Modeling of Wildfire Digital Twin: Research Progress in Detection, Simulation, and Prediction Techniques
<p>This is a figure of the number of papers related to the field of digital twin. We used advanced search to separately retrieve papers using keywords such as “wildfire” and “fire” with the topic of “digital twin”. Data include studies published until August 2024.</p> "> Figure 2
<p>The potential of digital twin in fire management.</p> "> Figure 3
<p>The overall digital twin framework for tunnel fire safety management [<a href="#B28-fire-07-00412" class="html-bibr">28</a>].</p> "> Figure 4
<p>Technical framework of digital twin.</p> "> Figure 5
<p>Application areas related to digital twin.</p> "> Figure 6
<p>Flow chart of fire detection based on computer vision technology.</p> "> Figure 7
<p>Flow chart of image fire detection algorithms based on detection CNNs [<a href="#B85-fire-07-00412" class="html-bibr">85</a>].</p> "> Figure 8
<p>Model of the entire process of plant combustion [<a href="#B110-fire-07-00412" class="html-bibr">110</a>].</p> "> Figure 9
<p>Principle of cellular automata in 3D scene [<a href="#B26-fire-07-00412" class="html-bibr">26</a>].</p> "> Figure 10
<p>Flow chart of WFDT 3D simulation tool.</p> "> Figure 11
<p>The schematic diagram of generic support technology.</p> "> Figure 12
<p>Wildfire digital twin framework.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Analysis
2.2. Data Overview
3. Digital Twin Technology
3.1. Definition of Digital Twin
3.2. Technical Framework of Digital Twin
3.3. The Application of Digital Twin
4. Wildfire Detection and Real-Time Data Acquisition
4.1. Wildfire Detection
4.1.1. Unmanned Aerial Vehicle Detection
4.1.2. Satellite Monitoring
4.1.3. Ground Monitoring
4.1.4. Wildfire Detection Technology
4.2. WFDT Data Collection
5. Simulation and Prediction Model of Wildfire Spreading Process
5.1. Model of Wildfire Spread Speed
5.1.1. Physical Model
5.1.2. Empirical Model
5.1.3. Semi-Empirical Model
5.2. Methods for Spatial Propagation of Wildfire Spread
6. Visualization Technology and Tools
6.1. Visual Modeling
6.2. 3D Dynamic Simulation
7. The Overall Framework of Wildfire Digital Twin (WFDT)
- Physical entity layerThe physical entity layer is the foundation of the digital twin system, which includes the actual physical environment and devices [146]. The physical world component is responsible for the collection of real-time data related to wildfire dynamics and the surrounding environment.First, sensor networks are deployed in the forest to monitor environmental parameters such as temperature, humidity, wind speed, and rainfall. These parameters are crucial for understanding fire behavior as they influence fire ignition, spread, and intensity. In addition, surveillance cameras are installed at key locations to provide real-time video data of fire occurrence and spread. Sensors and surveillance cameras provide localized data, while remote sensing offers a broader view, allowing for comprehensive coverage of the wildfire area. Remote sensing imaging technology is used to obtain high-resolution images to ensure comprehensive monitoring of large forest areas. These devices and technologies together form a multi-level, real-time monitoring system that provides reliable data support for the digital twin model.
- Virtual entity layerThe virtual world component forms the core of the wildfire digital twin, where collected data are used to create a dynamic and interactive digital replica of the physical wildfire environment [147]. Live data feeds from IoT sensors, drones, and remote sensing platforms continually update the virtual entity of the WFDT, ensuring it reflects the current situation of the fire scene.The virtual entity layer transforms data from the physical entity layer into virtual models for simulation and detection, mainly including wildfire simulation models and fire monitoring models. The wildfire simulation model combines a spread rate model and a spatial propagation model to simulate the behavior of fire approximately under different environmental conditions. On the other hand, the fire monitoring model integrates functions for fire prediction, detection, and tracking. The fire prediction module uses real-time data to forecast potential fire outbreaks and their likely paths, while the detection module identifies the location of existing fires. The tracking module continuously monitors the fire’s progression, updating the virtual environment as new data becomes available. In addition, the virtual entity layer includes a virtual visualization module. By visualizing fire behavior, terrain, and vegetation, decision-makers can more intuitively observe the development trend of fires and make effective decisions.
- Data layerThe data layer acts as a bridge between the physical world and the virtual world, ensuring that data is effectively collected, processed, and utilized [148]. It is responsible for several key functions, including data collection, storage, processing, and integration [149]. The real-time database stores live data from sensors and monitoring devices at the fire scene, while the field database maintains historical data and geographic information. In the data module, data are continuously gathered from various sources in the physical world and undergoes data fusion and integration processes. Then, the data analysis module performs in-depth analysis to extract effective information and provide feedback to the physical and application layers. Finally, processed data are securely stored to ensure easy access and retrieval by the various components of the WFDT.The digital twin system integrates feedback from the physical environment through these data streams, allowing it to model fire behavior, simulate various scenarios, and evaluate potential intervention strategies.
