Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone
<p>Poyang Lake Ecological Economic Zone Location Map.</p> "> Figure 2
<p>Poyang Lake Ecological Economic Zone nighttime light data from 1992, 1999, 2006, and 2013.</p> "> Figure 3
<p>Standard deviation ellipse of urban land expansion in the Poyang Lake Ecological Economic Zone.</p> "> Figure 4
<p>Standard deviation elliptical average center of four years of urban land expansion in the Poyang Lake Ecological Economic Zone.</p> "> Figure 5
<p>Comparison of the urban built-up area between the Poyang Lake Ecological Economic Zone and Nanchang City in 1992, 1999, 2006 and 2013.</p> ">
Abstract
:1. Introduction
2. Research Area and Data Source
2.1. Research Area
2.2. Data Sources
2.2.1. DMSP/OLS Night Light Data
2.2.2. Land Use Data
2.2.3. Statistical Data
3. Research Method
3.1. Cluster Analysis of Raw Lighting Data
3.2. Extraction of the Urban Built-Up Area
3.3. Use Spatial Pattern Analysis
3.4. Standard Deviation Ellipse Method
4. Results and Discussion
4.1. Evolution of the Spatial Pattern of Urban Land Use in the Poyang Lake Ecological Economic Zone
4.1.1. Changes in the Total Landscape Area (TA), Total Plaque Number (NP), and Plaque Density (PDh)
4.1.2. Changes in the Total Index Length (TE), Average Boundary Density (ED), and Landscape Shape Index (LSI)
4.1.3. Evolution of the Largest Patch Index (LPI) and Aggregation Index (AI)
4.2. Spatial Evolution of Urban Land Expansion of the Poyang Lake Ecological Economic Zone
4.3. Evolution of Urban Spatial Patterns in the Poyang Lake Ecological Economic Zone
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fang, C.L. Important progress and future development direction of China’s urban agglomeration research. J. Geogr. 2014, 69, 1130–1144. (In Chinese) [Google Scholar]
- Fang, C.L.; Mao, Q.Z.; Ni, P.F. The Controversy and Exploration of Scientific Selection and Grading Development of Chinese Urban Agglomeration. J. Geogr. 2015, 70, 515–527. (In Chinese) [Google Scholar]
- Zhang, Y. Study on the formation mechanism of urban agglomeration. Urban Environ. Stud. 2014, 1, 92–104. (In Chinese) [Google Scholar]
- Gao, X.L.; Xu, Z.N.; Niu, F.Q.; Long, Y. An evaluation of China’s urban agglomeration development from the spatial perspective. Spat. Stat. 2017, 21, 475–491. [Google Scholar] [CrossRef]
- Qin, G.; Zhang, P.Y.; Jiao, B. Formation Mechanism and Spatial Pattern of Urban Agglomeration in Central Jilin of China. Chin. Geogr. Sci. 2006, 16, 154–159. [Google Scholar] [CrossRef]
- Cao, S.S.; Hu, D.Y.; Zhao, W.J.; Mo, Y.; Chen, S.S. Monitoring Spatial Patterns and Changes of Ecology, Production, and Living Land in Chinese Urban Agglomerations: 35 Years after Reform and Opening Up, Where, How and Why? Sustainability 2017, 9, 766. [Google Scholar] [CrossRef]
- Dong, M.H.; Zou, B.; Pu, Q.; Wan, N.; Yang, L.B.; Luo, Y.Q. Spatial Pattern Evolution and Casual Analysis of County Level Econ-omy in Changsha-Zhuzhou-Xiangtan Urban Agglomeration, China. Chin. Geogr. Sci. 2014, 5, 620–630. [Google Scholar] [CrossRef]
- Mehebub, S.; Hong, H.Y.; Haroon, S. Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Sci. Total Environ. 2018, 628–629, 1557–1566. [Google Scholar]
- Zhou, N.J.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, W. Spatial pattern of urban change in two Chinese megaregions: Contrasting responses to national policy and economic mode. Sci. Total Environ. 2018, 634, 1362–1371. [Google Scholar] [CrossRef]
