An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors
<p>Graphical definition of MFs for fuzzy variables, <math display="inline"><semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mstyle> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>Sliced cube fuzzy associative memory (FAM) representation of the knowledge base.</p> "> Figure 3
<p>Different nonlinear factor for tuning MFs. (<b>a</b>) <math display="inline"><semantics> <mi>γ</mi> </semantics></math> = 1; (<b>b</b>) <math display="inline"><semantics> <mi>γ</mi> </semantics></math> < 1; and (<b>c</b>) <math display="inline"><semantics> <mi>γ</mi> </semantics></math> > 1.</p> "> Figure 4
<p>Crossover operation: (<b>a</b>) all parameters; and (<b>b</b>) single parameter.</p> "> Figure 5
<p>The unit feedback control structure: (<b>a</b>) PID control; and (<b>b</b>) optimal fuzzy PID control.</p> "> Figure 6
<p>Membership functions for fuzzy variables: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mi>e</mi> </mrow> </mstyle> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in Matlab.</p> "> Figure 7
<p>The control surface view of the equivalent fuzzy PID controller (<math display="inline"><semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mi>e</mi> </mrow> </mstyle> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> = 0.266).</p> "> Figure 8
<p>Performance of GAs across generations: (<b>a</b>) with initial equivalent FLC; and (<b>b</b>) without initial equivalent FLC.</p> "> Figure 9
<p>The step responses: (<b>blue</b>) the conventional PID controller; and (<b>red</b>) the proposed optimal fuzzy PID controller.</p> "> Figure 10
<p>Membership functions for fuzzy variables: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mi>e</mi> </mrow> </mstyle> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in Matlab.</p> "> Figure 11
<p>The control surface view of the proposed optimal fuzzy PID controller <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mi>e</mi> </mrow> </mstyle> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>26.3556</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>The block diagram of the DC motor.</p> "> Figure 13
<p>The control system of the PID controller and the proposed optimal fuzzy PID controller.</p> "> Figure 14
<p>The motor speed control of the conventional PID controller and the proposed optimal fuzzy PID controller.</p> "> Figure 15
<p>Membership functions for fuzzy variables: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mi>e</mi> </mrow> </mstyle> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in Matlab.</p> "> Figure 16
<p>Desired motor speed.</p> "> Figure 17
<p>Load torque as disturbance.</p> "> Figure 18
<p>The proposed FLC-controlled system in discrete form.</p> "> Figure 19
<p>The motor speed input and system responses.</p> "> Figure 20
<p>Membership functions for fuzzy variables: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mi>e</mi> </mrow> </mstyle> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in Matlab.</p> "> Figure 21
<p>The control surface view of the proposed optimal fuzzy PID controller <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mi>e</mi> </mrow> </mstyle> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3346.4</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 22
<p>The controller outputs.</p> ">
Abstract
:1. Introduction
2. The Proposed Optimal Fuzzy PID Controller Design
2.1. The Equivalent FLC from a Conventional PID Controller
2.2. The Nonlinear Factor for Tuning MFs
2.3. The Efficient Genetic Algorithm
3. Simulation Results
- is set as , which is the range for .
- is set as to satisfy .
- is set as to satisfy .
- is set as to satisfy .
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942, 64, 759–765. [Google Scholar] [CrossRef]
- Yan, K.; Mo, H. Application of fuzzy control under time varying universe in unmanned vehicles. In Proceedings of the 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanjing, China, 18–20 May 2018; pp. 439–444. [Google Scholar]
- Hu, B.G.; Mann, G.K.I.; Gosine, R.G. New methodology for analytical and optimal design of fuzzy PID controllers. IEEE Trans. Fuzzy Syst. 1999, 7, 521–539. [Google Scholar]
- Tang, K.S.; Man, K.F.; Chen, G.; Kwong, S. An optimal fuzzy PID controller. IEEE Trans. Ind. Electron. 2001, 48, 757–785. [Google Scholar] [CrossRef]