- Application layerThe application layer leverages the outputs from the virtual world and the insights gained from data analysis to support various wildfire management. As the final display and application part of the WFDT, this layer is crucial for practical applications, including real-time fire monitoring, early warning, approximate simulation, decision-making, and ecological restoration. Specifically, it enables early detection and alerts of potential wildfires, supports decision-makers in developing effective response strategies, and assists in training emergency responders through immersive simulation scenarios. By integrating these capabilities, the application layer ensures that the WFDT is effectively employed in diverse wildfire management tasks, enhancing both preparedness and response.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keywood, M.; Kanakidou, M.; Stohl, A.; Dentener, F.; Grassi, G.; Meyer, C.P.; Torseth, K.; Edwards, D.; Thompson, A.M.; Lohmann, U.; et al. Fire in the Air: Biomass Burning Impacts in a Changing Climate. Crit. Rev. Environ. Sci. Technol. 2013, 43, 40–83. [Google Scholar] [CrossRef]
- Zhong, C.; Cheng, S.; Kasoar, M.; Arcucci, R. Reduced-Order Digital Twin and Latent Data Assimilation for Global Wildfire Prediction. Nat. Hazards Earth Syst. Sci. 2023, 23, 1755–1768. [Google Scholar] [CrossRef]
- Ning, X.; Li, J.; Zhuang, P.; Lai, S.; Zheng, X. Wildfire Combustion Emission Inventory in Southwest China (2001–2020) Based on MODIS Fire Radiative Energy Data. Atmos. Pollut. Res. 2024, 15, 102279. [Google Scholar] [CrossRef]
- Pickrell, J.; Pennisi, E. Record U.S. and Australian Fires Raise Fears for Many Species. Science 2020, 370, 18–19. [Google Scholar] [CrossRef] [PubMed]
- Robinne, F.-N.; Hallema, D.W.; Bladon, K.D.; Flannigan, M.D.; Boisramé, G.; Bréthaut, C.M.; Doerr, S.H.; Di Baldassarre, G.; Gallagher, L.A.; Hohner, A.K.; et al. Scientists’ Warning on Extreme Wildfire Risks to Water Supply. Hydrol. Process. 2021, 35, e14086. [Google Scholar] [CrossRef]
- Investigation Results of the “3–30” Forest Fire in Xichang City. Liangshan Prefecture Announced—Sichuan Provincial People’s Government Website. Available online: https://www.sc.gov.cn/10462/10464/13722/2020/12/21/76441b52bf034463946b09f61876d3f9.shtml (accessed on 16 July 2024).
- Tao, F.; Xiao, B.; Qi, Q.; Cheng, J.; Ji, P. Digital Twin Modeling. J. Manuf. Syst. 2022, 64, 372–389. [Google Scholar] [CrossRef]
- Sanchez-Guzman, G.; Velasquez, W.; Alvarez-Alvarado, M.S. Modeling a Simulated Forest to Get Burning Times of Tree Species Using a Digital Twin. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29 January 2022; pp. 639–643. [Google Scholar]
- Wu, J.; Yang, Y.; Cheng, X.; Zuo, H.; Cheng, Z. The Development of Digital Twin Technology Review. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6 November 2020; pp. 4901–4906. [Google Scholar]
- Ghali, R.; Akhloufi, M.A. Deep Learning Approaches for Wildland Fires Using Satellite Remote Sensing Data: Detection, Mapping, and Prediction. Fire 2023, 6, 192. [Google Scholar] [CrossRef]
- Wang, D.; Xu, L.; Zhou, Y.; Gao, Z. A Forest Fire Warning Method Based on Fire Dangerous Rating. In Proceedings of the 2015 International Conference on Applied Science and Engineering Innovation, Jinan, China, 30–31 August 2015; Volume 12, pp. 195–199. [Google Scholar]
- Wu, C.; Zhou, Y.; Pereia Pessôa, M.V.; Peng, Q.; Tan, R. Conceptual Digital Twin Modeling Based on an Integrated Five-Dimensional Framework and TRIZ Function Model. J. Manuf. Syst. 2021, 58, 79–93. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q. Make More Digital Twins. Nature 2019, 573, 490–491. [Google Scholar] [CrossRef]
- Bing, X.; Xiaohong, D.; Yang, L. Research on Simulation Methods for Forest Fire Extinguishing Using Water Mist. J. Syst. Simul. 2024, 36, 1222–1231. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing Digital Twins to Agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Korchi, A.; Moreno, A.; Segura, Á. Real Time Forest Fire Simulation with Extinguishment Support. In Proceedings of the International Conference on Computer Graphics Theory and Applications, Angers, France, 17–21 May 2010; pp. 323–326. [Google Scholar]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian Taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Lam, H.-K.; Lee, S.-H.; Ok, S.-Y. Early Fire Detection System by Using Automatic Synthetic Dataset Generation Model Based on Digital Twins. Appl. Sci. 2024, 14, 1801. [Google Scholar] [CrossRef]
- Lewis, R.H.; Jiao, J.; Seong, K.; Farahi, A.; Navrátil, P.; Casebeer, N.; Niyogi, D. Fire and Smoke Digital Twin—A Computational Framework for Modeling Fire Incident Outcomes. Comput. Environ. Urban Syst. 2024, 110, 102093. [Google Scholar] [CrossRef]