- Zeng, C.; Song, Y.; He, Q.A.; Liu, Y. Urban–rural income change: Influences of landscape pattern and administrative spatial spillover effect. Appl. Geogr. 2018, 97, 248–262. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, A.W.; Zhou, Z.G.; Chen, F.Y. Spatial Pattern Evolution and Optimization of Urban System in the Yangtze River Economic Belt, China, Based on DMSP-OLS Night Light Data. Sustainability 2018, 10, 3782. [Google Scholar] [CrossRef]
- Xiao, R.; Su, S.L.; Wang, J.Q.; Zhang, Z.H.; Jiang, D.W.; Wu, J.P. Local spatial modeling of paddy soil landscape patterns in response to urbanization across the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 2013, 39, 158–171. [Google Scholar] [CrossRef]
- Zhu, D.A.; Lu, L.; Jin, X.L. Study on Urban Spatial Pattern of Anhui Province Based on Gravity Model. Geogr. Sci. 2011, 31, 551–556. (In Chinese) [Google Scholar]
- Zhang, Q.S.; Yan, W. Study on Urban Spatial Pattern of Guizhou Province Based on Gravity Model. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2015, 40, 101–105. (In Chinese) [Google Scholar]
- Huang, J.; Zhong, Y.X. Railway Passenger Transport Linkages and Its Spatial Pattern Evolution in Mid-Yangtze River. World Geogr. Res. 2016, 25, 72–81. (In Chinese) [Google Scholar]
- Dai, L.J.; Wang, L.Q.; Li, L.F.; Liang, T.; Zhang, Y.Y.; Ma, C.X.; Xing, B.S. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.F.; Rao, L.; Sun, K.; Han, Y.; Guo, X. Spatio-temporal distribution of soil nitrogen in Poyang lake ecological economic zone (South-China). Sci. Total Environ. 2018, 626, 235–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.S.; Xie, H.B.; Zhang, J.; Wu, J.P. Analyzing spatial variations in land use/cover distributions: A case study of Nanchang area, China. Ecol. Indic. 2017, 76, 52–63. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, P.; Huang, H.S. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China. Int. J. Environ. Res. Public Health 2013, 10, 328–364. [Google Scholar] [CrossRef]
- Xie, H.L.; Liu, Z.F.; Wang, P.; Liu, G.Y.; Lu, F.C. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China. Int. J. Environ. Res. Public Health 2014, 11, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.L.; Liu, Q.; Yao, G.R.; Tan, M.H. Measurement of Regional Land Use Sustainability Level Based on PSR Model—A Case Study of Poyang Lake Ecological Economic Zone. Resour. Sci. 2015, 37, 449–457. (In Chinese) [Google Scholar]
- Chen, S.H. An Evolutionary Game Study of an Ecological Industry Chain Based on Multi-Agent Simulation: A Case Study of the Poyang Lake Eco-Economic Zone. Sustainability 2017, 9, 1165. [Google Scholar] [CrossRef]
- Jin, H.P.; Zheng, L.; Zhang, J.W. Analysis of Economic Connection Network of Poyang Lake Ecological Economic Zone Based on Time Distance. Econ. Geogr. 2013, 33, 148–154. (In Chinese) [Google Scholar]
- Michishita, R.; Jiang, Z.B.; Xu, B. Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing. Remote Sens. Environ. 2012, 117, 3–18. [Google Scholar] [CrossRef]
- Lei, H.M.; Ye, C.S. Comprehensive Measurement and Difference of Urbanization Level in Poyang Lake Ecological Economic Zone. Res. Soil Water Conserv. 2015, 22, 158–170. (In Chinese) [Google Scholar]
- Wu, J.S.; Hao, S.B.; Peng, J. Research on Urban Development Spatial Characteristics Based on DMSP-OLS Data. Geogr. Geogr. Inf. Sci. 2014, 30, 20–25. (In Chinese) [Google Scholar]
