Using Paleoecological Methods to Study Long-Term Disturbance Patterns in High-Elevation Whitebark Pine Ecosystems
<p>Detailed location of Phyllis Lake, Idaho, USA. Elevation 2800 m.</p> "> Figure 2
<p>The <span class="html-italic">x</span>-axis represents time, from 0 cal y BP (1950 CE) to ~8200 cal y BP, and is divided into four zones: the gray bars indicate the periods of time with fire episodes, the Mazama Ash layer is indicated by the vertical gray line at ~7790 cal y BP. (<b>a</b>) Ratio of arboreal to nonarboreal pollen. (<b>b</b>) Fire episodes with <span class="html-italic">p</span> values of <0.05. (<b>c</b>) Fire activity, highlighted by the two time periods in gray bars that include the fire episodes. (<b>d</b>) Total pollen accumulation rate (PAR), <span class="html-italic">Pinus</span> pollen, stacked to demonstrate the abundance of <span class="html-italic">Pinus</span> at Phyllis Lake.</p> "> Figure 3
<p>The <span class="html-italic">x</span>-axis represents time from when the core was collected in 2017 to 1950 CE and encompasses Zone 5 from the text: (<b>a</b>–<b>g</b>) PAR values for taxa discussed in the text. (<b>h</b>) AP:NAP (<b>i</b>) Fire episodes with <span class="html-italic">p</span> values of <0.05. (<b>j</b>) Fire activity. (<b>k</b>) Total pollen accumulation rate (PAR), <span class="html-italic">Pinus</span> pollen, stacked to demonstrate the abundance of <span class="html-italic">Pinus</span> at Phyllis Lake.</p> "> Figure 4
<p>The <span class="html-italic">x</span>-axis represents time, from 0 cal y BP (1950 CE) to ~8200 cal y BP, and is divided into four zones. The gray bars indicate the periods of time with fire episodes, the Mazama Ash layer is indicated by the vertical gray line at ~7790 cal y BP: (<b>a</b>–<b>g</b>) PAR values for taxa discussed in the text. (<b>h</b>) Fire episodes with <span class="html-italic">p</span> values of <0.05. (<b>i</b>) Total pollen accumulation rate (PAR), <span class="html-italic">Pinus</span> pollen, stacked to demonstrate the abundance of <span class="html-italic">Pinus</span> at Phyllis Lake.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Zone 1 (8177–7000 cal y BP)
3.2. Zone 2 (7000–5200 cal y BP)
3.3. Zone 3 (5200–1000 cal y BP)
3.4. Zone 4 ((1000–0 cal y BP (1950 CE))
3.5. Zone 5 (1950–2017 CE)
4. Discussion
4.1. Zone 1 (8177–7000 cal yrBP)
4.2. Zone 2 (7000 BP–5200 BP)
4.3. Zone 3 (5200–1000 cal y BP)
4.4. Zone 4 (1000 BP–0 BP (1950 CE))
4.5. Zone 5 (1950 CE–2017 CE)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pansing, E.R.; Tomback, D.F.; Wunder, M.B. Climate-altered Fire Regimes May Increase Extirpation Risk in an Upper Subalpine Conifer Species of Management Concern. Ecosphere 2020, 11, e03220. [Google Scholar] [CrossRef]
- Keane, R.E.; Holsinger, L.; Mahalovich, M.; Tomback, D.F. Restoring Whitebark Pine Ecosystems in the Face of Climate Change; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2017; p. 123. [Google Scholar]
- Sambaraju, K.R.; Goodsman, D.W. Mountain Pine Beetle: An Example of a Climate-Driven Eruptive Insect Impacting Conifer Forest Ecosystems. CABI Rev. 2021, PAVSNNR202116018. [Google Scholar] [CrossRef]
- Bartos, D.L.; Gibson, K.E. Insects of Whitebark Pine with Emphasis on Mountain Pine Beetle; USDA: Bozeman, MT, USA, 1990; pp. 29–31. [Google Scholar]
- Reynolds, F. Whitebark Pine Ecosystems: The Threats and the Challenge. In USDA Fores Service Forestry Research West; USDA: Bozeman, MT, USA, 1990; pp. 5–9. [Google Scholar]
- Keane, R.E. The Decline of Whitebark Pine in the Bob Marshall Wilderness Complex, Montana; University of Idaho: Moscow, ID, USA, 1994. [Google Scholar]
- Keane, R.E.; Arno, S.F. Rapid Decline of Whitebark Pine in Western Montana: Evidence from 20-Year Remeasurements. West. J. Appl. For. 1993, 8, 44–47. [Google Scholar] [CrossRef]
- Natural Resources Defense Council. A Petition to List the Pinus Albicaulis, as an Endangered Species Under the Endagered Species Act; NRDC: New York, NY, USA, 2008. [Google Scholar]