- Li, W.; Yang, M.; Xi, B.; Huang, Q. Framework of Virtual Plantation Forest Modeling and Data Analysis for Digital Twin. Forests 2023, 14, 683. [Google Scholar] [CrossRef]
- Hyeong-su, K.; Jin-Woo, K.; Yun, S.; Kim, W.-T. A Novel Wildfire Digital-Twin Framework Using Interactive Wildfire Spread Simulator. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 636–638. [Google Scholar]
- Ding, Z.; Xu, S.; Xie, X.; Zheng, K.; Wang, D.; Fan, J.; Li, H.; Liao, L. A Building Information Modeling-Based Fire Emergency Evacuation Simulation System for Large Infrastructures. Reliab. Eng. Syst. Saf. 2024, 244, 109917. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Y.; Huang, X. Intelligent Emergency Digital Twin System for Monitoring Building Fire Evacuation. J. Build. Eng. 2023, 77, 107416. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Zeng, Y.; Wu, X.; Huang, X.; Xiao, F. Building Artificial-Intelligence Digital Fire (AID-Fire) System: A Real-Scale Demonstration. J. Build. Eng. 2022, 62, 105363. [Google Scholar] [CrossRef]
- Ji, X.; Wang, F.; Zheng, H.; Nie, X. Enhancing Emergency Decision-Making Skills Through Game-Based Learning: A Forest Fire Simulation Exercise Game. In HCI in Games; Fang, X., Ed.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2024; Volume 14730, pp. 145–159. ISBN 978-3-031-60691-5. [Google Scholar]
- Meng, Q.; Lu, H.; Huai, Y.; Xu, H.; Yang, S. Forest Fire Spread Simulation and Fire Extinguishing Visualization Research. Forests 2023, 14, 1371. [Google Scholar] [CrossRef]
- Dourvas, N.I.; Papagianni, A.; Koulalis, I.; Ioannidis, K.; Vrochidis, S.; Kompatsiaris, I. An Early-Warning System for Fire Spreading by Monitoring Simple Climate Conditions and Combining Cellular Automata with Digital Twins. In Proceedings of the 2022 IEEE International Workshop on Metrology for Living Environment (MetroLivEn), Cosenza, Italy, 25–27 May 2022; pp. 252–257. [Google Scholar]
- Zhang, X.; Jiang, Y.; Wu, X.; Nan, Z.; Jiang, Y.; Shi, J.; Zhang, Y.; Huang, X.; Huang, G.G.Q. AIoT-Enabled Digital Twin System for Smart Tunnel Fire Safety Management. Dev. Built Environ. 2024, 18, 100381. [Google Scholar] [CrossRef]
- NASA. “Wildfire Digital Twin” Pioneers New AI Models and Streaming Data Techniques for Forecasting Fire and Smoke—NASA Science. 2024. Available online: https://science.nasa.gov/science-research/science-enabling-technology/nasa-wildfire-digital-twin-pioneers-new-ai-models-and-streaming-data-techniques-for-forecasting-fire-and-smoke/ (accessed on 22 July 2024).
- Heavy Release|Understanding the White Paper on Digital Twin Applications with One Image. Available online: https://www.cesi.cn/202011/7002.html (accessed on 21 July 2024).
- Glaessgen, E.; Stargel, D. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Wang, X.; Yang, J.; Wang, Y.; Miao, Q.; Wang, F.-Y.; Zhao, A.; Deng, J.-L.; Li, L.; Na, X.; Vlacic, L. Steps Toward Industry 5.0: Building “6S” Parallel Industries With Cyber-Physical-Social Intelligence. IEEE/CAA J. Autom. Sin. 2023, 10, 1692–1703. [Google Scholar] [CrossRef]
- Wang, H.; Ning, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A Survey on the Metaverse: The State-of-the-Art, Technologies, Applications, and Challenges. IEEE Internet Things J. 2023, 10, 14671–14688. [Google Scholar] [CrossRef]
- Maimour, M.; Ahmed, A.; Rondeau, E. Survey on Digital Twins for Natural Environments: A Communication Network Perspective. Internet Things 2024, 25, 101070. [Google Scholar] [CrossRef]
- Huang, S.; Wang, G.; Yan, Y.; Fang, X. Blockchain-Based Data Management for Digital Twin of Product. J. Manuf. Syst. 2020, 54, 361–371. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.; Zhang, Z. From Simple Digital Twin to Complex Digital Twin Part I: A Novel Modeling Method for Multi-Scale and Multi-Scenario Digital Twin. Adv. Eng. Inform. 2022, 53, 101706. [Google Scholar] [CrossRef]
- Cimino, C.; Negri, E.; Fumagalli, L. Review of Digital Twin Applications in Manufacturing. Comput. Ind. 2019, 113, 103130. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Onaji, I.; Tiwari, D.; Soulatiantork, P.; Song, B.; Tiwari, A. Digital Twin in Manufacturing: Conceptual Framework and Case Studies. Int. J. Comput. Integr. Manuf. 2022, 35, 831–858. [Google Scholar] [CrossRef]
- Pedersen, A.N.; Borup, M.; Brink-Kjær, A.; Christiansen, L.E.; Mikkelsen, P.S. Living and Prototyping Digital Twins for Urban Water Systems: Towards Multi-Purpose Value Creation Using Models and Sensors. Water 2021, 13, 592. [Google Scholar] [CrossRef]
