Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization
<p>Study area.</p> "> Figure 2
<p>Spatial distribution of land use and land cover from 1980 to 2015.</p> "> Figure 3
<p>Time trends of different land use/cover types.</p> "> Figure 4
<p>Time-varying trends of ESVs in the Yangtze River Delta urban agglomeration. (<b>a</b>) Regulating services values (RSVs); (<b>b</b>) provisioning services values (PSVs); (<b>c</b>) habitat services value (HSV); (<b>d</b>) cultural and amenity services value (CSV); and (<b>e</b>) total ecosystem services values (ESVs).</p> "> Figure 5
<p>Changes in ESVs in different urban areas of the Yangtze River Delta urban agglomeration.</p> "> Figure 6
<p>Potential ecosystem services supply value based on the <math display="inline"><semantics> <mrow> <msubsup> <mi>G</mi> <mi>i</mi> <mo>*</mo> </msubsup> </mrow> </semantics></math> index Z score.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. The Assessment Method of ESVs
2.3. Global Spatial Autocorrelation
2.4. Cold/Hot Spots Analysis
3. Results and Analysis
3.1. Analysis of the Changes in the ESVs Resulting from LUCC
3.2. Spatial Autocorrelation Analysis and Correlation Analysis of Four Ecosystem Services
3.3. Evolution of the Spatial Pattern Of ESVs Based on Cold/Hot Spots
3.4. Analysis of the Importance of Land Use Types on the ESVs
4. Discussion
4.1. Data Method Restrictions
4.2. Causes of ESVs Changes in the Study Area
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Justice, C.; Gutman, G.; Vadrevu, K.P. NASA Land Cover and Land Use Change (LCLUC): An interdisciplinary research program. J. Environ. Manag. 2015, 148, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Huang, J.; Shi, Q.; Li, Y. A revisit to the impacts of land use changes on the human wellbeing via altering the ecosystem provisioning services. Adv. Meteorol. 2013, 2013, 907367. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- De Gregorio, A.; Jansen, L.J.M. Land Cover Classification System (LCCS) Classification Concepts and User Manual; Environment and Natural Resources Service (SDRN), Food and Agricultural Organisation of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Knoester, L. Linking land use and ecosystem services. Development of a life cycle impact assessment method to improve evaluation of biobased products. Habitat Int. 2015, 45, 163–168. [Google Scholar]
- Liu, H.R.; Lin, Y.P.; Lien, W.Y. Impacts of Climate Change and Land Use Change on Ecosystem Services—A Case Study in Taiwan. Available online: http://adsabs.harvard.edu/abs/2018EGUGA..20.7449L (accessed on 21 November 2018).
- USGS. Land Change Science Program. 2013. Available online: http://www.usgs.gov/climate_landuse/lcs/pdfs/LCSinfosheetMarch2013.pdf (accessed on 10 August 2018).
- Koellner, T.; Scholz, R.W. Assessment of land use impacts on the natural environment: Part 1: An analytical framework for pure land occupation and land use change. Int. J. Life Cycle Assess. 2007, 12, 16–23. [Google Scholar]
- Krausmann, F.; Gingrich, S.; Eisenmenger, N.; Erb, K.H.; Haberl, H.; Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 2009, 68, 2696–2705. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. 2005. Available online: https://www.pik-potsdam.de/ateam/avec/ma_pdf/ash.pdf (accessed on 21 November 2018).
