A Robustness Analysis of a Fuzzy Fractional Order PID Controller Based on Genetic Algorithm for a DC-DC Boost Converter
<p>DC-DC Boost Converter Circuit.</p> "> Figure 2
<p>Closed Loop FOPID Controller.</p> "> Figure 3
<p>FOPID Model Controller.</p> "> Figure 4
<p>Flowchart Diagram of GA.</p> "> Figure 5
<p>Block diagram of the FFOPID controller.</p> "> Figure 6
<p>Fuzzy membership functions of input error and change-in-error.</p> "> Figure 7
<p>(<b>a</b>) Fuzzy membership functions of the output parameters of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Fuzzy membership functions of the output parameters of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> </mrow> </semantics></math>. (<b>c</b>) Fuzzy membership functions of the output parameters of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>K</mi> <mi>d</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>Simulation results of controllers behavior in transient time.</p> "> Figure 9
<p>(<b>a</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>80</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>. (<b>b</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>66.67</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>. (<b>c</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>80</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>. (<b>d</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>80</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>.</p> "> Figure 9 Cont.
<p>(<b>a</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>80</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>. (<b>b</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>66.67</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>. (<b>c</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>80</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>. (<b>d</b>) Output voltage response over the R disturbance from <math display="inline"><semantics> <mrow> <mn>80</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>.</p> "> Figure 10
<p>Output voltage during load disturbance from <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>10,000</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> and returning from <math display="inline"><semantics> <mrow> <mn>10,000</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="4pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math> (full load to non-load).</p> "> Figure 11
<p>Comparative initial voltage between controllers (<a href="#FD16-electronics-11-01894" class="html-disp-formula">16</a>) and (<a href="#FD25-electronics-11-01894" class="html-disp-formula">25</a>).</p> "> Figure 12
<p>(<b>a</b>) Output voltage response for a capacitance startup deviation of <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>b</b>) Output voltage response for a capacitance startup deviation of <math display="inline"><semantics> <mrow> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>c</b>) Output voltage response for an inductance startup deviation of <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>d</b>) Output voltage response for an inductance startup deviation of <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 12 Cont.
<p>(<b>a</b>) Output voltage response for a capacitance startup deviation of <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>b</b>) Output voltage response for a capacitance startup deviation of <math display="inline"><semantics> <mrow> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>c</b>) Output voltage response for an inductance startup deviation of <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>d</b>) Output voltage response for an inductance startup deviation of <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 13
<p>(<b>a</b>) Output voltage response for a step control variable disturbance of <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>15</mn> <mo>%</mo> </mrow> </semantics></math> from the nominal Duty Cycle. (<b>b</b>) Output voltage response for a step control variable disturbance of <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>15</mn> <mo>%</mo> </mrow> </semantics></math> from the nominal Duty Cycle.</p> ">
Abstract
:1. Introduction
- The insertion of a FOPID into the closed-loop control of a DC-DC Boost converter to improve the robustness against capacitance and inductance deviations when the load resistance is changed during operation, without the insertion of high complexities in the controller synthesis;
- A new FOPID topology that overcomes the over/undershoot problem of the voltage-loop DC-DC Boost by guaranteeing the closed-loop system with initial zero derivative;
- A fuzzy logic controller is used to self-tuning the gain parameters of the FOPID to enhance its controllability as related to disturbance injection.
- Finally, comparisons among the proposed fuzzy logic FOPID controller with several conventional controllers were performed, such as PI controller, type II compensator and current mode controller. In all cases, the proposed controller outperformed those controllers regarding load disturbances and parameters variations.
2. Materials and Methods
2.1. Oustaloup Filter
2.2. Basic Concepts of Fractional Calculus
2.3. DC-DC Boost Description
2.4. Proposed Control Approach
2.5. FOPID Model Approach
- For :
- For
2.5.1. Genetic Algorithm Description
- Fitness: To improve the fitness, chromosomes are the start point for the unconstrained Nelder–Mead Simplex algorithm [37] implemented in MATLAB’s Optimization Toolbox function fminsearch. The objective function (12) is the function to be minimize for every chromosome generated whether by initialization or mutation with lower and upper bounds of the FOPID parameters.