- Nochta, T.; Wan, L.; Schooling, J.M.; Parlikad, A.K. A Socio-Technical Perspective on Urban Analytics: The Case of City-Scale Digital Twins. J. Urban Technol. 2021, 28, 263–287. [Google Scholar] [CrossRef]
- Lim, S.B.; Yigitcanlar, T. Participatory Governance of Smart Cities: Insights from e-Participation of Putrajaya and Petaling Jaya, Malaysia. Smart Cities 2022, 5, 71–89. [Google Scholar] [CrossRef]
- Yeh, A.G.O. From Urban Modelling, GIS, the Digital, Intelligent, and the Smart City to the Digital Twin City with AI. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 1085–1088. [Google Scholar] [CrossRef]
- Dani, A.A.H.; Supangkat, S.H.; Lubis, F.F.; Nugraha, I.G.B.B.; Kinanda, R.; Rizkia, I. Development of a Smart City Platform Based on Digital Twin Technology for Monitoring and Supporting Decision-Making. Sustainability 2023, 15, 14002. [Google Scholar] [CrossRef]
- Ferré-Bigorra, J.; Casals, M.; Gangolells, M. The Adoption of Urban Digital Twins. Cities 2022, 131, 103905. [Google Scholar] [CrossRef]
- Deren, L.; Wenbo, Y.; Zhenfeng, S. Smart City Based on Digital Twins. Comput. Urban Sci. 2021, 1, 4. [Google Scholar] [CrossRef]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Sun, T.; He, X.; Song, X.; Shu, L.; Li, Z. The Digital Twin in Medicine: A Key to the Future of Healthcare? Front. Med. 2022, 9, 907066. [Google Scholar] [CrossRef]
- Aydemir, H.; Zengin, U.; Durak, U. The Digital Twin Paradigm for Aircraft Review and Outlook. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Kairat, K.; Ildar, P.; Karygash, A.; Saule, B.; Indira, K.; Markhaba, K.; Aizhan, B. Digital Twins Technology in the Educational Process of the Aviation Equipment Repair. Indones. J. Electr. Eng. Comput. Sci. 2023, 32, 752. [Google Scholar] [CrossRef]
- Kim, M.U. A Survey on Digital Twin in Aerospace in the New Space Era. In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022; pp. 1735–1737. [Google Scholar]
- Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A.; Zakis, J.; Hyunh, V.K.; Pomarnacki, R. Digital Twin as a Virtual Sensor for Wind Turbine Applications. Energies 2023, 16, 6246. [Google Scholar] [CrossRef]
- Abutalip, K.; Al-Lahham, A.; El Saddik, A. Digital Twin of Atmospheric Environment: Sensory Data Fusion for High-Resolution PM 2.5 Estimation and Action Policies Recommendation. IEEE Access 2023, 11, 14448–14457. [Google Scholar] [CrossRef]
- Barbie, A.; Pech, N.; Hasselbring, W.; Flogel, S.; Wenzhofer, F.; Walter, M.; Shchekinova, E.; Busse, M.; Turk, M.; Hofbauer, M.; et al. Developing an Underwater Network of Ocean Observation Systems With Digital Twin Prototypes—A Field Report From the Baltic Sea. IEEE Internet Comput. 2022, 26, 33–42. [Google Scholar] [CrossRef]
- Cirulis, A.; Taube, L.; Erics, Z. Automated Generation of Digital Twin in Virtual Reality for Interaction with Specific Nature Ecosystem. In Proceedings of the Universal Access in Human-Computer Interaction. User and Context Diversity, Online, 26 June–1 July 2022; pp. 187–202. [Google Scholar]
- Qiu, H.; Zhang, H.; Lei, K.; Zhang, H.; Hu, X. Forest Digital Twin: A New Tool for Forest Management Practices Based on Spatio-Temporal Data, 3D Simulation Engine, and Intelligent Interactive Environment. Comput. Electron. Agric. 2023, 215, 108416. [Google Scholar] [CrossRef]
- Qian, J.; Bai, D.; Jiao, W.; Jiang, L.; Xu, R.; Lin, H.; Wang, T. A High-Precision Ensemble Model for Forest Fire Detection in Large and Small Targets. Forests 2023, 14, 2089. [Google Scholar] [CrossRef]
- Saydirasulovich, S.N.; Mukhiddinov, M.; Djuraev, O.; Abdusalomov, A.; Cho, Y.-I. An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images. Sensors 2023, 23, 8374. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, J.; Li, X.; Zhang, J. Saliency Detection and Deep Learning-Based Wildfire Identification in UAV Imagery. Sensors 2018, 18, 712. [Google Scholar] [CrossRef]
- Li, N.; Liu, Q.; Xiong, J.; Dong, L.W. Design and Implementation of a Fire Detection System Based on UAV. Fire Sci. 2022, 31, 46–51. [Google Scholar]
- Chen, G.; Cheng, R.; Lin, X.; Jiao, W.; Bai, D.; Lin, H. LMDFS: A Lightweight Model for Detecting Forest Fire Smoke in UAV Images Based on YOLOv7. Remote Sens. 2023, 15, 3790. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned Aerial Vehicles (UAVs): Practical Aspects, Applications, Open Challenges, Security Issues, and Future Trends. Intel. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef]