- Shi, C.; Yao, S.; Chen, X. Economic Valuation of Ecosystem Services Based on Choice Experiments: A Case Study of Wenjiang in Sichuan Province. J. Nat. Resour. 2016, 31, 767–778. [Google Scholar]
- Braat, L.C.; Groot, R.D. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mark, S.; Erica, G.; Bartuska, A.M.; Sutton-Grier, A.; Lubchenco, J. Nature as capital: Advancing and incorporating ecosystem services in United States federal policies and programs. Proc. Natl. Acad. Sci. USA 2015, 112, 7383. [Google Scholar] [CrossRef]
- Liang, J.; Zhong, M.; Zeng, G.; Chen, G.; Hua, S.; Li, X.; Yuan, Y.; Wu, H.; Gao, X. Risk management for optimal land use planning integrating ecosystem services values: A case study in Changsha, Middle China. Sci. Total Environ. 2017, 579, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, L.; Folke, C.; Gunderson, L. Valuation of Ecosystem Services in Institutional Context. Ecosystems 2000, 3, 36–40. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.O.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 25, 3–15. [Google Scholar] [CrossRef]
- Alexander, A.M.; List, J.A.; Margolis, M.; d’Argea, R.C. A method for valuing global ecosystem services. Ecol. Econ. 1998, 27, 161–170. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Chuai, X.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Nahuelhual, L.; Carmona, A.; Aguayo, M.; Echeverria, C. Land use change and ecosystem services provision: A case study of recreation and ecotourism opportunities in southern Chile. Landsc. Ecol. 2014, 29, 329–344. [Google Scholar] [CrossRef]
- Zheng, J.K.; Yu, X.X.; Jia, G.D.; Xia, B. Dynamic evolution of the ecological service value based on LUCC in Miyun Reservoir Catchment. Trans. Chin. Soc. Agric. Eng. 2010, 26, 315–320. [Google Scholar]
- Fu, Y.; Du, X.; Peng, W.; Dong, F. Agro-ecosystem value connotation based on watershed land use. Trans. Chin. Soc. Agric. Eng. 2015, 31, 243–250. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, X.; Yuan, X.; Liu, F.; Guo, H.; Xu, Y.; Li, B. Land use change and its impact on habitat quality in Lake Nansi Basin from 1980 to 2015. J. Lake Sci. 2018, 30, 349–357. [Google Scholar] [CrossRef]
- Ran, S.; Li, X.; Lu, C. Multi-scale Modeling of Land-cover Change and Ecosystem Service Values: A Case of the Yuzixi Catchment in Sichuan. Acta Geogr. Sin. 2006, 61, 1113–1120. [Google Scholar]
- Xie, G.; Li, W.; Xiao, Y.; Zhang, B.; Lu, C.; An, K.; Wang, J.; Xu, K.; Wang, J. Forest Ecosystem Services and Their Values in Beijing. Chin. Geogr. Sci. 2010, 20, 51–58. [Google Scholar] [CrossRef]
- Yu, X. The assessment of the forest ecosystem services valuation in China. Acta Ecol. Sin. 2005, 25, 2096–2102. [Google Scholar]
- Li, T.; Cui, Y.; Liu, A. Spatiotemporal dynamic analysis of forest ecosystem services using “big data”: A case study of Anhui province, central-eastern China. J. Clean. Prod. 2016, 142, 589–599. [Google Scholar] [CrossRef]
- Homolová, L.; Schaepman, M.E.; Lamarque, P.; Clevers, J.G.P.W.; de Bello, F.; Thuiller, W.; Lavorel, S. Comparison of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands. Ecosphere 2016, 5, 1–29. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Wratten, S.D.; Cullen, R.; Case, B. The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol. Econ. 2008, 64, 835–848. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, T.; Casey, F. An assessment of market-based approaches to providing ecosystem services on agricultural lands. Ecol. Econ. 2007, 64, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, B.; Zhang, S.; Li, X.; Liu, D.; Song, K.; Li, J.; Li, F.; Duan, H. Changes of Land Use and of Ecosystem Service Values in Sanjiang Plain, Northeast China. Environ. Monit. Assess. 2006, 112, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, L.H.; Cosens, B.; Garmestani, A.S. Adaptive governance of riverine and wetland ecosystem goods and services. J. Environ. Manag. 2016, 183 Pt 2, 353–360. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Rawlins, M.A.; Westby, L. Community participation in payment for ecosystem services design and implementation: An example from Trinidad. Ecosyst. Serv. 2013, 6, 117–121. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Brown, G. The relationship between social values for ecosystem services and global land cover: An empirical analysis. Ecosyst. Serv. 2013, 5, 58–68. [Google Scholar] [CrossRef]