- Tomback, D.F.; Arno, S.F.; Keane, R.E. The Compelling Case for Management Intervention. In Whitebark Pine Communities: Ecology and Resotration; Island Press: Washington, DC, USA, 2001; pp. 3–25. [Google Scholar]
- Resler, L.M.; Tomback, D.F. Blister Rust Prevalence in Krummholz Whitebark Pine: Implications for Treeline Dynamics, Northern Rocky Mountains, Montana, U.S.A. Arct. Antarct. Alp. Res. 2008, 40, 161–170. [Google Scholar] [CrossRef]
- Callaway, R.M. Competition and Facilitation on Elevation Gradients in Subalpine Forests of the Northern Rocky Mountains, USA. Oikos 1998, 82, 561. [Google Scholar] [CrossRef]
- Brown, J.; Arno, S.; Barrett, S.; Menakis, J. Comparing the Prescribed Natural Fire Program with Presettlement Fires in the Selway-Bitterroot Wilderness. Int. J. Wildland Fire 1995, 4, 157. [Google Scholar] [CrossRef]
- Smith, C.M.; Wilson, B.; Rasheed, S.; Walker, R.C.; Carolin, T.; Shepherd, B. Whitebark Pine and White Pine Blister Rust in the Rocky Mountains of Canada and Northern Montana. Can. J. For. Res. 2008, 38, 982–995. [Google Scholar] [CrossRef]
- McKinney, S.T.; Tomback, D.F. The Influence of White Pine Blister Rust on Seed Dispersal in Whitebark Pine. Can. J. For. Res. 2007, 37, 1044–1057. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Allen, C.D.; Betancourt, J.L. Applied Hisorical Ecology: Using the Past Too Manage for the Future. Ecol. Appl. 1999, 9, 1189–1206. [Google Scholar] [CrossRef]
- Keane, R.E.; Parsons, R.A. Restoring Whitebark Pine Forests of the Northern Rocky Mountains, USA. Ecol. Restor. 2010, 28, 56–70. [Google Scholar] [CrossRef]
- Arno, S.F. Forest Fire History in the Northern Rockies. J. For. 1980, 78, 460–465. [Google Scholar] [CrossRef]
- Little, E. Atlas of United States Trees, Volume 1, Conifers and Important Hardwoods. In Miscellaneous Publication; US Department of Agriculture: Washington, DC, USA, 1971. [Google Scholar]
- Kichas, N.E.; Pederson, G.T.; Hood, S.M.; Everett, R.G.; McWethy, D.B. Increased Whitebark Pine (Pinus Albicaulis) Growth and Defense under a Warmer and Regionally Drier Climate. Front. For. Glob. Change 2023, 6, 1089138. [Google Scholar] [CrossRef]
- Ketterer, M.E.; Hafer, K.M.; Jones, V.J.; Appleby, P.G. Rapid Dating of Recent Sediments in Loch Ness: Inductively Coupled Plasma Mass Spectrometric Measurements of Global Fallout Plutonium. Sci. Total Environ. 2004, 322, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Kapp, R.O.; Davis, O.K.; King, J.E. Ronald O. Kapp’s Pollen and Spores, 2nd ed.; American Association of Stratigraphic Palynologists Foundation: College Station, TX, USA, 2000; ISBN 978-0-931871-10-8. [Google Scholar]
- Pouchou, J.-L.; Pichoir, F. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP”. In Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Springer: Boston, MA, USA, 1991; pp. 31–75. ISBN 978-1-4899-2619-7. [Google Scholar]
- Zdanowicz, C.M.; Zielinski, G.A.; Germani, M.S. Mount Mazama Eruption: Calendrical Age Verified and Atmospheric Impact Assessed. Geol 1999, 27, 621. [Google Scholar] [CrossRef]
- Blaauw, M. Methods and Code for ‘Classical’ Age-Modelling of Radiocarbon Sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Hartley, J. Investigating Fire and Vegetation Dynamics for a High Elevation Pinus albicaulis Site in the Northern Rocky Mountains, Idaho, USA. Master’s Thesis, University of Utah, Salt Lake City, UT, USA, 2021. [Google Scholar]
- Whitlock, C.; Larsen, C. Charcoal as a Fire Proxy. In Tracking Environmental Change Using Lake Sediments; Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K., Eds.; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2002; Volume 3, pp. 75–97. ISBN 978-1-4020-0681-4. [Google Scholar]
- Whitlock, C.; Millspaugh, S.H. Testing the Assumptions of Fire-History Studies: An Examination of Modern Charcoal Accumulation in Yellowstone National Park, USA. Holocene 1996, 6, 7–15. [Google Scholar] [CrossRef]
- Higuera, P.E. CharAnalysis 0.9: Diagnostic and Analytical Tools for Sediment-Charcoal Analysis User‘s Guide 2009. Available online: https://www.researchgate.net/publication/254406379_CharAnalysis_09_Diagnostic_and_analytical_tools_for_sediment-charcoal_analysis (accessed on 3 February 2019).