- Reproduction: Reproduction is a basic operator of convergence in GA due to its survival selection mechanism. In this manuscript, the selection type chosen was the steady-state with at least of the best possible chromosomes. A distinction is also made between the acceptable chromosome by probabilistic measurement, so the next generation is reproduced with the last fittest chromosomes as the mean value of the uniform distribution over the closest parameters edge. Regarding rule (12), the best chromosomes have lower errors; thus, the probability is inverted among the errors to use them more in reproduction stage. Thus, the reproducibility P by each fittest chromosome is defined as:
- Crossover: Crossover is an operator to improve diversity among the set of the best chromosomes. The technique reflects the natural exchange information of sexual reproduction between natural organisms [38]. In this manuscript, the single-point crossover method is used [39] over the fittest chromosomes. It is worth mentioning that the fitness operator is performed after the crossover operator to evaluate the new solutions.
- Mutation: Unfortunately, while the GA runs, the exchange of genes among chromosomes starts to be lower due to the dominating of the fittest chromosomes. Consequently, after several generations the non-mutation leads to premature convergence of nonoptimal solution. To overcome this undesirable issue, a random change is used by uniform distribution over the remaining chromosomes to complete the population size.
- Step 2: At each generation, each chromosome is designed as and its fitness is calculated over the FOPID controller using the probabilistic factor p to weight the cost functions of ITAE and ITSE. If any optimization happened before and the new J is reasonable then selection, crossover and mutation are made. Otherwise, depending on the last optimizations and values of J, the algorithm selects and mutates or only mutates for the next generation.
- Step 3: If the difference over the lower values of J achieves value less than the tolerance, the algorithm finds an optimal solution, otherwise it will run itself again until the last generation.
2.5.2. Fuzzy FOPID Controller
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FOPID | Fractional Order Proportional-Integral-Derivative |
GA | Genetic Algorithm |
ITAE | Integral of Time-Weighted Absolute Error |
ITSE | Integral of Time-Weighted Square Error |
ISE | Integrated Square Error |
IAE | Integrated Absolute Error |
QBGA | Queen Bee Assisted Genetic Algorithm |
ABC | Artificial Bee Colony |
FLC | Fuzzy Logic Controller |
FFOPID | Fuzzy FOPID |
CCM | Continuous Conduction Mode |
FPGA | Field Programmable Gate Array |
References
- Astrom, K.J.; Hagglund, T. Pid Controllers: Theory, Design, and Tuning, 2nd ed.; Instrument Society of America: Pittsburgh, PA, USA, 1995; 343p. [Google Scholar]
- Das, S.; Pan, I.; Das, S.; Gupta, A. Improved Model Reduction and Tuning of Fractional Order PIλDμ Controllers for Analytical Rule Extraction with Genetic Programming. ISA Trans. 2012, 51, 237–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Águila-León, J.; Chiñas-Palacios, C.D.; Vargas-Salgado, C.; Hurtado-Perez, E.; García, E.X.M. Optimal PID Parameters Tunning for a DC-DC Boost Converter: A Performance Comparative Using Grey Wolf Optimizer, Particle Swarm Optimization and Genetic Algorithms. In Proceedings of the 2020 IEEE Conference on Technologies for Sustainability (SusTech), Santa Ana, CA, USA, 23–25 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ramasamy, S.; Senthilkumar, N.; Karpagam, S.; Ramani, U.; Swetha, B. Embedded PID Controller Design Based Self Adjusting Robot. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 1531–1535. [Google Scholar] [CrossRef]
- Guo, J.; Lu, Y.; Li, Z. PID parameter tuning algorithm of rotor UAV Based on Improved Particle Swarm Optimization. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022; pp. 1251–1255. [Google Scholar] [CrossRef]
- Acharya, A.; Das, S.; Pan, I.; Das, S. Extending the concept of analog butterworth filter for fractional order systems. Signal Process. 2014, 94, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Azar, A.; Ahmed, G.; Radwan, S.V. Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications, 1st ed.; Academic Press: Cambridge, MA, USA, 2018; 741p. [Google Scholar] [CrossRef] [Green Version]
- Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y. Tuning and auto-tuning of fractional order controllers for industry applications. Control. Eng. Pract. 2008, 16, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Tang, J.; Pei, J.; Shan, L. Fractional Controller Design of a DC-DC Converter for PEMFC. IEEE Access 2020, 8, 120134–120144. [Google Scholar] [CrossRef]
- Oprzędkiewicz, K.; Rosół, M.; Żegleń-Włodarczyk, J. The Frequency and real-time Properties of the Microcontroller Implementation of fractional-order PID Controller. Electronics 2021, 10, 524. [Google Scholar] [CrossRef]
- Warrier, P.; Shah, P. Optimal Fractional PID Controller for Buck Converter Using Cohort Intelligent Algorithm. Appl. Syst. Innov. 2021, 4, 50. [Google Scholar] [CrossRef]
- Sánchez, S.A.G.; Soto-Vega, J.; Tlelo-Cuautle, E.; Rodríguez-Licea, M.A. Fractional-Order Approximation of PID Controller for Buck–Boost Converters. Micromachines 2021, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Sánchez, A.G.; Rodríguez-Licea, M.A.; Pérez-Pinal, F.J.; Vázquez-López, J.A. Fractional-Order Approximation and Synthesis of a PID Controller for a Buck Converter. Energies 2020, 13, 629. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, S.V.; Gunasekaran, M.; Sundaram, E.; Venugopal, M.; Chenniappan, S.; Almakhles, D.J.; Subramaniam, U.; Bhaskar, M.S. Robust Queen Bee Assisted Genetic Algorithm (QBGA) Optimized Fractional Order PID (FOPID) Controller for Not Necessarily Minimum Phase Power Converters. IEEE Access 2021, 9, 93331–93337. [Google Scholar] [CrossRef]
- Merrikh-Bayat, F.; Jamshidi, A. Comparing the Performance of Optimal PID and Optimal Fractional-Order PID Controllers Applied to the Nonlinear Boost Converter. arXiv 2013, arXiv:1312.7517. [Google Scholar]
- Seo, S.; Choi, H.H. Digital Implementation of Fractional Order PID-Type Controller for Boost DC–DC Converter. IEEE Access 2019, 7, 142652–142662. [Google Scholar] [CrossRef]
- Sánchez, A.G.S.; Pérez-Pinal, F.J.; Rodríguez-Licea, M.A.; Posadas-Castillo, C. Non-Integer Order Approximation of a PID-Type Controller for Boost Converters. Energies 2021, 14, 3153. [Google Scholar] [CrossRef]
- Suri babu, A.G.; Chiranjeevi, B.T. Implementation of Fractional Order PID Controller for an AVR System Using GA and ACO Optimization Techniques. IFAC-PapersOnLine 2016, 49, 456–461. [Google Scholar] [CrossRef]
- Beccuti, A.G.; Papafotiou, G.; Morari, M. Optimal Control of the Boost dc-dc Converter. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 4457–4462. [Google Scholar] [CrossRef]
- Bakar, A.A.; Utomo, W.M.; Taufik, T.; Aizam, S.; Jumadril. DC/DC boost converter with PI controller using real-time interface. ARPN J. Eng. Appl. Sci. 2015, 19, 9078–9082. [Google Scholar]
- Chao, C.-T.; Sutarna, N.; Chiou, J.S.; Wang, C.-J. An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors. Appl. Sci. 2019, 9, 1224. [Google Scholar] [CrossRef] [Green Version]
- Al-Dhaifallah, M.; Kanagaraj, N.; Nisar, K.S. Fuzzy Fractional-Order PID Controller for Fractional Model of Pneumatic Pressure System. Math. Probl. Eng. 2018, 2018, 5478781. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-Y.; Dong, J.-F.; Zhou, J.; Chen, Y.-H. Adaptive Fuzzy PID Control Strategy for Vehicle Active Suspension Based on Road Evaluation. Electronics 2022, 11, 921. [Google Scholar] [CrossRef]
- Chimplee, S.; Khwan-On, S. Fuzzy Controller Design for Boost Converter Based on Current Slope. In Proceedings of the 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 9–11 March 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Xue, D.; Zhao, C.; Chen, Y. A Modified Approximation Method of Fractional Order System. In Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 15–19 May 2006; pp. 1043–1048. [Google Scholar] [CrossRef]
- Xue, D.; Chen, Y.; Atherton, D.P. Linear Feedback Control: Analysis and Design with MATLAB (Advances in Design and Control), 1st ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar]
- Xue, D. FOTF Toolbox. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox (accessed on 15 May 2022).
