igor C (2001) Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J Exp Bot 52:285–293

    Article  PubMed  Google Scholar 

  • Gouinguené SP, Turlings TC (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu L, Liu Y, Zong X, Liu L, Li D-P, Li D-Q (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    Article  CAS  PubMed  Google Scholar 

  • Habben JE et al (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hadiarto T (2011) Tran L-SP progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    Article  CAS  PubMed  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl complex I is protected by anti-oxidants and small heat shock proteins, whereas complex ii is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Hellin J, Rosenstock T, Fisher E et al (2019) Climate risk management and rural poverty reduction. Agric Sys 172:28–46

  • Hashiguchi A, Komatsu S (2016) Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 4:42

    Article  PubMed Central  CAS  Google Scholar 

  • Hatfield J (2016) Increased temperatures have dramatic effects on growth and grain yield of three maize hybrids. The American Society of Agronomy Crop Science Society of America, and Soil Science Society of America Inc, Madison Google Scholar

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  • Hatfield JL et al (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hong-Bo S et al (2006) Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids Surf B 53:113–119

    Article  CAS  Google Scholar 

  • Hu X, Wang W (2016) Proteomics driven research of abiotic stress responses in crop plants. In: Plant omics: trends and applications. Springer, Cham pp 351–362

  • Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W, Schönbach C (2012) Abscisic Acid Refines the Synthesis of Chloroplast Proteins in Maize (Zea mays) in Response to Drought and Light. PLoS ONE 7(11):e49500. https://doi.org/10.1371/journal.pone.0049500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29:455–464

    Article  CAS  Google Scholar 

  • Hu Y et al (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS ONE 6:e22132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Guo S, Li X, Ren X (2013) Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti4+-IMAC enrichment and ESI-Q-TOF MS. Electrophoresis 34:485–492

    Article  PubMed  CAS  Google Scholar 

  • Huai J et al (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    Article  CAS  PubMed  Google Scholar 

  • Iizumi T, Ramankutty N (2015) How do weather and climate influence cropping area and intensity? Glob Food Sec 4:46–50

    Article  Google Scholar 

  • Iqbal MM, Arif M (2010) Climate-change aspersions on food security of Pakistan. J Sci Develop 15

  • Ito H, Yoshida T, Tsukahara S, Kawabe A (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518:256–261

    Article  CAS  PubMed  Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans R Soc Lond B 365:2835–2851

    Article  Google Scholar 

  • Jin Y et al (2007) Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics 90:265–275

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Change 13:51–59

    Article  Google Scholar 

  • Jovanovic L, Veljovic S, Janjic V (1991) Water regime and photosynthesis parameters in two maize lines differing in drought susceptibility. Biol Vest 39:103–108

    Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. In: Plant gene silencing. Springer, Muthapa pp 59–68

  • Kamara A, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50

    Article  Google Scholar 

  • Kholova J, Sairam RK, Meena RC (2010) Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant 32:477–486

    Article  CAS  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lu S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant physiol 151(4):1918–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Gitz DC, Sicher RC, Baker JT, Timlin DJ, Reddy VR (2007) Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environ Exp Bot 61:224–236

    Article  CAS  Google Scholar 

  • Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature 31:36–43

  • Kimotho RN, Baillo EH, Zhang Z (2019) Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era 7:e7211

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Köllner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70:1139–1145

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Elling AA, Chen B, Deng X (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress American. J Plant Sci 1:69

    Article  CAS  Google Scholar 

  • Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Gupta D, Nayyar H (2012) Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiol Plant 34:75–86

    Article  CAS  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Staebler M, Tollenaar M (2002) Genetic variation in physiological discriminators for cold tolerance—early autotrophic phase of maize development. Crop Sci 42:1919–1929

    Article  Google Scholar 

  • Leipner J, Stamp P, Fracheboud Y (2000) Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta 210:964–969

    Article  CAS  PubMed  Google Scholar 

  • Liu M (2012) Response of photosynthesis and chlorophyll fluorescence to drought stress in two maize cultivars. Afr J Agr Res 7(34):0.5897/AJAR12.082