- Thangavel, K.; Spiller, D.; Sabatini, R.; Amici, S.; Sasidharan, S.T.; Fayek, H.; Marzocca, P. Autonomous Satellite Wildfire Detection Using Hyperspectral Imagery and Neural Networks: A Case Study on Australian Wildfire. Remote Sens. 2023, 15, 720. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Crowley, M.A.; Stockdale, C.A.; Johnston, J.M.; Wulder, M.A.; Liu, T.; McCarty, J.L.; Rieb, J.T.; Cardille, J.A.; White, J.C. Towards a Whole-system Framework for Wildfire Monitoring Using Earth Observations. Glob. Chang. Biol. 2023, 29, 1423–1436. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, B.; Quan, X.; Yebra, M.; Qiu, S.; Yin, C.; Liao, Z.; Zhang, H. Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data. Remote Sens. 2018, 10, 1654. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef]
- Thangavel, K.; Spiller, D.; Sabatini, R.; Marzocca, P.; Esposito, M. Near Real-Time Wildfire Management Using Distributed Satellite System. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Martell, D.L. A Review of Recent Forest and Wildland Fire Management Decision Support Systems Research. Curr. For. Rep. 2015, 1, 128–137. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Y.; Hao, J. Design and Research of a New Energy-Saving UAV for Forest Fire Detection. In Proceedings of the 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 27–29 May 2022; pp. 1303–1316. [Google Scholar]
- Rego, F.C.; Catry, F.X. Modelling the Effects of Distance on the Probability of Fire Detection from Lookouts. Int. J. Wildland Fire 2006, 15, 197–202. [Google Scholar] [CrossRef]
- Bao, S.; Xiao, N.; Lai, Z.; Zhang, H.; Kim, C. Optimizing Watchtower Locations for Forest Fire Monitoring Using Location Models. Fire Saf. J. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Thiyagalingam, J.; Kirubarajan, T. Terrain-Influenced Incremental Watchtower Expansion for Wildfire Detection. Sci. Total Environ. 2019, 654, 164–176. [Google Scholar] [CrossRef]
- Kanwal, K.; Liaquat, A.; Mughal, M.; Abbasi, A.R.; Aamir, M. Towards Development of a Low Cost Early Fire Detection System Using Wireless Sensor Network and Machine Vision. Wirel. Pers. Commun. 2017, 95, 475–489. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Xu, S.; Wu, Y.; Yang, X.; Zhang, Y. Integrating Multiple Factors to Optimize Watchtower Deployment for Wildfire Detection. Sci. Total Environ. 2020, 737, 139561. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, L. Using Popular Object Detection Methods for Real Time Forest Fire Detection. In Proceedings of the 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; pp. 280–284. [Google Scholar]
- Töreyin, B.U.; Dedeoğlu, Y.; Güdükbay, U.; Çetin, A.E. Computer Vision Based Method for Real-Time Fire and Flame Detection. Pattern Recognit. Lett. 2006, 27, 49–58. [Google Scholar] [CrossRef]
- Toulouse, T.; Rossi, L.; Celik, T.; Akhloufi, M. Automatic Fire Pixel Detection Using Image Processing: A Comparative Analysis of Rule-Based and Machine Learning-Based Methods. Signal Image Video Process. 2016, 10, 647–654. [Google Scholar] [CrossRef]
- Li, Z.; Mihaylova, L.S.; Isupova, O.; Rossi, L. Autonomous Flame Detection in Videos with a Dirichlet Process Gaussian Mixture Color Model. IEEE Trans. Ind. Inform. 2018, 14, 1146–1154. [Google Scholar] [CrossRef]
- Ho, C.-C.; Kuo, T.-H. Real-Time Video-Based Fire Smoke Detection System. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 1845–1850. [Google Scholar]
- Seydi, S.T.; Saeidi, V.; Kalantar, B.; Ueda, N.; Halin, A.A. Fire-Net: A Deep Learning Framework for Active Forest Fire Detection. J. Sens. 2022, 2022, 8044390. [Google Scholar] [CrossRef]
- Fouda, M.M.; Sakib, S.; Fadlullah, Z.M.; Nasser, N.; Guizani, M. A Lightweight Hierarchical AI Model for UAV-Enabled Edge Computing with Forest-Fire Detection Use-Case. IEEE Netw. 2022, 36, 38–45. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J. A Video-Based Fire Detection Using Deep Learning Models. Appl. Sci. 2019, 9, 2862. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image Fire Detection Algorithms Based on Convolutional Neural Networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Avazov, K.; Hyun, A.E.; Sami, S.A.A.; Khaitov, A.; Abdusalomov, A.B.; Cho, Y.I. Forest Fire Detection and Notification Method Based on AI and IoT Approaches. Future Internet 2023, 15, 61. [Google Scholar] [CrossRef]
- Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, T.K. An Improvement of the Fire Detection and Classification Method Using YOLOv3 for Surveillance Systems. Sensors 2021, 21, 6519. [Google Scholar] [CrossRef]
- Li, J.; Tang, H.; Li, X.; Dou, H.; Li, R. LEF-YOLO: A Lightweight Method for Intelligent Detection of Four Extreme Wildfires Based on the YOLO Framework. Int. J. Wildland Fire 2023, 33, WF23044. [Google Scholar] [CrossRef]
- Yang, T.; Xu, S.; Li, W.; Wang, H.; Shen, G.; Wang, Q. A Smoke and Flame Detection Method Using an Improved YOLOv5 Algorithm. In Proceedings of the 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR), Guiyang, China, 17–22 July 2022; pp. 366–371. [Google Scholar]