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Onur, K.İ.; Çetinkaya, A.; Agarwal, P. An extension of Caputo fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 2016, 9, 3611–3621. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2011; Volume 84. [Google Scholar]
- Erickson, R.W. DC-DC Power Converters. In Wiley Encyclopedia of Electrical and Electronics Engineering; Webster, J.G., Ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2, p. 883. ISBN 978-0-306-48048-5. [Google Scholar] [CrossRef]
- Tan, W.; Liu, J.; Chen, T.; Marquez, H.J. Comparison of some well-known PID tuning formulas. Comput. Chem. Eng. 2006, 30, 1416–1423. [Google Scholar] [CrossRef]
- Ogata, K. Modern Control Engineering, 5th ed.; Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Xue, D. Design of fractional-order PID controllers. In Fractional-Order Control Systems: Fundamentals and Numerical Implementations; De Gruyter: Berlin, Germany, 2017; pp. 293–328. [Google Scholar] [CrossRef]
- Coley, D.A. An Introduction to Genetic Algorithms for Scientists and Engineers; World Scientific: Singapore, 1999. [Google Scholar]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. Siam J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yan, X. Ensemble model of wastewater treatment plant based on rich diversity of principal component determining by genetic algorithm for status monitoring. Control. Eng. Pract. 2019, 88, 38–51. [Google Scholar] [CrossRef]
- Jayachitra, A.; Vinodha, R. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor. Adv. Artif. Intell. 2014, 2014, 791230. [Google Scholar] [CrossRef]
- Lee, S.W. Practical Feedback Loop Analysis for Current-Mode Boost Converter (SLVA636); Texas Instruments: Dallas, TX, USA, 2014. [Google Scholar]
Specification | Value |
---|---|
Input Voltage, Vin | 50 V |
Output Voltage, Vo | 200 V |
Duty Cycle, D | 0.75 |
Switching Frequency, | 20 kHz |
Output power, Po | 400 W |
Inductor current, I | 8 A |
Maximum current ripple in %, | 10% |
Maximum voltage ripple in %, | 1% |
Specification | Value |
---|---|
Load Resistance, R | 100 |
Inductance, L | 2.34 mH |
Output Capacitance, C | 37.5 F |
Parameter | Value/Type |
---|---|
Selection | Steady State |
Maximum generations | 50 |
Population size | 10 |
Crossover | Single point crossover |
Mutation | Uniform distribution |
Parameter | p | |||||
---|---|---|---|---|---|---|
Minimum value | 0 | 0.8 | 0.8 | 0 | 0 | 0 |
Maximum value | 1.2 | 1.2 | 6.6774 | 1 |
e | ||||
---|---|---|---|---|
N | Z | P | ||
N | NB | NS | Z | |
Z | NB | NS | NS | |
P | Z | PS | PS |
e | ||||
---|---|---|---|---|
N | Z | P | ||
N | NB | NS | NS | |
Z | NS | Z | PS | |
P | Z | PS | PB |
e | ||||
---|---|---|---|---|
N | Z | P | ||
N | NS | NS | Z | |
Z | Z | Z | PS | |
P | Z | PS | PS |
Controller | (rad/s) | ||
---|---|---|---|
PI | |||
Type II | |||
Current Mode | Voltage Loop | ||
Current Loop |
p | |||||
---|---|---|---|---|---|
1.07965 | 1.00013 | 0.48732 | 0.52973 |
Index | Controller | |
---|---|---|
FFOPID | FOPID | |
IAE | 0.2298 | 0.2327 |
ISE | 4.4599 | 6.9301 |
ITAE | 0.0245 | 0.0244 |
ITSE | 0.4631 | 0.7159 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, L.F.d.S.C.; Batista, E.; de Brito, M.A.G.; Godoy, R.B. A Robustness Analysis of a Fuzzy Fractional Order PID Controller Based on Genetic Algorithm for a DC-DC Boost Converter. Electronics 2022, 11, 1894. https://doi.org/10.3390/electronics11121894
Pereira LFdSC, Batista E, de Brito MAG, Godoy RB. A Robustness Analysis of a Fuzzy Fractional Order PID Controller Based on Genetic Algorithm for a DC-DC Boost Converter. Electronics. 2022; 11(12):1894. https://doi.org/10.3390/electronics11121894
Chicago/Turabian StylePereira, Luís Felipe da S. C., Edson Batista, Moacyr A. G. de Brito, and Ruben B. Godoy. 2022. "A Robustness Analysis of a Fuzzy Fractional Order PID Controller Based on Genetic Algorithm for a DC-DC Boost Converter" Electronics 11, no. 12: 1894. https://doi.org/10.3390/electronics11121894
APA StylePereira, L. F. d. S. C., Batista, E., de Brito, M. A. G., & Godoy, R. B. (2022). A Robustness Analysis of a Fuzzy Fractional Order PID Controller Based on Genetic Algorithm for a DC-DC Boost Converter. Electronics, 11(12), 1894. https://doi.org/10.3390/electronics11121894