  • Li H, Gao Y, Xu H, Dai Y, Deng D, Chen J (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216

  • Li P et al (2017) Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front Plant Sci 8:290

    PubMed  PubMed Central  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2013a) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9:e1003790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

  • López-Pérez L, del Carmen Martínez-Ballesta M, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochem 70(4):492–500

    Article  CAS  Google Scholar 

  • Lu M, Ying S, Zhang DF, Shi YS, Song YC, Wang TY, Li Y (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep. 31:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:1004915

    Article  CAS  Google Scholar 

  • Menezes-Benavente L, Kernodle SP, Margis-Pinheiro M, Scandalios JG (2004) Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep 9:29–36

    Article  CAS  PubMed  Google Scholar 

  • Mercer KL, Perales HR, Wainwright JD (2012) Climate change and the transgenic adaptation strategy: Smallholder livelihoods, climate justice, and maize landraces in Mexico. Glob Environ Change 22:495–504

    Article  Google Scholar 

  • Miedema P (1982) The effects of low temperature on Zea mays. In: Advances in agronomy, vol 35. Elsevier, pp 93–128

  • Mishkind M, Vermeer JE, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J 60(1):10–21

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta (BBA)-Gene Regulat Mech 1819:86–96

    Article  CAS  Google Scholar 

  • Moharramnejad S, Sofalian O, Valizadeh M, Asgari A, Shiri M (2015) Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. J Biosci Biotechnol 4(3):313–319

  • Monneveux P, Sanchez C, Beck D, Edmeades G (2006) Drought tolerance improvement in tropical maize source populations. Crop Sci 46:180–191

    Article  Google Scholar 

  • Moriondo M, Giannakopoulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104:679–701

    Article  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254

    Article  CAS  PubMed  Google Scholar 

  • Mulakupadom SS, Otero S, Lanigan G, Osborne B (2013) Photosynthetic performance of maize subjected to low temperatures. In: Photosynthesis research for food, fuel and the future. Springer, Berlin, Heidelberg, pp 716–721

  • Müller C, Cramer W, Hare WL, Lotze-Campen H (2011) Climate change risks for African agriculture. Proc Natl Acad Sci 108:4313–4315

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144(2):1104–14

  • Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009) Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem 47:116–122

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag 260:1623–1639

    Article  Google Scholar 

  • Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J plant physiol 166(2):180–91

    Article  CAS  PubMed  Google Scholar 

  • Oktem H, Eyidogan F, Selçuk F, Oz M, Teixeira da Silva J, Yucel M (2008) Revealing response of plants to biotic and abiotic stresses with microarray technology. Genes Genom Genomic 2:14–48

    Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotech Rep 1(1):37–48

    Article  Google Scholar 

  • Patakas A, Noitsakis B (2001) Leaf age effects on solute accumulation in water-stressed grapevines. J Plant Physiol 158:63–69

    Article  CAS  Google Scholar 

  • Paterson R, Lima N (2011) Further mycotoxin effects from climate change. Food Res Int 44:2555–2566

    Article  CAS  Google Scholar 

  • Paterson RRM, Lima N (2010) How will climate change affect mycotoxins in food? Food Res Int 43:1902–1914

    Article  CAS  Google Scholar 

  • Porter J, Parry M, Carter T (1991) The potential effects of climatic change on agricultural insect pests. Agric for Meteorol 57:221–240

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Prior SA, Runion GB, Marble SC, Rogers HH, Gilliam CH, Torbert HA (2011) A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience 46:158–162

    Article  CAS  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128(4):710–21

    Article  CAS  Google Scholar 

  • Ramazan S, Bhat HA, Zargar MA, Ahmad P, John R (2021a) Combined gas exchange characteristics chlorophyll fluorescence and response curves as selection traits for temperature tolerance in maize genotypes. Phot Res. https://doi.org/10.1007/s11120-021-00829-z