- Jobstvogt, N.; Watson, V.; Kenter, J.O. Looking below the surface: The cultural ecosystem service values of UK marine protected areas (MPAs). Ecosyst. Serv. 2014, 10, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Brander, L.M.; Wagtendonk, A.J.; Hussain, S.S.; McVittie, A.; Verburg, P.H.; de Groot, R.S.; van der Ploeg, S. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 2012, 1, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Bullock, C.; Joyce, D.; Collier, M. An exploration of the relationships between cultural ecosystem services, socio-cultural values and well-being. Ecosyst. Serv. 2018, 31, 142–152. [Google Scholar] [CrossRef]
- Li, J.C.; Wang, W.L.; Hu, G.Y.; Wei, Z. Changes in ecosystem service values in Zoige Plateau, China. Agric. Ecosyst. Environ. 2010, 139, 766–770. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, S.; Yang, J.; Chang, L.; Yang, H.; Bu, K. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain Region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Ye, M.; Pu, R.; Liu, Y.; Guo, Q.; Feng, B.; Song, X. Changes of Ecosystem Service Value in a Coastal Zone of Zhejiang Province, China, during Rapid Urbanization. Int. J. Environ. Res. Public Health 2018, 15, 1301. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Qin, T.; Yan, D.; Yang, M.; Yu, H.; Shi, W. The Impact on the Ecosystem Services Value of the Ecological Shelter Zone Reconstruction in the Upper Reaches Basin of the Yangtze River in China. Int. J. Environ. Res. Public Health 2018, 15, 2273. [Google Scholar] [CrossRef] [PubMed]
- Koellner, T.; de Baan, L.; Beck, T.; Brandão, M.; Civit, B.; Margni, M.; Canals, L.M.; Saad, R.; de Souza, D.M.; et al. UNEP/SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 2013, 18, 1188–1202. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Rong, Y.; Li, C.; Xu, C.; Yan, Y. Ecosystem service values and spatial differentiation changes during urbanization: A case study of Huanghua City. Chin. J. Ecol. 2017, 36, 1374–1381. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set (CNLUCC); Resource and Environment Data Cloud Platform: Beijing, China, 2018. [Google Scholar]
- Kumar, P. (Ed.) The Economics of Ecosystems and Biodiversity (TEEB): Ecological and Economic Foundations; Earthscan: London, UK, 2010. [Google Scholar]
- Aschonitis, V.G.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Criticism on elasticity-sensitivity coefficient for assessing the robustness and sensitivity of ecosystem services values. Ecosyst. Serv. 2016, 20, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Zhang, F.; Gong, C.; Luo, P. Spatial-temporal Evolvement of Ecosystem Service Value in Hunan Province Based on LUCC. Resour. Environ. Yangtze Basin 2018, 27, 1397–1408. [Google Scholar]
- Yu, H. The influential factors of China’s regional energy intensity and its spatial linkages: 1988–2007. Energy Policy 2012, 45, 583–593. [Google Scholar] [CrossRef]
- Gimona, A.; van der Horst, D. Mapping hotspots of multiple landscape functions: A case study on farmland afforestation in Scotland. Landsc. Ecol. 2007, 22, 1255–1264. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Burkhard, B.; Kruse, M.; Müller, F.; Díaz-Varela, E.R.; Álvarez-Álvarez, P. Use of ecosystem information derived from forest thematic maps for spatial analysis of ecosystem services in northwestern Spain. Landsc. Ecol. Eng. 2017, 13, 45–57. [Google Scholar] [CrossRef]
- Ferreira, L.M.R.; Esteves, L.S.; Souza, E.P.D.; Costa dos Santos, C.A. Impact of the Urbanisation Process in the Availability of Ecosystem Services in a Tropical Ecotone Area. Ecosystems 2018, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Timilsina, N.; Escobedo, F.J.; Cropper, W.P.; Abd-Elrahman, A.; Brandeis, T.J.; Delphin, S.; Lambert, S. A framework for identifying carbon hotspots and forest management drivers. J. Environ. Manag. 2013, 114, 293–302. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Reed, J.M.; Semmens, D.J.; Sherrouse, B.S.; Troy, A. Linking biophysical models and public preferences for ecosystem service assessments: A case study for the Southern Rocky Mountains. Reg. Environ. Chang. 2015, 16, 1–14. [Google Scholar] [CrossRef]
- Zhan, J.; Chu, X.; Li, Z.; Jia, S.; Wang, G. Incorporating ecosystem services into agricultural management based on land use/cover change in Northeastern China. Technol. Forecast. Soc. Chang. 2018. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Heinemeyer, A.; Gillings, S.; Roy, D.B.; Thomas, C.D.; Gaston, K.J. The impact of proxy-based methods on mapping the distribution of ecosystem services. J. Appl. Ecol. 2010, 47, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127 (Suppl. 3), 117–131. [Google Scholar] [CrossRef] [PubMed]
- Zhejiang News. Available online: https://zj.zjol.com.cn/news/492259.html (accessed on 8 December 2018).
- State Forestry Administration. Available online: http://www.forestry.gov.cn/portal/main/s/1017/content-266121.html (accessed on 8 December 2018).
