Qualitative Wood Anatomy Study of Ottobratica and Sinopolese Cultivars of Olea europaea L.
<p>Olive trees (<span class="html-italic">Olea europaea</span> L.) examined in this study.</p> "> Figure 2
<p>Olive wood (<span class="html-italic">Olea europaea</span> L.) slices: (<b>A</b>) Sinopolese cultivar wood and (<b>B</b>) Ottobratica cultivar wood.</p> "> Figure 3
<p>Olive wood cultivar samples: Sinopolese (<b>a</b>) and Ottobratica (<b>b</b>). Small red squares indicate where the samples were cut with the respective codes (sample 0 is the pith).</p> "> Figure 4
<p>Olive heartwood cross-section: (<b>A</b>) Sinopolese cultivar: sample 1B; (<b>B</b>) Ottobratica cultivar: sample 2A. Diffuse–porous wood (IAWA feature 5). Vessels in radial/diagonal pattern (IAWA feature 7). Vessels partly solitary, partly in radial multiples of 2–4, or in very small clusters (IAWA features 10, 11). Parenchyma scantly paratracheal/vasicentric (IAWA features 78,79). Presence of common tylosis (IAWA features 56), gums, and other deposits (IAWA feature 58) [<a href="#B26-forests-15-02001" class="html-bibr">26</a>].</p> "> Figure 5
<p>Sinopolese olive wood cultivar: (<b>A</b>) 15B sample, sapwood. Radial section, red arrow: simple perforations plate (IAWA feature 13); (<b>B</b>) 12B sample, heartwood. Tangential section, red arrow: alternate inter-vessel pits (IAWA feature 22) [<a href="#B26-forests-15-02001" class="html-bibr">26</a>].</p> "> Figure 6
<p>Ottobratica olive wood cultivar: 5A sample, sapwood, tangential section. Red circles: helical thickenings only in vessel element tails (IAWA features 36 and 38 [<a href="#B26-forests-15-02001" class="html-bibr">26</a>]).</p> "> Figure 7
<p>Olive wood. (<b>A</b>) Ottobratica cultivar, 4B sample. (<b>B</b>) Sinopolese cultivar, 1B sample. Heartwood, tangential section. Presence of common tylosis (red arrows, IAWA features 56), gums and other deposits (IAWA feature 58) [<a href="#B26-forests-15-02001" class="html-bibr">26</a>].</p> "> Figure 8
<p>Sinopolese olive wood cultivar: (<b>A</b>) 1B sample, heartwood; (<b>B</b>) 15B sample, sapwood. Tangential section. Yellow boxes: ray width with one to three cells (IAWA feature 97 [<a href="#B26-forests-15-02001" class="html-bibr">26</a>]).</p> "> Figure 9
<p>Olive wood, heartwood radial sections. (<b>A</b>) Sinopolese, 1B sample; (<b>B</b>) Ottobratica, 4B sample. Red arrow: body ray cells procumbent with mostly two to four upright rows (IAWA feature 107). Red arrow: rays with procumbent, square, and upright cells mixed throughout the ray (IAWA feature 109) [<a href="#B26-forests-15-02001" class="html-bibr">26</a>].</p> "> Figure 10
<p>Starch (black spots) in Ottobratica olive wood cultivar, 5A sample, sapwood. (<b>A</b>) Radial section, (<b>B</b>) tangential section.</p> "> Figure 11
<p>Starch (black spots) in Sinopolese olive wood cultivar, 15B sample, sapwood (radial section).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- Sinopolese cultivar: age: 70 y; 17.0 m height; DBH (diameter breast height): 54 cm.
- Ottobratica cultivar: age: 70 y; 19.0 m height; DBH: 61 cm.