    Article  Google Scholar 

  • Ramazan S, Qazi HA, Dar ZA, John R (2021b) Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiol Mol Biol of Plants 27(6):1395–1412. https://doi.org/10.1007/s12298-021-01020-3

    Article  CAS  Google Scholar 

  • Ramirez-Villegas J, Jarvis A, Läderach P (2013) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agric for Meteorol 170:67–78

    Article  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu JJP (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed Central  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150(3):1530–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristic Z, Gifford DJ, Cass DD (1991) Heat shock proteins in two lines of Zea mays L. that differ in drought and heat resistance. Plant Physiol 97:1430–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60(15):4249–4262

  • Rowhani P, Lobell DB, Linderman M, Ramankutty N (2011) Climate variability and crop production in Tanzania. Agric for Meteorol 151:449–460

    Article  Google Scholar 

  • Ruiz-Vera UM, Siebers MH, Drag DW, Ort DR, Bernacchi CJ (2015) Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob Change Biol 21:4237–4249

    Article  Google Scholar 

  • Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol 114:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samra J, Singh G, Ramakrishna YS (2003) Cold wave of 2002–03: impact on agriculture. Natural Resource Management Division, Indian Council of Agricultural Research, NewDelhi, India

  • Sayed O (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41:321–330

    Article  CAS  Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–678

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Setter TL et al (2010) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62:701–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw PE (2002) Peptidyl-prolyl isomerases: a new twist to transcription. EMBO Rep 3:521–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng L et al (2015) Identification and characterization of novel maize miRNAs involved in different genetic background. Int J Biol Sci 11:781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sicker D, Frey M, Schulz M, Gierl A (2000) Role of natural benzoxazinones in the survival strategy of plants. In: International review of cytology, vol 198. Elsevier, Bourne, Daneilli, Jeon, pp 319–346

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith P, Gregory PJ (2013) Climate change and sustainable food production. Proc Nutr Soc 72:21–28

    Article  PubMed  Google Scholar 

  • Solomon S (2007) The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change intergovernmental panel on climate change (IPCC). Clim Change 2007:996

    Google Scholar 

  • Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Liu L, Li G, An L, Tian L (2017) Trichostatin A and 5-aza-2′-deoxycytidine influence the expression of cold-induced genes in arabidopsis. Plant Signal Behav 12:e1389828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Szabó I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tebaldi C, Lobell DJ (2018) Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environ Res Lett 13:065001

  • Ton J et al (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  CAS  PubMed  Google Scholar 

  • Travasso MI, Magrin GO, Rodriguez GR, Solman S, Nunez M (2009) Climate change impacts on regional maize yields and possible adaptation measures in Argentina. Int J Glob Warm 1:201–213

    Article  Google Scholar 

  • Tubiello F, Rosenzweig C, Goldberg R, Jagtap S, Jones J (2002) Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: wheat, potato, maize, and citrus. Clim Res 20:259–270

    Article  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  PubMed  Google Scholar 

  • Tyagi J, Sultan E, Mishra A, Kumari M, Pudake RN (2017) The impact of AMF symbiosis in alleviating drought tolerance in field crops. In: Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 211–234

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57(6):1065–78

    Article  CAS  PubMed  Google Scholar 

  • Vaughan MM et al (2014) Effects of elevated [CO2] on maize defence against mycotoxigenic F usarium verticillioides. Plant Cell Environ 37:2691–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan MM et al (2015) Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ 38:2195–2207

    Article  CAS  PubMed  Google Scholar 

  • Vaughan MM et al (2016) Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PLoS ONE 11:e0159270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaughan MM, Block A, Christensen SA, Allen LH, Schmelz EA (2018) The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochem Rev 17:37–49

    Article  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. Proteom Invest Plant Physiol 137:949–960

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Walker N, Schulze R (2008) Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa Agriculture. Ecosyst Environ 124:114–124

    Article  Google Scholar 

  • Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integrat Plant Biol 52:442–452