- Zhuo, L.; Zhang, X.F.; Zheng, J. DMSP/OLS night light data desaturation method based on EVI index. J. Geogr. 2015, 70, 1339–1350. (In Chinese) [Google Scholar]
- Lu, H.M.; Zhang, M.L.; Sun, W.W.; Li, W.Y. Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012. ISPRS Int. J. Geo-Inf. 2018, 7, 52. [Google Scholar] [CrossRef]
- Yang, Y.L.; Ma, M.G.; Tan, C.; Li, W.P. Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 1141. [Google Scholar] [CrossRef]
- Xie, Y.H.; Weng, Q.H. Spatiotemporally enhancing time-series DMSP/OLS nighttime light imagery for assessing large-scale urban dynamics. ISPRS J. Photogramm. Remote Sens. 2017, 128, 1–15. [Google Scholar] [CrossRef]
- Hu, Y.N.; Peng, J.; Liu, Y.X.; Du, Y.Y.; Li, H.L.; Wu, J.S. Mapping Development Patternin Beijing-Tianjin-Hebei Urban Agglomeration Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 760. [Google Scholar] [CrossRef]
- Huang, X.M.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Fu, H.Y.; Shao, Z.F.; Fu, P.; Cheng, Q.M. The Dynamic Analysis between Urban Nighttime Economy and Urbanization Using the DMSP/OLS Nighttime Light Data in China from 1992 to 2012. Remote Sens. 2017, 9, 416. [Google Scholar] [CrossRef]
- Li, C.; Li, G.E.; Zhu, Y.J.; Ge, Y.; Kung, H.T.; Wu, Y.J. A likelihood-based spatial statistical transformation model (LBSSTM) of regional economic development using DMSP/OLS time-series nighttime light imagery. Spat. Stat. 2017, 21, 421–439. [Google Scholar] [CrossRef]
- Huang, Q.X.; Yang, Y.; Li, Y.J.; Gao, B. A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS. Sustainability 2016, 8, 521. [Google Scholar] [CrossRef]
- Shi, K.F.; Chen, Y.; Yu, B.L.; Xu, T.B.; Yang, C.S.; Li, L.Y.; Huang, C.; Chen, Z.Q.; Liu, R.; Wu, J.P. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Xie, Y.H.; Weng, Q.H. Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries. Energy 2016, 100, 177–189. [Google Scholar] [CrossRef]
- Xie, Y.H.; Weng, Q.H. World energy consumption pattern as revealed by DMSP-OLS nighttime light imagery. GISci. Remote Sens. 2016, 53, 265–282. [Google Scholar] [CrossRef]
- Ji, G.X.; Tian, L.; Zhao, J.C.; Yue, Y.L.; Wang, Z. Detecting spatiotemporal dynamics of PM2.5 emission data in China using DMSP-OLS nighttime stable light data. J. Clean. Prod. 2019, 209, 363–370. [Google Scholar] [CrossRef]
- Ji, G.X.; Zhao, J.C.; Yang, X.; Yue, Y.L.; Wang, Z. Exploring China’s 21-year PM 10 emissions spatiotemporal variations by DMSP-OLS nighttime stable light data. Atmos. Environ. 2018, 191, 132–141. [Google Scholar] [CrossRef]
- Shi, K.F.; Chen, Y.; Yu, B.L.; Xu, T.B.; Chen, Z.Q.; Liu, R.; Li, L.Y.; Wu, J.P. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis. Appl. Energy 2016, 168, 523–533. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, G.F.; Zhang, C. Research on Spatial Structure of Chengdu City Group Based on DMSP/OLS Night Light Data. Urban Dev. Res. 2015, 22, 20–24. (In Chinese) [Google Scholar]
- Zhao, L.; Zhao, Z.Q. Spatial Differentiation of China’s Economic Space Based on Characteristic Ellipse. Geogr. Sci. 2014, 34, 979–986. (In Chinese) [Google Scholar]
- Wang, B.J.; Shi, B.; Inyang, H.I. GIS-Based Quantitative Analysis of Orientation Anisotropy of Contaminant Barrier Particles Using Standard Deviational Ellipse. Soil Sediment Contam. 2008, 17, 437–447. [Google Scholar]
Years | Cluster | Brightness Value (Average) | Proportion | Total Size |
---|---|---|---|---|