2.2. Olive Wood Samples
2.3. Microscopic Analysis
2.4. Staining and Mounting of Slides
3. Results and Discussion
3.1. Microscopic Features
3.2. Starch
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iaropoli, T. Chemical Characterization Studies of Extra Virgin Olive Oils from the Gioia Tauro Plain with Particular Reference to the Content of Antioxidant Micronutrients (Original Title: Studi di Caratterizzazione Chimica di Oli Extravergini di Oliva Della Piana di Gioia Tauro Con Particolare Riferimento al Contenuto di Micronutrienti Antiossidanti). Ph.D. Thesis, Università degli Studi di Roma “Tor Vergata”, Roma, Italy, 2010. [Google Scholar]
- Fardella, G.G. Profilo economico dell’olivicoltura calabrese. (Economic profile of Calabrian olive growing). In Proceedings of the Conference of Accademia Nazionale dell’Ulivo of Spoleto, II Tornata in Calabria (II Round to Calabria), Reggio Calabria, Italy, 13–14 December 1995. (In Italian). [Google Scholar]
- Rossi, L.; Sebastiani, L.; Tognetti, R.; d’Andria, R.; Morelli, G. Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil 2013, 372, 567–579. [Google Scholar] [CrossRef]
- Abenavoli, L.M.; Zimbalatti, G.; De Rossi, A.; Papandrea, S.; Proto, A.R. The environmental noise level in the rejuvenation pruning on centuries-old olive tree. Agron. Res. 2019, 17, 313–321. [Google Scholar] [CrossRef]
- Terral, J.F.; Arnold-Simard, G. Beginnings of Olive Cultivation in Eastern Spain in Relation to Holocene Bioclimatic Changes. Quat. Res. 1996, 46, 176–185. [Google Scholar] [CrossRef]
- Baas, P.; Esser, P.M.; Van der Westen, M.E.T.; Zandee, M. Wood anatomy of the Oleaceae. IAWA Bulletin 1988, 9, 103–182. [Google Scholar] [CrossRef]
- Terral, J.F.; Mengüal, X. Reconstruction of Holocene climate in southern France and eastern Spain using quantitative anatomy of olive wood and archaeological charcoal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 153, 71–92. [Google Scholar] [CrossRef]
- Pérez-Bonilla, M.; Salido, S.; Sánchez, A.; van Beek, T.A.; Altarejos, J. Effect of Extraction Conditions on the Antioxidant Activity of Olive Wood Extracts. Int. J. Food Sci. 2013, 2013, 719593. [Google Scholar] [CrossRef]
- Palma, A.; Gallucci, F.; Papandrea, S.; Carnevale, M.; Paris, E.; Vincenti, B.; Salerno, M.; Di Stefano, V.; Proto, A.R. Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler. Fire 2023, 6, 288. [Google Scholar] [CrossRef]
- Requejo, A.; Peleteiro, S.; Garrote, G.; Rodríguez, A.; Jiménez, L. Biorefinery of olive pruning using various processes. Bioresour. Technol. 2012, 111, 301–307. [Google Scholar] [CrossRef]
- Rencoret, J.; Gutiérrez, A.; Castro, E.; Del Río, J.C. Structural characteristics of lignin in pruning residues of olive tree (Olea europaea L.). Holzforschung 2019, 73, 25–34. [Google Scholar] [CrossRef]
- Alshammari, B.A.; Alotaibi, M.D.; Alothman, O.Y.; Sanjay, M.R.; Kian, L.K.; Almutairi, Z.; Jawaid, M. A new study on characterization and properties of natural fbers obtained from olive tree (Olea europaea L.) residues. J. Polym. Environ. 2019, 27, 2334–2340. [Google Scholar] [CrossRef]
- Lo Giudice, V.; Faraone, I.; Bruno, M.R.; Ponticelli, M.; Labanca, F.; Bisaccia, D.; Massarelli, C.; Milella, L.; Todaro, L. Olive trees by-products as sources of bioactive and other industrially useful compounds: A systematic review. Molecules 2021, 26, 5081. [Google Scholar] [CrossRef] [PubMed]
- Maggiotto, G.; Colangelo, G.; Milanese, M.; de Risi, A. Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review. Energies 2023, 16, 6772. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Baas, P. Anatomy of European Woods: An Atlas for the Identification of European Trees, Shrubs and Dwarf Shrubs; Paul Haupt: Bern, Switzerland, 1990. [Google Scholar]
