A Long Short-Term Memory Network-Based Radio Resource Management for 5G Network
<p>Block diagram of LSTM-RRM method.</p> "> Figure 2
<p>System model.</p> "> Figure 3
<p>LSTM-based RRM.</p> "> Figure 4
<p>Architecture of LSTM cell.</p> "> Figure 5
<p>Comparison of minimum UE throughput.</p> "> Figure 6
<p>Comparison of 50% UE throughput.</p> "> Figure 7
<p>Comparison of 90% UE throughput.</p> "> Figure 8
<p>Comparison of outage percentage.</p> "> Figure 9
<p>Comparison of dual connectivity.</p> "> Figure 10
<p>Comparison of USR.</p> "> Figure 11
<p>Comparison of TSR.</p> "> Figure 12
<p>Comparison of OSR.</p> "> Figure 13
<p>Comparison of guaranteed capacity.</p> "> Figure 14
<p>Comparison of indoor guaranteed rate.</p> "> Figure 15
<p>Comparison of outdoor guaranteed rate.</p> ">
Abstract
:1. Introduction
- An optimal bandwidth and power is assigned to the UEs using the LSTM in the 5G network, whereas the GSO is used to discover adequate hyperparameters.
- An allocation of resources to the unwanted UE is avoided by analyzing the request queue of all the UEs. Additionally, the LSTM-based RRM also reduces the traffic in the network.
- Additionally, a guard level insertion in the data is used to reduce the ISI in the network. The ISI existing in the data creates a high amount of errors during data transmission.
2. Literature Survey
3. LSTM-RRM Method
3.1. System Model
3.2. Frequency Interleaving and Guard Interval Insertion for Minimizing the Losses through the 5G Environment
3.3. Process of RRM
- Context Acquisition:
- Profile management:
- LSTM-based RRM:
- Learning:
3.4. LSTM-Based Radio Resource Management
GSO-Based Hyperparameter Tuning for LSTM
4. Result and Discussion
4.1. Performance Comparison between LSTM-RRM and DRRM
4.2. Performance Comparison between LSTM-RRM and QOC-RRM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Condoluci, M.; Araniti, G.; Molinaro, A.; Iera, A. Multicast resource allocation enhanced by channel state feedbacks for multiple scalable video coding streams in LTE networks. IEEE Trans. Veh. Technol. 2015, 65, 2907–2921. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente, A.; Escudero-Garzás, J.J.; García-Armada, A. Radio resource allocation for multicast services based on multiple video layers. IEEE Trans. Broadcast. 2017, 64, 695–708. [Google Scholar] [CrossRef]
- Pramudito, W.; Alsusa, E. A hybrid resource management technique for energy and QoS optimization in fractional frequency reuse based cellular networks. IEEE Trans. Commun. 2013, 61, 4948–4960. [Google Scholar] [CrossRef]
- Li, Q.; Hu, R.Q.; Qian, Y.; Wu, G. Intracell cooperation and resource allocation in a heterogeneous network with relays. IEEE Trans. Veh. Technol. 2012, 62, 1770–1784. [Google Scholar] [CrossRef]
- Wang, H.; Rosa, C.; Pedersen, K.I. Dual connectivity for LTE-advanced heterogeneous networks. Wirel. Netw. 2016, 22, 1315–1328. [Google Scholar] [CrossRef] [Green Version]