- USGS. Burn Severity Viewer. Available online: https://burnseverity.cr.usgs.gov/viewer/ (accessed on 25 August 2024).
- Faegri, K. Textbook of Pollen Analysis; John Wiley: New York, NY, USA, 1989. [Google Scholar]
- Brothers, S.; Vermaire, J.C.; Gregory-Eaves, I. Empirical Models for Describing Recent Sedimentation Rates in Lakes Distributed across Broad Spatial Scales. J. Paleolimnol. 2008, 40, 1003–1019. [Google Scholar] [CrossRef]
- Mehringer, P.J.; Arno, S.F.; Petersen, K.L. Postglacial History of Lost Trail Pass Bog, Bitterroot Mountains, Montana. Arct. Alp. Res. 1977, 9, 345–368. [Google Scholar] [CrossRef]
- Doerner, J.P.; Carrara, P.E. Deglaciation and Postglacial Vegetation History of the West Mountains, West-Central Idaho, U.S.A. Arct. Antarct. Alp. Res. 1999, 31, 303–311. [Google Scholar] [CrossRef]
- Rohling, E.J.; Pälike, H. Centennial-Scale Climate Cooling with a Sudden Cold Event around 8200 Years Ago. Nature 2005, 434, 975–979. [Google Scholar] [CrossRef]
- Morrill, C.; Jacobsen, R.M. How Widespread Were Climate Anomalies 8200 Years Ago? Geophys. Res. Lett. 2005, 32, 2005GL023536. [Google Scholar] [CrossRef]
- Alley, R.B.; Mayeski, P.A.; Sowers, T.; Stuiver, M.; Taylor, K.C. Holocene Climatic Instability: A Large Event 8000–8400 Years Ago. Geology 1997, 25, 482–486. [Google Scholar]
- Dean, W. Early Holocene Change in Atmospheric Circulation in the Northern Great Plains: An Upstream View of the 8.2ka Cold Event. Quat. Sci. Rev. 2002, 21, 1763–1775. [Google Scholar] [CrossRef]
- Dean, W.; Rosenbaum, J.; Skipp, G.; Colman, S.; Forester, R.; Liu, A.; Simmons, K.; Bischoff, J. Unusual Holocene and Late Pleistocene Carbonate Sedimentation in Bear Lake, Utah and Idaho, USA. Sediment. Geol. 2006, 185, 93–112. [Google Scholar] [CrossRef]
- Pisaric, M.F.J.; Holt, C.; Szeicz, J.M.; Karst, T.; Smol, J.P. Holocene Treeline Dynamics in the Mountains of Northeastern British Columbia, Canada, Inferred from Fossil Pollen and Stomata. Holocene 2003, 13, 161–173. [Google Scholar] [CrossRef]
- Mudie, P.J.; Rochon, A.; Aksu, A.E. Pollen Stratigraphy of Late Quaternary Cores from Marmara Sea: Land–Sea Correlation and Paleoclimatic History. Mar. Geol. 2002, 190, 233–260. [Google Scholar] [CrossRef]
- Whitlock, C.; Briles, C.E.; Fernandez, M.C.; Gage, J. Holocene Vegetation, Fire and Climate History of the Sawtooth Range, Central Idaho, USA. Quat. Res. 2011, 75, 114–124. [Google Scholar] [CrossRef]
- Oetelaar, G.A.; Beaudoin, A.B. Darkened Skies and Sparkling Grasses: The Potential Impact of the Mazama Ash Fall on the Northwestern Plains. Plains Anthropol. 2005, 50, 285–305. [Google Scholar] [CrossRef]
- Kelly, P.M.; Sear, C.B. Climatic Impact of Explosive Volcanic Eruptions. Nature 1984, 311, 740–743. [Google Scholar] [CrossRef]
- Titus, J.H. Nitrogen-Fixers Alnus and Lupinus Influence Soil Characteristics but Not Colonization by Later Successional Species in Primary Succession on Mount St. Helens. Plant Ecol. 2009, 203, 289–301. [Google Scholar] [CrossRef]
- Pidek, I.A.; Piotrowska, K.; Kasprzyk, I. Pollen–Vegetation Relationships for Pine and Spruce in Southeast Poland on the Basis of Volumetric and Tauber Trap Records. Grana 2010, 49, 215–226. [Google Scholar] [CrossRef]
- Latałowa, M.; Van Der Knaap, W.O. Late Quaternary Expansion of Norway Spruce Picea abies (L.) Karst. in Europe According to Pollen Data. Quat. Sci. Rev. 2006, 25, 2780–2805. [Google Scholar] [CrossRef]