- Hu, X.; Hong, W.; Qiu, R.; Hong, T.; Chen, C.; Wu, C. Geographic variations of ecosystem service intensity in Fuzhou City, China. Sci. Total Environ. 2015, 512–513, 215–226. [Google Scholar] [CrossRef]
- Dvarskas, A. Mapping ecosystem services supply chains for coastal Long Island communities: Implications for resilience planning. Ecosyst. Serv. 2018, 30, 14–26. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wu, R.; Yang, F.; Wang, J.; Wu, W. Spatial trade-offs and synergies among ecosystem services within a global biodiversity hotspot. Ecol. Indic. 2018, 84, 371–381. [Google Scholar] [CrossRef]
- Kong, L.; Zheng, H.; Xiao, Y.; Ouyang, Z.; Li, C.; Zhang, J.; Huang, B. Mapping Ecosystem Service Bundles to Detect Distinct Types of Multifunctionality within the Diverse Landscape of the Yangtze River Basin, China. Sustainability 2018, 10, 857. [Google Scholar] [CrossRef]
- Liang, L.; Xing, W.; Zeng, G.; Li, X.; Peng, Y.; Li, X.; Gao, X.; He, X. Where will threatened migratory birds go under climate change? Implications for China’s national nature reserves. Sci. Total Environ. 2018, 645, 1040–1047. [Google Scholar] [CrossRef]
- Liang, J.; He, X.; Zeng, G.; Zhong, M.; Gao, X.; Li, X.; Li, X.D.; Wu, H.; Feng, C.; Xing, W.; et al. Integrating priority areas and ecological corridors into national network for conservation planning in China. Sci. Total Environ. 2018, 626, 22–29. [Google Scholar] [CrossRef]
- Shackelford, N.; Standish, R.J.; Ripple, W.; Starzomski, B.M. Threats to biodiversity from cumulative human impacts in one of North America’s last wildlife frontiers. Conserv. Biol. 2018, 32, 672–684. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Li, C.; Liu, H.; Shang, H.; Ye, L.; Li, Y.; Zhang, C. Evaluation of Temporal and Spatial Ecosystem Services in Dalian, China: Implications for Urban Planning. Sustainability 2018, 10, 1247. [Google Scholar] [CrossRef]
- Benis, E.; Belinda, R.; Mathieu, R.; Bode, M.; Richardson, D.M. Spatial congruence between biodiversity and ecosystem services in South Africa. Biol. Conserv. 2009, 142, 553–562. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Lamarque, P.; Martín-López, B.; Crouzat, E.; Gos, P.; Byczek, C.; Lavorel, S. An interdisciplinary methodological guide for quantifying associations between ecosystem services. Glob. Environ. Chang. 2014, 28, 298–308. [Google Scholar] [CrossRef]
Farmland | Forest | Grassland | Water Area | Wetland | Barren Land | ||||
---|---|---|---|---|---|---|---|---|---|
Paddy Field | Dry Land | Bush | Non-Bush | Grassland | Water Area | Wetland | Barren Land | ||
Provisioning services | Food | 3427.934 | 2142.459 | 478.9026 | 781.3674 | 554.5188 | 2016.432 | 1285.475 | 0 |
Material | 226.8486 | 1008.216 | 1083.832 | 1789.583 | 831.7782 | 579.7242 | 1260.27 | 0 | |
Water | 2974.237 | 50.4108 | 554.5188 | 932.5998 | 453.6972 | 20,895.28 | 6528.199 | 0 | |
Regulating services | Air quality regulation | 2797.799 | 1688.7618 | 3553.961 | 5923.269 | 2873.416 | 1940.816 | 4789.026 | 50.4108 |
Climate regulation | 1436.708 | 907.3944 | 10,661.88 | 17,719.4 | 7612.031 | 5772.037 | 9073.944 | 0 | |
Wastewater treatment | 428.4918 | 252.054 | 3226.291 | 5015.875 | 2520.54 | 13,989 | 9073.944 | 252.054 | |
Regulation of water flow | 6855.869 | 680.5458 | 8443.809 | 8847.095 | 5570.393 | 257,700 | 61,072.68 | 75.6162 | |
Erosion protection | 25.2054 | 2596.1562 | 4335.329 | 7208.744 | 3503.551 | 2344.102 | 5822.447 | 50.4108 | |
Soil fertility maintenance | 478.9026 | 302.4648 | 327.6702 | 554.5188 | 277.2594 | 176.4378 | 453.6972 | 0 | |
Habitat services | Biodiversity | 529.3134 | 327.6702 | 3957.248 | 6553.404 | 3201.086 | 6427.377 | 19,836.65 | 50.4108 |