- Soret, B.; Pedersen, K.I. Centralized and distributed solutions for fast muting adaptation in LTE-advanced HetNets. IEEE Trans. Veh. Technol. 2014, 64, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Belleschi, M.; Fodor, G.; Della Penda, D.; Pradini, A.; Johansson, M.; Abrardo, A. Benchmarking practical RRM algorithms for D2D communications in LTE advanced. Wirel. Pers. Commun. 2015, 82, 883–910. [Google Scholar] [CrossRef]
- Naqvi, S.A.R.; Pervaiz, H.; Hassan, S.A.; Musavian, L.; Ni, Q.; Imran, M.A.; Ge, X.; Tafazolli, R. Energy-aware radio resource management in D2D-enabled multi-tier HetNets. IEEE Access 2018, 6, 16610–16622. [Google Scholar] [CrossRef]
- Kaddour, F.Z.; Vivier, E.; Mroueh, L.; Pischella, M.; Martins, P. Green opportunistic and efficient resource block allocation algorithm for LTE uplink networks. IEEE Trans. Veh. Technol. 2014, 64, 4537–4550. [Google Scholar] [CrossRef]
- Tiwana, M.I.; Tiwana, M.I. A novel framework of automated RRM for LTE son using data mining: Application to LTE mobility. J. Netw. Syst. Manag. 2014, 22, 235–258. [Google Scholar] [CrossRef]
- Elgendy, O.A.; Ismail, M.H.; Elsayed, K.M. Radio resource management for LTE-A relay-enhanced cells with spatial reuse and max–min fairness. Telecommun. Syst. 2018, 68, 643–655. [Google Scholar] [CrossRef]
- Tseliou, G.; Adelantado, F.; Verikoukis, C. Scalable RAN virtualization in multitenant LTE-A heterogeneous networks. IEEE Trans. Veh. Technol. 2015, 65, 6651–6664. [Google Scholar] [CrossRef]
- Saddoud, A.; Doghri, W.; Charfi, E.; Fourati, L.C. 5G radio resource management approach for multi-traffic IoT communications. Comput. Netw. 2020, 166, 106936. [Google Scholar] [CrossRef]
- Benzaid, C.; Taleb, T. AI-driven zero touch network and service management in 5G and beyond: Challenges and research directions. IEEE Netw. 2020, 34, 186–194. [Google Scholar] [CrossRef]
- Jo, S.; Jong, C.; Pak, C.; Ri, H. Multi-agent deep reinforcement learning-based energy efficient power allocation in downlink MIMO-NOMA systems. IET Commun. 2021, 15, 1642–1654. [Google Scholar] [CrossRef]
- Cai, T.; van de Beek, J.; Nasreddine, J.; Petrova, M.; Mähönen, P. A TD-LTE prototype system with modules for general-purpose cognitive resource management and radio-environmental mapping. Int. J. Wirel. Inf. Netw. 2011, 18, 131–145. [Google Scholar] [CrossRef]
- Haddad, M.; Elayoubi, S.E.; Altman, E.; Altman, Z. A hybrid approach for radio resource management in heterogeneous cognitive networks. IEEE J. Sel. Areas Commun. 2011, 29, 831–842. [Google Scholar] [CrossRef]
- Rostami, S.; Arshad, K.; Rapajic, P. Optimum radio resource management in carrier aggregation based LTE-advanced systems. IEEE Trans. Veh. Technol. 2017, 67, 580–589. [Google Scholar] [CrossRef]
- Wang, H.; Rosa, C.; Pedersen, K.I. Radio resource management for uplink carrier aggregation in LTE-Advanced. EURASIP J. Wirel. Commun. Netw. 2015, 1, 121. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, V.F.; Sousa, D.A.; Maciel, T.F.; Cavalcanti, F.R.P.; e Silva, C.F.; Rodrigues, E.B. Distributed RRM for 5G multi-RAT multiconnectivity networks. IEEE Syst. J. 2018, 13, 192–203. [Google Scholar] [CrossRef]