1995 | 1 | 6.87 | 78.2% | 2968 |
2 | 26.43 | 21.8% | 829 | |
2000 | 1 | 30.83 | 17.5% | 620 |
2 | 8.13 | 82.5% | 2928 | |
2005 | 1 | 8.81 | 77.5% | 3870 |
2 | 33.73 | 22.5% | 1123 |
Landscape Index | Shorthand | Description |
---|---|---|
Total Area | TA | The sum of the areas of all patches |
Number of Patches | NP | The total number of all patches in the landscape |
Patch Density per 100 km2 | PDh | Number of patches in an area of 100 km2 |
Largest Patch Index | LPI | The largest patches in a patches type as a percentage of the total landscape area |
Total Edge | TE | Total patches length of all plaques |
Edge Density | ED | Length of patches boundary per unit area |
Landscape Shape Index | LSI | Patches landscape shape indicator |
Aggregation index | AI | The number of similar adjacencies of the corresponding type divided by the maximum value when the type is most confluent as a patch (multiplied by 100 to produce a percentage) |
Year | TA (km2) | NP | PDh | LPI (%) | TE (km) | ED (m/km2) | LSI | AI |
---|---|---|---|---|---|---|---|---|
1992 | 400.9 | 18 | 4.13 | 99.21 | 27.60 | 6.33 | 3.51 | 98.93 |
1993 | 297.83 | 14 | 3.21 | 99.41 | 19.44 | 4.46 | 3.41 | 99.01 |
1994 | 546.05 | 19 | 4.36 | 98.93 | 32.96 | 7.57 | 3.58 | 98.89 |
1995 | 485.89 | 20 | 4.59 | 99.05 | 30.48 | 7.00 | 3.55 | 98.91 |
1996 | 420.45 | 16 | 3.67 | 99.17 | 24.72 | 5.67 | 3.48 | 98.96 |
1997 | 318.92 | 14 | 3.21 | 99.37 | 20.80 | 4.77 | 3.43 | 99.00 |
1998 | 370.02 | 14 | 3.21 | 99.27 | 22.48 | 5.15 | 3.45 | 98.98 |
1999 | 415.18 | 15 | 3.44 | 99.18 | 25.28 | 5.80 | 3.48 | 98.96 |
2000 | 522.7 | 18 | 4.13 | 98.97 | 30.16 | 6.92 | 3.54 | 98.92 |
2001 | 549.07 | 20 | 4.60 | 98.92 | 30.48 | 7.00 | 3.55 | 98.91 |
2002 | 959.69 | 29 | 6.66 | 98.12 | 54.00 | 12.39 | 3.83 | 98.71 |
2003 | 1085.34 | 27 | 6.20 | 97.88 | 57.04 | 13.09 | 3.86 | 98.68 |
2004 | 1562.93 | 37 | 8.49 | 96.94 | 80.24 | 18.42 | 4.14 | 98.48 |
2005 | 1083.03 | 26 | 5.97 | 97.88 | 53.36 | 12.25 | 3.82 | 98.72 |
2006 | 1338.01 | 29 | 6.66 | 97.38 | 62.48 | 14.34 | 3.93 | 98.64 |
2007 | 1856.26 | 41 | 9.41 | 96.37 | 89.60 | 20.57 | 4.25 | 98.40 |
2008 | 1879.55 | 40 | 9.18 | 96.32 | 90.72 | 20.82 | 4.27 | 98.38 |
2009 | 1465.91 | 34 | 7.81 | 97.13 | 72.32 | 16.60 | 4.05 | 98.55 |
2010 | 3066.42 | 44 | 10.1 | 93.97 | 133.52 | 30.65 | 4.78 | 98.01 |
2011 | 2845.29 | 39 | 8.95 | 94.44 | 125.12 | 28.72 | 4.68 | 98.08 |
2012 | 3058.89 | 42 | 9.64 | 94.02 | 133.44 | 30.63 | 4.78 | 98.00 |
2013 | 3662.85 | 45 | 10.33 | 92.84 | 157.12 | 36.06 | 5.06 | 97.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Lin, A.; Zhou, Z. Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone. Int. J. Environ. Res. Public Health 2019, 16, 117. https://doi.org/10.3390/ijerph16010117
Zhong Y, Lin A, Zhou Z. Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone. International Journal of Environmental Research and Public Health. 2019; 16(1):117. https://doi.org/10.3390/ijerph16010117
Chicago/Turabian StyleZhong, Yang, Aiwen Lin, and Zhigao Zhou. 2019. "Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone" International Journal of Environmental Research and Public Health 16, no. 1: 117. https://doi.org/10.3390/ijerph16010117
APA StyleZhong, Y., Lin, A., & Zhou, Z. (2019). Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone. International Journal of Environmental Research and Public Health, 16(1), 117. https://doi.org/10.3390/ijerph16010117