    CAS  Google Scholar 

  • Wang Q et al (2017) Systematic analysis of the maize cyclophilin gene family reveals ZmCYP15 involved in abiotic stress response. Plant Cell Tissue Organ C (PCTOC) 128:543–561

    Article  CAS  Google Scholar 

  • Waters AJ, Makarevitch I, Noshay J, Burghardt LT, Hirsch CN, Hirsch CD, Springer NM (2017) Natural variation for gene expression responses to abiotic stress in maize. Plant J 89:706–717

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, Von Caemmerer S (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58(2):299–317

  • Wouters FC, Blanchette B, Gershenzon J, Vassão DG (2016) Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochem Rev 15:1127–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Z, Li PH (1992) Abscisic acid-induced chilling tolerance in maize suspension-cultured cells. Plant Physiol 99:707–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Twine TE, Girvetz E (2016) Climate change and maize yield in Iowa. PLoS ONE 11:e0156083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xuan N, Jin Y, Zhang H, Xie Y, Liu Y, Wang G (2011) A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell Tissue Organ C (PCTOC) 107:101

    Article  CAS  Google Scholar 

  • Yang J, Sicher RC, Kim MS, Reddy VR (2014) Carbon dioxide enrichment restrains the impact of drought on three maize hybrids differing in water stress tolerance in water stressed environments. Int J Plant Biol 5:5535

  • Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi P, Yadav M, Maniselvan P, Khan R, Shadakshari T, Singh R, Pal D (2010) Morpho-physiological traits associated with cold stress tolerance in tropical maize (Zea mays L.). Maydica 55:201–208

  • Zampieri M, Ceglar A, Dentener F, Dosio A, Naumann G, Van Den Berg M, Toreti AJ (2019) When will current climate extremes affecting maize production become the norm?. Earth's Future 7:113–122

  • Zhan A, Schneider H, Lynch J (2015) Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol, 168(4):1603–1615

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genom 10:449

    Article  CAS  Google Scholar 

  • Zhang L et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T et al (2012) Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS ONE 7:e43274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang W, Wang M, Zhang H-Y, Liu J-H (2016) The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene–polyamine homeostasis. Plant Cell Physiol 57:1865–1878

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tong H, Cai R, Peng X, Li X, Gan D, Zhu S (2014) Identification and characterization of the RCI2 gene family in maize (Zea mays). J Genet 93:655–666

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ohyama K, Boudet J, Chen Z, Yang J, Zhang M, Muranaka T, Maurel C, Zhu JK, Gong Z (2008) Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell 20(7):1879–1898

  • Zheng J, Zhao J, Zhang J, Fu J, Gou M, Dong Z, Hou W, Huang Q, Wang G (2006) Comparative expression profiles of maize genes from a water stress-specific cDNA macroarray in response to high-salinity cold or abscisic acid. Plant Sci 170(6):1125–1132. https://doi.org/10.1016/j.plantsci.2006.01.019

    Article  CAS  Google Scholar 

  • Zhou M-L et al (2012) Genome-wide identification of genes involved in raffinose metabolism in maize. Glycobiology 22:1775–1785

    Article  CAS  PubMed  Google Scholar 

  • Zobayed SM, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort. Plant Physiol Biochem 1;43(10-11):977–984

  • Zong X-j, Li D-p, Gu L-k, Li D-q, Liu L-x, Hu X-l (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support by CSIR, New Delhi (sanction number: 38 (1459)/18/EMR-II).

Funding

Authors are thankful to CSIR, New Delhi for funding research on crop plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Riffat.

Ethics declarations

Conflict of interests

Authors declare no conflict of interest.

Ethical approval

This is a review about maize and does not require ethicial approval or consent to participate.

Consent for publication

We agree for the publication of our review submitted to journal.

Additional information

Communicated by P. Sowinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salika, R., Riffat, J. Abiotic stress responses in maize: a review. Acta Physiol Plant 43, 130 (2021). https://doi.org/10.1007/s11738-021-03296-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03296-0

Keywords

Navigation