Cultural and amenity services | Aesthetic landscape | 226.8486 | 151.2324 | 1739.173 | 2873.416 | 1411.502 | 4763.821 | 11,922.15 | 25.2054 |
Land Use/Cover Type | 1980–2000 Change | 2000–2015 Change | ||||||
---|---|---|---|---|---|---|---|---|
Area (10,000 ha) | % | Value (100 Million Yuan) | % | Area (10,000 ha) | % | Value (100 Million Yuan) | % | |
Paddy field | −33.71 | −3.565 | −65.425 | −3.565 | −69.96 | −7.673 | −135.779 | −7.673 |
Dry land | −8.85 | −4.178 | −8.945 | −4.178 | −6.7 | −3.301 | −6.772 | −3.301 |
Bush | 3.73 | 6.934 | 14.309 | 6.934 | −0.22 | −0.382 | −0.844 | −0.382 |
Non Bush | 22.43 | 4.524 | 130.505 | 4.523 | −5.37 | −1.036 | −31.260 | −1.036 |
Grassland | −20.1 | −20.643 | −55.359 | −19.915 | −0.71 | −0.919 | −2.045 | −0.918 |
Water | 5.53 | 3.984 | 175.083 | 3.983 | 6.14 | 4.254 | 194.396 | 4.253 |
Wetland | −5.53 | −20.044 | −72.509 | −20.043 | −3.5 | −15.866 | −45.892 | −15.865 |
Barren land | −0.1 | −22.727 | −0.005 | −22.727 | 0.18 | 52.941 | 0.009 | 52.941 |
Urban | 36.6 | 29.50899 | 0 | 0 | 80.14 | 49.891 | 0 | |
Total value change | 117.654 | 1.156 | Total value change | −28.188 | −0.274 | |||
total area | 2095.06 | total area | 2095.06 |
Spatial Autocorrelation of ESVs | ||||||||
---|---|---|---|---|---|---|---|---|
Provisioning Services | Regulating Services | Habitat Services | Cultural and Amenity Services | |||||
Index I | Z Score | Index I | Z Score | Index I | Z Score | Index I | Z Score | |
1980 | 0.325859 | 15.76806351 | 0.341315 | 13.54484010 | 0.443899 | 21.47996642 | 0.433891 | 21.3177653 |
2000 | 0.296663 | 14.35484476 | 0.344935 | 16.69057657 | 0.471953 | 22.83665061 | 0.456325 | 21.7954661 |
2015 | 0.264615 | 12.80752928 | 0.345942 | 16.743576 | 0.478471 | 22.97422287 | 0.474623 | 22.9187627 |
Ecosystem Services | Regulating Services | Provisioning Services | Habitat Services | Cultural and Amenity Services |
---|---|---|---|---|
Regulating services | 1 | - | - | - |
Provisioning services | 0.219 | 1 | - | - |
Habitat services | 0.857 | −0.135 | 1 | - |
Cultural and amenity services | 0.871 | −0.150 | 0.998 | 1 |
1980 | 2000 | 2015 | ||||
---|---|---|---|---|---|---|
Sensitivity Coefficient | Rank | Sensitivity Coefficient | Rank | Sensitivity Coefficient | Rank | |
Paddy field | 0.1785 | 3 | 0.1721 | 3 | 0.1589 | 3 |
Dry land | 0.0208 | 6 | 0.0199 | 7 | 0.0193 | 7 |
Bush | 0.0201 | 7 | 0.0215 | 6 | 0.0214 | 6 |
Non-bush | 0.2801 | 2 | 0.2927 | 2 | 0.2897 | 2 |
Grassland | 0.0273 | 5 | 0.0217 | 5 | 0.0215 | 5 |
Water area | 0.4275 | 1 | 0.4445 | 1 | 0.4634 | 1 |
Barren land | 0 | 8 | 0 | 8 | 0 | 8 |
Wetland | 0.0352 | 4 | 0.0281 | 4 | 0.0237 | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Sun, Z.; Tian, Y.; Zhong, J.; Yang, W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. Int. J. Environ. Res. Public Health 2019, 16, 123. https://doi.org/10.3390/ijerph16010123
Li Z, Sun Z, Tian Y, Zhong J, Yang W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. International Journal of Environmental Research and Public Health. 2019; 16(1):123. https://doi.org/10.3390/ijerph16010123
Chicago/Turabian StyleLi, Zhigang, Zishu Sun, Yangjie Tian, Jialong Zhong, and Wunian Yang. 2019. "Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization" International Journal of Environmental Research and Public Health 16, no. 1: 123. https://doi.org/10.3390/ijerph16010123
APA StyleLi, Z., Sun, Z., Tian, Y., Zhong, J., & Yang, W. (2019). Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. International Journal of Environmental Research and Public Health, 16(1), 123. https://doi.org/10.3390/ijerph16010123