- Dalal, S.; Lilhore, U.K.; Radulescu, M.; Simaiya, S.; Jaglan, V.; Sharma, A. A Hybrid LBP-CNN with YOLO-v5-Based Fire and Smoke Detection Model in Various Environmental Conditions for Environmental Sustainability in Smart City. Environ. Sci. Pollut. Res. 2024, 944–1344, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.A.O.; Ghali, R.; Akhloufi, M.A. YOLO-Based Models for Smoke and Wildfire Detection in Ground and Aerial Images. Fire 2024, 7, 140. [Google Scholar] [CrossRef]
- Chetoui, M.; Akhloufi, M.A. Fire and Smoke Detection Using Fine-Tuned YOLOv8 and YOLOv7 Deep Models. Fire 2024, 7, 135. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Lv, Z.; Bellavista, P.; Yang, P.; Baik, S.W. Efficient Deep CNN-Based Fire Detection and Localization in Video Surveillance Applications. IEEE Trans. Syst. Man Cybern.-Syst. 2019, 49, 1419–1434. [Google Scholar] [CrossRef]
- Mei, S.; Ji, J.; Hou, J.; Li, X.; Du, Q. Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral Images via Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4520–4533. [Google Scholar] [CrossRef]
- Khan, S.; Khan, A. FFireNet: Deep Learning Based Forest Fire Classification and Detection in Smart Cities. Symmetry 2022, 14, 2155. [Google Scholar] [CrossRef]
- Huang, L.; Liu, G.; Wang, Y.; Yuan, H.; Chen, T. Fire Detection in Video Surveillances Using Convolutional Neural Networks and Wavelet Transform. Eng. Appl. Artif. Intell. 2022, 110, 2155. [Google Scholar] [CrossRef]
- Pan, J.; Ou, X.; Xu, L. A Collaborative Region Detection and Grading Framework for Forest Fire Smoke Using Weakly Supervised Fine Segmentation and Lightweight Faster-RCNN. Forests 2021, 12, 768. [Google Scholar] [CrossRef]
- Jin, S.; Wang, T.; Huang, H.; Zheng, X.; Li, T.; Guo, Z. A Self-Adaptive Wildfire Detection Algorithm by Fusing Physical and Deep Learning Schemes. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103671. [Google Scholar] [CrossRef]
- Guan, Z.; Miao, X.; Mu, Y.; Sun, Q.; Ye, Q.; Gao, D. Forest Fire Segmentation from Aerial Imagery Data Using an Improved Instance Segmentation Model. Remote Sens. 2022, 14, 3159. [Google Scholar] [CrossRef]
- Holopainen, M.; Saunila, M.; Rantala, T.; Ukko, J. Digital Twins’ Implications for Innovation. Technol. Anal. Strateg. Manag. 2024, 36, 1779–1791. [Google Scholar] [CrossRef]
- Ramadan, M.N.A.; Basmaji, T.; Gad, A.; Hamdan, H.; Akgün, B.T.; Ali, M.A.H.; Alkhedher, M.; Ghazal, M. Towards Early Forest Fire Detection and Prevention Using AI-Powered Drones and the IoT. Internet Things 2024, 27, 101248. [Google Scholar] [CrossRef]
- Mohapatra, A.; Trinh, T. Early Wildfire Detection Technologies in Practice—A Review. Sustainability 2022, 14, 12270. [Google Scholar] [CrossRef]
- Oliveira, U.; Soares-Filho, B.; De Souza Costa, W.L.; Gomes, L.; Bustamante, M.; Miranda, H. Modeling Fuel Loads Dynamics and Fire Spread Probability in the Brazilian Cerrado. For. Ecol. Manag. 2021, 482, 118889. [Google Scholar] [CrossRef]
- Leblon, B.; San-Miguel-Ayanz, J.; Bourgeau-Chavez, L.; Kong, M. Remote Sensing of Wildfires. In Land Surface Remote Sensing; Elsevier: New York, NY, USA, 2016; pp. 55–95. ISBN 978-1-78548-105-5. [Google Scholar]
- Huai, Y.J.; Meng, Q.K.; Ma, T.R.; Xu, H.F.; Zhao, X.; Cheng, M.Z.; Huang, X.Y. Research Review on Forest Scene Visualization and Forest Fire Simulation Technology. J. Image Graph. 2023, 28, 1891–1908. [Google Scholar] [CrossRef]
- Pastor, E.; Zárate, L.; Planas, E.; Arnaldos, J. Mathematical Models and Calculation Systems for the Study of Wildland Fire Behaviour. Prog. Energy Combust. Sci. 2003, 29, 139–153. [Google Scholar] [CrossRef]
- Fons, W.L. Analysis of Fire Spread in Light Forest Fuels. J. Agric. Res. 1946, 72, 92–121. [Google Scholar]
- Pirk, S.; Jarząbek, M.; Hädrich, T.; Michels, D.L.; Palubicki, W. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Hadrich, T.; Banuti, D.T.; Palubicki, W.; Pirk, S.; Michels, D.L. Fire in Paradise(1): Mesoscale Simulation of Wildfires. ACM Trans. Graph. 2021, 40, 163. [Google Scholar] [CrossRef]
- Noble, I.R.; Gill, A.M.; Bary, G.A.V. McArthur’s Fire-danger Meters Expressed as Equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B.; Li, M.; Tian, Y.; Quan, Y.; Liu, J. Simulation of Forest Fire Spread Based on Artificial Intelligence. Ecol. Indic. 2022, 136, 108653. [Google Scholar] [CrossRef]
- Stocks, B.J.; Lynham, T.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.E.V.; McAlpine, R.S.; Dubé, D.E. Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef]
- Wang, Z.F. Calculation Method for Initial Spread Rate of Wildfires. Mt. Res. 1983, 2, 44–53. [Google Scholar]
- Rothermel, R. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1972.