- Serìn, Z.O.; Penezoğlu, M.K. Aydın ve Kahramanmaraş’ta Yetişen Zeytin (Olea europaea L.) Odunun Bazı Özellikleri Some properties of olive wood grown in Aydin and Kahramanmaraş Regions. Turk J Sci 2020, 4, 396–407. [Google Scholar] [CrossRef]
- Düzkale, G.; Bektaș, İ.; Tunç, H.H.; Doğanlar, Y. The determination of some physical and mechanical characteristics of olive wood (Olea europaea). Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi 2014, 10, 29–35. (In Turkish) [Google Scholar]
- Mammoliti, A.; Cataldo, M.F.; Papndrea, F.S.; Proto, A. Mechanical properties of branch and stem wood for two Mediterranean cultivars of olive tree. J. Wood Sci. 2024, 70, 40. [Google Scholar] [CrossRef]
- Tsoumis, G. Science and Technology of Wood: Structure, Properties, Utilization; Van Nostrand Reinhold: New York, NY, USA, 1991; p. 351. [Google Scholar]
- Uetimane, E.J.; Ali, A.C. Relationship between mechanical properties and selected anatomical features of Ntholo (Pseudolachnostylis maprou-naefolia). J. Trop. Sci. 2011, 23, 166–176. [Google Scholar]
- Adeniyi, I.M.; Adebagbo, C.A.; Oladapo, F.M.; Ayetan, G. Utilisation of some selected wood species in relation to their anatomical features. Glob. J. Sci. Front. Res. Agric Veter. 2013, 13, 2249–4626. [Google Scholar]
- Hamdan, H.; Nordahlia, A.S.; Anwar, U.M.K.; Iskandar, M.M.; Omar, M.K.M.; Tumirah, K. Anatomical, physical, and mechanical properties of four pioneer species in Malaysia. J. Wood Sci. 2020, 66, 59. [Google Scholar] [CrossRef]
- Šuhajdová, E.; Novotný, M.; Pěnčík, J.; Šuhajda, K.; Schmid, P.; Straka, B. Evaluation of suitability of selected hardwood in civil engineering. Build. Mater. Struct. 2018, 61, 73–82. [Google Scholar] [CrossRef]
- Tsiaras, S.; Chavenetidou, M.; Koulelis, P.P. A multiple criteria decision analysis approach for assessing the quality of hardwood species used by Greek timber industries. Folia Oecologica 2024, 51, 109–119. [Google Scholar] [CrossRef]
- Kukachka, B.F. Softening refractory woods for anatomical studies, Microsc. Acta 1978, 80, 301–307. [Google Scholar]
- Wheeler, E.; Baas, P.; Gasson, P.E. (Eds.) IAWA List of Microscopic Features for Hardwood Identification. IAWA Bull. n. ser. 10 (3), S. 219 bis 332, 190 Abb., Leiden. J. Bot. Taxon. Geobot. 1989, 101, 600. [Google Scholar] [CrossRef]
- De Micco, V.; Aronne, G.; Baas, P. Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 2008, 22, 643–655. [Google Scholar] [CrossRef]
- Pilate, G.; Chabbert, B.; Cathala, B.; Yoshinaga, A.; Leplé, J.C.; Laurans, F.; Lapierre, C.; Ruel, K. Lignification and tension wood. Comptes Rendus Biol. 2004, 327, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Fahn, A.; Werker, E.; Baas, P. Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions, Israel Academy of Sciences and Humanities; NC State University Libraries: Raleigh, NC, USA, 1986. [Google Scholar]
- Santos-Rufo, A.; Molina-Molina, M.; Alcántara-Vara, E.; Weilad-Ardáiz, C.; López-Escudero, J. Vessel Anatomical Features of ‘Picualand’ ‘Frantoio’, Two Olive Cultivars Different in Resistance against Verticillium Wilt of Olive. Plants 2023, 12, 2910. [Google Scholar] [CrossRef]
- Alhaithloul, H.; Awad, N.S.; Qari, S.H.; El-Homosy, R.F.; Qaoud, E.S.M.; Alqahtani, M.M.; Ghanem, K.Z.; Alasmari, A.; Alzuaibr, F.M.; Ghazzawy, H.S.; et al. Genetic diversity, chemical constituents and anatomical analysis of eight popular Olive (Olea europaea L.) cultivars in Al-Jouf region, Saudi Arabia. Nat. Sci. Rep. 2024, 14, 14688. [Google Scholar] [CrossRef]
- Tsamir-Rimon, M.; Ben-Dor, S.; Feldmesser, E.; Oppenhimer-Shaanan, Y.; Schwartz, R.D.; Samach, A.; Klei, T. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 2021, 229, 1398–1414. [Google Scholar] [CrossRef]
- Cauli, E.; Bandino, G.; Sedda, P.; Zurru, R.; Mulas, M. Chemical and histological analysis of olive tree tissues to understand seasonal starch distribution. In Proceedings of the 5th Interantional Conference Olivebioteq, Amman, Jordan, 3–6 November 2014. [Google Scholar]