- Szczepanek, K.; Myszkowska, D.; Worobiec, E.; Piotrowicz, K.; Ziemianin, M.; Bielec-Bąkowska, Z. The Long-Range Transport of Pinaceae Pollen: An Example in Kraków (Southern Poland). Aerobiologia 2017, 33, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, G. Untersuchungen Über Die Morphologie Und Ökologie Der Pollenkörner Heimischer Und Fremdländischer Waldbäume; Forstwissenschaftliche Forschungen: Beihefte zum Forstwissenschaftlichen Centralblatt; P. Parey: Paris, France, 1961. [Google Scholar]
- Meyer, G.A.; Pierce, J.L. Climatic Controls on Fire-Induced Sediment Pulses in Yellowstone National Park and Central Idaho: A Long-Term Perspective. For. Ecol. Manag. 2003, 178, 89–104. [Google Scholar] [CrossRef]
- Gaylord, D.R. Holocene Paleoclimatic Fluctuations Revealed from Dune and Interdune Strata in Wyoming. J. Arid. Environ. 1990, 18, 123–138. [Google Scholar] [CrossRef]
- Vance, R.E.; Mathewes, R.W.; Clague, J.J. 7000 Year Record of Lake-Level Change on the Northern Great Plains: A High-Resolution Proxy of Past Climate. Geol 1992, 20, 879. [Google Scholar] [CrossRef]
- Yansa, C.H. Holocene Paleovegetation and Paleohydrology of a Prairie Pothole in Southern Saskatchewan. Can. J. Paleolimnol. 1998, 19, 429–441. [Google Scholar] [CrossRef]
- Marlon, J.; Bartlein, P.J.; Whitlock, C. Fire-Fuel-Climate Linkages in the Northwestern USA during the Holocene. Holocene 2006, 16, 1059–1071. [Google Scholar] [CrossRef]
- Lantz, T.C.; Gergel, S.E.; Henry, G.H.R. Response of Green Alder (Alnus viridis subsp. Fruticosa) Patch Dynamics and Plant Community Composition to Fire and Regional Temperature in North-western Canada. J. Biogeogr. 2010, 37, 1597–1610. [Google Scholar] [CrossRef]
- May, L.; Lacourse, T. Morphological Differentiation of Alnus (Alder) Pollen from Western North America. Rev. Palaeobot. Palynol. 2012, 180, 15–24. [Google Scholar] [CrossRef]
- Power, M.J.; Whitlock, C.; Bartlein, P.J. Postglacial Fire, Vegetation, and Climate History across an Elevational Gradient in the Northern Rocky Mountains, USA and Canada. Quat. Sci. Rev. 2011, 30, 2520–2533. [Google Scholar] [CrossRef]
- Arno, S.F.; Hoff, R.J. Silvics of Whitebark Pine (Pinus albicaulis); General Technical Report, INT-253; U.S. Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1989. [Google Scholar]
- Veblen, T.T.; Hadley, K.S.; Nel, E.M.; Kitzberger, T.; Reid, M.; Villalba, R. Disturbance Regime and Disturbance Interactions in a Rocky Mountain Subalpine Forest. J. Ecol. 1994, 82, 125. [Google Scholar] [CrossRef]
- Larson, E.R.; Kipfmueller, K.F. Patterns in Whitebark Pine Regeneration and Their Relationships to Biophysical Site Characteristics in Southwest Montana, Central Idaho, and Oregon, USA. Can. J. For. Res. 2010, 40, 476–487. [Google Scholar] [CrossRef]
- Karsian, A.E. A 6800 Year Vegetation and Fire History in the Bitterroot Mountain Range, Montana; University of Montana: Missoula, MT, USA, 1995. [Google Scholar]
- Brunelle, A.; Whitlock, C. Postglacial Fire, Vegetation, and Climate History in the Clearwater Range, Northern Idaho, USA. Quat. Res. 2003, 60, 307–318. [Google Scholar] [CrossRef]
- Booth, R.K.; Jackson, S.T.; Forman, S.L.; Kutzbach, J.E.; Bettis, E.A.; Kreigs, J.; Wright, D.K. A Severe Centennial-Scale Drought in Midcontinental North America 4200 Years Ago and Apparent Global Linkages. Holocene 2005, 15, 321–328. [Google Scholar] [CrossRef]