- Wagner, C.E.V. Height of Crown Scorch in Forest Fires. Can. J. For. Res. 1973, 3, 373–378. [Google Scholar] [CrossRef]
- Ning, J.; Liu, H.; Yu, W.; Deng, J.; Sun, L.; Yang, G.; Wang, M.; Yu, H. Comparison of Different Models to Simulate Forest Fire Spread: A Case Study. Forests 2024, 15, 563. [Google Scholar] [CrossRef]
- Xu, Y.; Li, D.; Ma, H.; Lin, R.; Zhang, F. Modeling Forest Fire Spread Using Machine Learning-Based Cellular Automata in a GIS Environment. Forests 2022, 13, 1974. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Zhou, Y.; Sun, C. Spread Vector Induced Cellular Automata Model for Real-Time Crown Fire Behavior Simulation. Environ. Model. Softw. 2018, 108, 14–39. [Google Scholar] [CrossRef]
- Rui, X.; Hui, S.; Yu, X.; Zhang, G.; Wu, B. Forest Fire Spread Simulation Algorithm Based on Cellular Automata. Nat. Hazards 2018, 91, 309–319. [Google Scholar] [CrossRef]
- Knight, I.; Coleman, J. A Fire Perimeter Expansion Algorithm-Based on Huygens Wavelet Propagation. Int. J. Wildland Fire 1993, 3, 73. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: Fire Area Simulator-Model Development and Evaluation; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 1998; p. RMRS-RP-4.
- Dehkordi, H.R. Applications of Randers Geodesics for Wildfire Spread Modelling. Appl. Math. Model. 2022, 106, 45–59. [Google Scholar] [CrossRef]
- Cai, Z.Y.Z.; Shi, H.; Zhao, H.; Li, T.; Wang, X. Construction and Simulation of Amphibious Aircraft Fire-fighting Flight Simulation System. Acta Aeronaut. Astronaut. Sin. 2023, 44, 227036. [Google Scholar] [CrossRef]
- Meng, Q.; Huai, Y.; You, J.; Nie, X. Visualization of 3D Forest Fire Spread Based on the Coupling of Multiple Weather Factors. Comput. Graph. 2023, 110, 58–68. [Google Scholar] [CrossRef]
- Hananto, A.L.; Tirta, A.; Herawan, S.G.; Idris, M.; Soudagar, M.E.M.; Djamari, D.W.; Veza, I. Digital Twin and 3D Digital Twin: Concepts, Applications, and Challenges in Industry 4.0 for Digital Twin. Computers 2024, 13, 100. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Pi, Y. An Optical Flow-Based Terrain Extraction Framework of VHR Optical Satellite Stereo Images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103543. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Z.; Huang, Y.; Wan, J.; Tan, X. SAR Raw Data Simulation for Fluctuant Terrain: A New Shadow Judgment Method and Simulation Result Evaluation Framework. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–8. [Google Scholar] [CrossRef]
- Trajkovski, K.K.; Grigillo, D.; Petrovic, D. Optimization of UAV Flight Missions in Steep Terrain. Remote Sens. 2020, 12, 1293. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Guan, H.; Jin, S.; Zhang, J.; Zhao, X.; Xu, K.; Wei, D.; Kelly, M.; et al. Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Geosci. Remote Sens. Mag. 2021, 9, 232–257. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, H.; Niu, W.; Mao, Z.; Huang, X.; Zhang, F. Oblique Photogrammetry Supporting Procedural Tree Modeling in Urban Areas. ISPRS J. Photogramm. Remote Sens. 2023, 200, 120–137. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-Oriented Digital Terrain Analysis: Progress and Perspectives. J. Geogr. Sci. 2021, 31, 456–476. [Google Scholar] [CrossRef]
- Gasch, C.; Chover, M.; Remolar, I.; Rebollo, C. Procedural Modelling of Terrains with Constraints. Multimed. Tools Appl. 2020, 79, 31125–31146. [Google Scholar] [CrossRef]
- Letort, V.; Cournède, P.-H.; Mathieu, A.; De Reffye, P.; Constant, T. Parametric Identification of a Functional—Structural Tree Growth Model and Application to Beech Trees (Fagus Sylvatica). Funct. Plant Biol. 2008, 35, 951. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.; Sinsel, T.; Bruse, M. Introduction of Fractal-Based Tree Digitalization and Accurate In-Canopy Radiation Transfer Modelling to the Microclimate Model ENVI-Met. Forests 2020, 11, 869. [Google Scholar] [CrossRef]
- Herrmann, M. Visualizing Turbulent Flames Using Flamelet Libraries. Combust. Flame 2017, 175, 237–242. [Google Scholar] [CrossRef]
- You, J.; Huai, Y.; Nie, X.; Chen, Y. Real-Time 3D Visualization of Forest Fire Spread Based on Tree Morphology and Finite State Machine. Comput. Graph. 2022, 103, 109–120. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, X.; Ren, H.; Dong, Y.; Yang, X. A Unified Particle Method for Fluid Simulation in Ship Fire Scenario. Ocean. Eng. 2024, 312, 119266. [Google Scholar] [CrossRef]
- Shen, L.; Zhu, D.; Nadeem, S.; Wang, Z.; Kaufman, A.E. Radiative Transport Based Flame Volume Reconstruction from Videos. IEEE Trans. Visual. Comput. Graph. 2018, 24, 2209–2222. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, Z.; Huang, X. Modelling Flame-to-Fuel Heat Transfer by Deep Learning and Fire Images. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2331114. [Google Scholar] [CrossRef]