- Prasad, G.; Rukmini, M.S.S. Radio resource management strategy for mobile networks based on qos sensible confederation. Test Eng. Manag. 2020, 83, 1761–1769. [Google Scholar]
- Pramudito, W.; Alsusa, E. Confederation based RRM with proportional fairness for soft frequency reuse LTE networks. IEEE Trans. Wirel. Commun. 2014, 13, 1703–1715. [Google Scholar] [CrossRef]
- Ali, K.B.; Zarai, F.; Khdhir, R.; Obaidat, M.S.; Kamoun, L. QoS aware predictive radio resource management approach based on MIH protocol. IEEE Syst. J. 2018, 12, 1862–1873. [Google Scholar] [CrossRef]
- Sande, M.M.; Hlophe, M.C.; Maharaj, B.T. Access and radio resource management for IAB networks using deep reinforcement learning. IEEE Access 2021, 9, 114218–114234. [Google Scholar] [CrossRef]
- Pagin, M.; Zugno, T.; Polese, M.; Zorzi, M. Resource management for 5G NR integrated access and backhaul: A semi-centralized approach. IEEE Trans. Wirel. Commun. 2021, 21, 753–767. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Xu, C.; Han, Z.; Xing, Y.; Yu, S. Joint power control and channel allocation for interference mitigation based on reinforcement learning. IEEE Access 2019, 7, 177254–177265. [Google Scholar] [CrossRef]
- Giannopoulos, A.; Spantideas, S.; Kapsalis, N.; Karkazis, P.; Trakadas, P. Deep reinforcement learning for energy-efficient multi-channel transmissions in 5G cognitive hetnets: Centralized, decentralized and transfer learning based solutions. IEEE Access 2021, 9, 129358–129374. [Google Scholar] [CrossRef]
- Kaloxylos, A.; Gavras, A.; Camps Mur, D.; Ghoraishi, M.; Hrasnica, H. AI and ML—Enablers for beyond 5G networks. Zenodo Tech. Rep. 2020, 1–145. [Google Scholar] [CrossRef]
- Sang, J.; Zhou, T.; Xu, T.; Jin, Y.; Zhu, Z. Deep learning based predictive power allocation for V2X communication. IEEE Access 2021, 9, 72881–72893. [Google Scholar] [CrossRef]
- Hao, W.; Sun, G.; Zeng, M.; Chu, Z.; Zhu, Z.; Dobre, O.A.; Xiao, P. Robust design for intelligent reflecting surface-assisted MIMO-OFDMA terahertz IoT networks. IEEE Internet Things J. 2021, 8, 13052–13064. [Google Scholar] [CrossRef]
- Javornik, T.; Švigelj, A.; Hrovat, A.; Mohorčič, M.; Alič, K. Distributed rem-assisted radio resource management in LTE-a networks. Wirel. Pers. Commun. 2017, 92, 107–126. [Google Scholar] [CrossRef]
- Jacobsen, T.H.; Abreu, R.; Berardinelli, G.; Pedersen, K.I.; Kovács, I.Z.; Mogensen, P. Multi-cell reception for uplink grant-free ultra-reliable low-latency communications. IEEE Access 2019, 7, 80208–80218. [Google Scholar] [CrossRef]
- Saleh, H.; Alharbi, A.; Alsamhi, S.H. OPCNN-FAKE: Optimized convolutional neural network for fake news detection. IEEE Access 2021, 9, 129471–129489. [Google Scholar] [CrossRef]
Parameters | Range of Values |
---|---|
epochs | 1–200 |
Neurons | 10–200 |
reg_rate | 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 |
learning rate | 0.1–0.9 |
batch_size | 73, 146, 219, 500, 1000 |
Parameter | Value |
---|---|
Height of BS | 10 m |