- Bustan, A.; Avni, A.; Lavee, S.; Zipori, I.; Yeselson, Y.; Schaffer, A.A.; Riov, J.; Arnon, D. Role of carbohydrate reserves in yield production of intensively cultivated oil olive (Olea europaea L.) trees. Tree Physiol. 2011, 31, 519–530. [Google Scholar] [CrossRef]
- Emmerich, L.; Wülfing, G.; Brischke, C. The Impact of Anatomical Characteristics on the Structural Integrity of Wood. Forests 2019, 10, 199. [Google Scholar] [CrossRef]
IAWA Feature | General Description |
---|---|
5. Wood diffuse–porous | Wood in which the vessels have more or less the same diameter throughout the growth ring |
8. Vessels in dendritic patterns | Vessels arranged in a branching pattern, forming distinct tracts, separated by areas devoid of vessels |
10. Vessels in radial multiples of 4 or more common | Radial files of 4 or more adjacent vessels of common occurrence |
11. Vessel clusters common | Groups of 3 or more vessels having both radial and tangential contacts, and of common occurrence |
13. Simple perforation plates | A perforation plate with a single circular or elliptical opening |
22. Inter-vessel pits alternate | Pits between vessel elements (inter-vessel pits) arranged in diagonal rows (alternate) |
36. Helical thickenings in vessel elements present | Ridges on the inner face of the vessel element wall in a roughly helical pattern |
38. Helical thickenings only in vessel element tails | Ridges on the inner face of the vessel element wall in a roughly helical pattern only in vessel element tails |
56. Tyloses common | Outgrowths from an adjacent ray or axial parenchyma cell through a pit in a vessel wall, partially or completely blocking the vessel lumen, and of common occurrence (except in outer sapwood) |
58. Gums and other deposits in heartwood vessels | Includes a wide variety of chemical compounds, which are variously coloured (white, yellow, red, brown, black) |
66. Non-septate fibres present | Fibres without septa |
70. Fibres very thick-walled | Fibre lumina almost completely closed |
78. Axial parenchyma scantly paratracheal | Axial parenchyma associated with the vessels or vascular tracheids, and types of paratracheal parenchyma are scanty paratracheal, vasicentric, aliform, confluent, and unilateral paratracheal |
79. Axial parenchyma vasicentric | Parenchyma cells forming a complete circular to oval sheath around a solitary vessel or vessel multiple |
97. Ray width 1 to 3 cells | Ray width in cell numbers as per feature descriptor |
107. Body ray cells procumbent with mostly 2–4 rows of upright and/or square marginal cells | Procumbent ray cell = a ray parenchyma cell with its longest dimension radial as seen in radial section; square ray cell = a ray parenchyma cell approximately square as seen in radial section |
109. Rays with procumbent, square, and upright cells mixed throughout the ray | Procumbent ray cell (see above description); square ray cell (see above description); upright ray cell = a ray parenchyma cell with its longest dimension axial as seen in radial section |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urso, T.; Zanetti, M.; Magnabosco, A.; Mammoliti, A.; Paccagnella, M.; Proto, A.R. Qualitative Wood Anatomy Study of Ottobratica and Sinopolese Cultivars of Olea europaea L. Forests 2024, 15, 2001. https://doi.org/10.3390/f15112001
Urso T, Zanetti M, Magnabosco A, Mammoliti A, Paccagnella M, Proto AR. Qualitative Wood Anatomy Study of Ottobratica and Sinopolese Cultivars of Olea europaea L. Forests. 2024; 15(11):2001. https://doi.org/10.3390/f15112001
Chicago/Turabian StyleUrso, Tiziana, Michela Zanetti, Annalisa Magnabosco, Angelo Mammoliti, Marco Paccagnella, and Andrea Rosario Proto. 2024. "Qualitative Wood Anatomy Study of Ottobratica and Sinopolese Cultivars of Olea europaea L." Forests 15, no. 11: 2001. https://doi.org/10.3390/f15112001