- Martella, A.; Ramadan, A.I.H.A.; Martella, C.; Patano, M.; Longo, A. State of the Art of Urban Digital Twin Platforms. In Extended Reality, Proceedings of the International Conference, XR Salento 2023, Lecce, Italy, 6–9 September 2023; De Paolis, L.T., Arpaia, P., Sacco, M., Eds.; Springer: Cham, Switzerland, 2023; pp. 299–317. [Google Scholar]
- Chen, C.-W.; Peng, J.-W.; Kuo, C.-M.; Hu, M.-C.; Tseng, Y.-C. Ontlus: 3D Content Collaborative Creation via Virtual Reality. In MultiMedia Modeling; Schoeffmann, K., Chalidabhongse, T.H., Ngo, C.W., Aramvith, S., O’Connor, N.E., Ho, Y.-S., Gabbouj, M., Elgammal, A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10705, pp. 386–389. ISBN 978-3-319-73599-3. [Google Scholar]
- Foxman, M. United We Stand: Platforms, Tools and Innovation With the Unity Game Engine. Soc. Media+ Soc. 2019, 5, 205630511988017. [Google Scholar] [CrossRef]
- Wiesing, M.; Fink, G.R.; Weidner, R. Accuracy and Precision of Stimulus Timing and Reaction Times with Unreal Engine and SteamVR. PLoS ONE 2020, 15, e0231152. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Hyyppä, J.; Gong, J.; Liu, J.; Yang, B. A Comprehensive and Up-to-Date Web-Based Interactive 3D Emergency Response and Visualization System Using Cesium Digital Earth: Taking Landslide Disaster as an Example. Big Earth Data 2023, 7, 1058–1080. [Google Scholar] [CrossRef]
- Bao, J.; Guo, D.; Li, J.; Zhang, J. The Modelling and Operations for the Digital Twin in the Context of Manufacturing. Enterp. Inf. Syst. 2019, 13, 534–556. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Tian, Y. Flight Simulation of Fire-Fighting Aircraft Based on Multi-Factor Coupling Modeling of Forest Fire. Aerospace 2024, 11, 267. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling Technologies and Tools for Digital Twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, C.; Wang, K.I.-K.; Huang, H.; Xu, X. Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues. Robot. Comput.-Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Johnston, J.M.; Jackson, N.; McFayden, C.; Ngo Phong, L.; Lawrence, B.; Davignon, D.; Wooster, M.J.; Van Mierlo, H.; Thompson, D.K.; Cantin, A.S.; et al. Development of the User Requirements for the Canadian WildFireSat Satellite Mission. Sensors 2020, 20, 5081. [Google Scholar] [CrossRef]
- Chen, Y.; Morton, D.C.; Randerson, J.T. Remote Sensing for Wildfire Monitoring: Insights into Burned Area, Emissions, and Fire Dynamics. One Earth 2024, 7, 1022–1028. [Google Scholar] [CrossRef]
- Li, S. Wildfire Early Warning System Based on Wireless Sensors and Unmanned Aerial Vehicle. J. Unmanned Veh. Syst. 2019, 7, 76–91. [Google Scholar] [CrossRef]
Spatial Levels | Measures | Related Technology | Scope of Application | Sketch Map |
---|---|---|---|---|
Ground |
| Internet of Things (IoT)/Wireless sensor networks/Wireless communication | Small forest areas Easily accessible regions Fixed locations | |
Near Ground |
| Automated Systems/Infrared and visible light imaging/ High resolution | Large forest areas Complex terrains | |
Aerial |
| Real-Time image transmission/Infrared and visible light imaging | Large forest areas Hard-to-reach regions Complex terrains | |
Space |
| Remote sensing/Geographic information system/Global positioning system/radar | Global coverage Large forest areas |
Category | Classical Model | Performance and Benefits | Drawbacks | Applicable Scenarios |
---|---|---|---|---|
Physical Model | Models based on fluid dynamics, thermodynamics, etc. | Highly accurate, strong adaptability | High computational complexity and data requirements | High-precision simulation |
Empirical Model | McArthur model, Canadian forest fire spread model, etc. | Computationally efficient, easy-to-use | Limited accuracy and strong limitations | Rapid initial assessment and real-time monitoring |
Semi-Empirical Model | Wang Zhengfei model, Rothermel model, etc. | High computational efficiency, good accuracy, high flexibility | Strong dependency, may require frequent calibration and updates | Balance calculation efficiency and simulation accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, J.; Zheng, H. Modeling of Wildfire Digital Twin: Research Progress in Detection, Simulation, and Prediction Techniques. Fire 2024, 7, 412. https://doi.org/10.3390/fire7110412
Huang Y, Li J, Zheng H. Modeling of Wildfire Digital Twin: Research Progress in Detection, Simulation, and Prediction Techniques. Fire. 2024; 7(11):412. https://doi.org/10.3390/fire7110412
Chicago/Turabian StyleHuang, Yuting, Jianwei Li, and Huiru Zheng. 2024. "Modeling of Wildfire Digital Twin: Research Progress in Detection, Simulation, and Prediction Techniques" Fire 7, no. 11: 412. https://doi.org/10.3390/fire7110412
APA StyleHuang, Y., Li, J., & Zheng, H. (2024). Modeling of Wildfire Digital Twin: Research Progress in Detection, Simulation, and Prediction Techniques. Fire, 7(11), 412. https://doi.org/10.3390/fire7110412