Transmission power of BS | 35 dBm |
Type of transmission antenna | Narrow beam |
System bandwidth | 100 MHz |
Carrier frequency | 28 GHz |
Number of UEs | UE Throughput (Mbps) | |
---|---|---|
DRRM [20] | LSTM-RRM | |
5 | 61 | 63 |
10 | 39 | 44 |
15 | 30 | 35 |
20 | 22 | 28 |
25 | 18 | 24 |
30 | 10 | 15 |
Number of UEs | 50% UE Throughput (Mbps) | |
---|---|---|
DRRM [20] | LSTM-RRM | |
5 | 95 | 125 |
10 | 80 | 100 |
15 | 70 | 95 |
20 | 60 | 88 |
25 | 50 | 74 |
30 | 40 | 65 |
Number of UEs | 90% UE Throughput (Mbps) | |
---|---|---|
DRRM [20] | LSTM-RRM | |
5 | 215 | 235 |
10 | 180 | 220 |
15 | 150 | 210 |
20 | 110 | 180 |
25 | 90 | 160 |
30 | 80 | 140 |
Number of UEs | Outage Percentage (%) | |
---|---|---|
DRRM [20] | LSTM-RRM | |
5 | 83 | 87 |
10 | 85 | 91 |
15 | 90 | 94 |
20 | 97 | 98 |
25 | 97 | 98 |
30 | 96 | 98 |
Number of UE | Dual Connectivity (%) | |
---|---|---|
DRRM [20] | LSTM-RRM | |
5 | 70 | 76 |
10 | 60 | 65 |
15 | 63 | 69 |
20 | 58 | 63 |
25 | 58 | 62 |
30 | 50 | 56 |
Number of Users | USR (Mbps) | |
---|---|---|
3 BS | 20 BS | |
10 | 91 | 85 |
15 | 80 | 74 |
20 | 65 | 65 |
25 | 53 | 43 |
30 | 32 | 22 |
Number of Users | USR (Mbps) | |
---|---|---|
EPAS [30] | LSTM-RRM | |
15 | 77 | |
20 | 65 | |
25 | 48 | |
30 | 27 |
Number of Users | TSR (Mbps) | |
---|---|---|
3 BS | 20 BS | |
10 | 89 | 83 |
15 | 77 | 73 |
20 | 64 | 63 |
25 | 51 | 41 |
30 | 31 | 23 |
Building Distance (m) | OSR (Mbps) | |
---|---|---|
QOC-RRM [21] | LSTM-RRM | |
400 | 25 | 35 |
600 | 23 | 33 |
800 | 21 | 31 |
1000 | 19 | 29 |
1200 | 17 | 27 |
1400 | 15 | 25 |
Threshold | Guaranteed Capacity (kbps) | |
---|---|---|
4 BS | 15 BS | |
10 | 550 | 280 |
15 | 590 | 330 |
20 | 650 | 360 |
25 | 730 | 440 |
30 | 835 | 600 |
Building Distance (m) | Indoor Guaranteed Bitrate (Mbps) | |
---|---|---|
QOC-RRM [21] | LSTM-RRM | |
400 | 85 | 178 |
600 | 90 | 185 |
800 | 95 | 193 |
1000 | 99 | 200 |
1200 | 120 | 210 |
1400 | 130 | 228 |
Building Distance (m) | Outdoor Guaranteed Bitrate (Mbps) | |
---|---|---|
QOC-RRM [21] | LSTM-RRM | |
400 | 168 | 178 |
600 | 170 | 185 |
800 | 172 | 194 |
1000 | 168 | 207 |
1200 | 166 | 210 |
1400 | 174 | 228 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balmuri, K.R.; Konda, S.; Lai, W.-C.; Divakarachari, P.B.; Gowda, K.M.V.; Kivudujogappa Lingappa, H. A Long Short-Term Memory Network-Based Radio Resource Management for 5G Network. Future Internet 2022, 14, 184. https://doi.org/10.3390/fi14060184
Balmuri KR, Konda S, Lai W-C, Divakarachari PB, Gowda KMV, Kivudujogappa Lingappa H. A Long Short-Term Memory Network-Based Radio Resource Management for 5G Network. Future Internet. 2022; 14(6):184. https://doi.org/10.3390/fi14060184
Chicago/Turabian StyleBalmuri, Kavitha Rani, Srinivas Konda, Wen-Cheng Lai, Parameshachari Bidare Divakarachari, Kavitha Malali Vishveshwarappa Gowda, and Hemalatha Kivudujogappa Lingappa. 2022. "A Long Short-Term Memory Network-Based Radio Resource Management for 5G Network" Future Internet 14, no. 6: 184. https://doi.org/10.3390/fi14060184