- Stone, J.R.; Fritz, S.C. Multidecadal Drought and Holocene Climate Instability in the Rocky Mountains. Geol 2006, 34, 409. [Google Scholar] [CrossRef]
- Brunelle, A.; Whitlock, C.; Bartlein, P.; Kipfmueller, K. Holocene Fire and Vegetation along Environmental Gradients in the Northern Rocky Mountains. Quat. Sci. Rev. 2005, 24, 2281–2300. [Google Scholar] [CrossRef]
- Riley, K.; Pierce, J.; Meyer, G.A. Vegetative and Climatic Controls on Holocene Wildfire and Erosion Recorded in Alluvial Fans of the Middle Fork Salmon River, Idaho. Holocene 2015, 25, 857–871. [Google Scholar] [CrossRef]
- Scuderi, L.A. A 2000-Year Tree Ring Record of Annual Temperatures in the Sierra Nevada Mountains. Science 1993, 259, 1433–1436. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Rohling, E.E.; Curt Stager, J.; Karlén, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; Van Kreveld, S.; Holmgren, K.; et al. Holocene Climate Variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Graham, N.E.; Ammann, C.M.; Fleitmann, D.; Cobb, K.M.; Luterbacher, J. Support for Global Climate Reorganization during the “Medieval Climate Anomaly”. Clim. Dyn. 2011, 37, 1217–1245. [Google Scholar] [CrossRef]
- Nesom, G. USDA Plant Guide Subalpine Fir, Abies Lasiocarpa, (Hook.) Nutt. Available online: https://plants.usda.gov/plant-profile/ABLA (accessed on 12 August 2019).
- Higuera, P.E.; Brubaker, L.B.; Anderson, P.M.; Hu, F.S.; Brown, T.A. Vegetation Mediated the Impacts of Postglacial Climate Change on Fire Regimes in the South-central Brooks Range, Alaska. Ecol. Monogr. 2009, 79, 201–219. [Google Scholar] [CrossRef]
- Biondi, F.; Perkins, D.L.; Cayan, D.R.; Hughes, M.K. July Temperature during the Second Millennium Reconstructed from Idaho Tree Rings. Geophys. Res. Lett. 1999, 26, 1445–1448. [Google Scholar] [CrossRef]
- Morgan, P.; Heyerdahl, E.K.; Gibson, C.E. Multi-Season Climate Synchronozed Forest Fires throughout the 20th Century, Northern Rockies, USA. Ecology 2008, 89, 717–728. [Google Scholar] [CrossRef] [PubMed]
Depth (cm) | Core | Lab Number | Material | Age (14C y BP) | Age (cal y BP) |
---|---|---|---|---|---|
1 | PL17-A | Surface | −67 (2017 CE) | ||
9 | PL17-A | Plutonium extrapolation | Bulk sediment | −40 (1990 CE) | |
18 | PL17-A | Plutonium peak | Bulk sediment | −13 | |
93 | PL17-B | CAIS * 39123 | Pollen | 2810 ± 20 | 2875 |
245 | PL17-B | Ash | 6845 ± 45 | 7790 | |
252 | PL17-B | CAIS * 39124 | Pollen | 7450 ± 25 | 8177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartley, J.; Watt, J.; Brunelle, A. Using Paleoecological Methods to Study Long-Term Disturbance Patterns in High-Elevation Whitebark Pine Ecosystems. Fire 2024, 7, 411. https://doi.org/10.3390/fire7110411
Hartley J, Watt J, Brunelle A. Using Paleoecological Methods to Study Long-Term Disturbance Patterns in High-Elevation Whitebark Pine Ecosystems. Fire. 2024; 7(11):411. https://doi.org/10.3390/fire7110411
Chicago/Turabian StyleHartley, Jordin, Jennifer Watt, and Andrea Brunelle. 2024. "Using Paleoecological Methods to Study Long-Term Disturbance Patterns in High-Elevation Whitebark Pine Ecosystems" Fire 7, no. 11: 411. https://doi.org/10.3390/fire7110411
APA StyleHartley, J., Watt, J., & Brunelle, A. (2024). Using Paleoecological Methods to Study Long-Term Disturbance Patterns in High-Elevation Whitebark Pine Ecosystems. Fire, 7(11), 411. https://doi.org/10.3390/fire7110411