- Sebastiao, A.; Lucena, C.; Palm, L.; Cardoso, A.; Gil, P. Optimal tuning of scaling factors and membership functions for mamdani type PID Fuzzy controllers. In Proceedings of the IEEE International Conference on Control, Automation and Robotics, Singapore, 20–22 May 2015. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Lai, L.Y. Optimal design for fuzzy controllers by genetic algorithms. IEEE Trans. Ind. Appl. 2000, 36, 93–97. [Google Scholar] [CrossRef]
- Salleh, Z.; Sulaiman, M.; Omar, R. Tuning fuzzy membership functions to improve performance of vector control induction drives. J. Telecommun. Electron. Comput. Eng. 2016, 8, 1–4. [Google Scholar]
- Kapetanovic, N.; Osmic, N.; Konjicija, S. Optimization of membership functions of Sugeno_Takagi fuzzy logic controllers with two inputs and one input using genetic algorithms. In Proceedings of the IEEE x International Symposium on Telecommunications (BIHTL), Sarajevo, Bosnia and Herzegovina, 27–29 October 2014. [Google Scholar]
- Pelusi, D.; Vazquez, L.; Diaz, D.; Mascella, R. Fuzzy algorithm control effectiveness on drum boiler simulated dynamics. In Proceedings of the 2013 36th International Conference on Telecommunications and Signal Processing (TSP), Rome, Italy, 2–4 July 2013; pp. 272–276. [Google Scholar]
- Ranjani, M.; Murugesan, P. Modeling of genetic algorithm based fuzzy logic controller for quasi-resonant converter fed drive. Int. J. Concept. Electr. Electron. Eng. 2013, 1, 25–29. [Google Scholar]
- Chen, S.M.; Chang, Y.C. A new weighted fuzzy rule interpolation method based on GA-based weights-learning techniques. In Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, China, 11–14 July 2010; pp. 11–14. [Google Scholar]
- Al-Gizi, A.; Craciunescu, A.; Al-Chlaihawi, S. Improving the performance of PV system using genetically-tuned FLC based MPPT. In Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 25–27 May 2017; pp. 642–647. [Google Scholar]
- Gritli, W.; Gharsallaoui, H.; Benrejeb, M. PID-type fuzzy scaling factors tuning using genetic algorithm and simulink design optimization for electronic throttle valve. In Proceedings of the IEEE International Conference on Control, Design and Information Technologies (CoDIT), St. Julian’s, Malta, 6–8 April 2016; pp. 216–221. [Google Scholar]
- Chiou, J.S.; Liu, M.T. Numerical simulation for Fuzzy-PID controllers and helping EP reproduction with PSO hybrid algorithm. Simul. Model. Pract. Theory 2009, 17, 1555–1565. [Google Scholar] [CrossRef]
- Yau, H.T.; Yu, P.H.; Su, Y.H. Design and Implementation of optimal Fuzzy PID controller for DC servo motor. Appl. Math. Inf. Sci. 2014, 8, 231–237. [Google Scholar] [CrossRef]
- Chao, C.T.; Sutarna, N.; Chiou, J.S.; Wang, C.J. Equivalence between Fuzzy PID controllers and conventional PID controllers. Appl. Sci. 2017, 7, 513. [Google Scholar] [CrossRef]
- Pelusi, D. Optimization of fuzzy logic controller using genetic algorithms. In Proceedings of the IEEE Third International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2011; Volume 2, pp. 143–146. [Google Scholar] [CrossRef]
- Pelusi, D. Designing neural networks to improve timing performances of intelligent controllers. J. Discret. Math. Sci. Cryptogr. 2013, 16, 187–193. [Google Scholar] [CrossRef]
- Pelusi, D.; Mascella, R. Optimal control algorithms for second order systems. J. Comput. Sci. 2013, 9, 183–197. [Google Scholar] [CrossRef]
- Singh, A.R.; Giri, V.K. Design and analysis of DC motor speed control by GA based tuning of fuzzy logic controller. Int. J. Eng. Res. Technol. 2012, 1, 1–6. [Google Scholar]
- Al-Maliki, A.Y.; Iqbal, K. FLC-based PID controller tuning for sensorless speed control of DC motor. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018; pp. 169–174. [Google Scholar]
- Mirzal, A.; Yoshii, S.; Furukawa, M. PID parameters optimization by using genetic algorithm. ISTECS J. 2006, 8, 34–43. [Google Scholar]
- Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Abraham, A. Neural network and fuzzy system for the tuning of gravitational search algorithm parameters. Int. J. Expert Syst. Appl. 2018, 102, 234–244. [Google Scholar] [CrossRef]
Optimized Operating Ranges | Optimized Nonlinear Factors | ||||||
---|---|---|---|---|---|---|---|
5.3053 | 26.3556 | 99.4626 | 3009.3 | 4.1275 | 5.5227 | 0.8344 | 0.2872 |
Controller | Tr (s) 10–90% | P.O. (%) | Ess | |
---|---|---|---|---|
Pelusi’s GNFC [19] | 0.153 | 0.276 | 0 | 0.917 |
The proposed optimal FPID | 0.047 | 0.059 | 1.73 | 0 |
Parameter/Specification | Value | Unit |
---|---|---|
(Armature resistance) | 1 | Ohm |
(Armature inductance) | 0.5 | H |
(Rotor inertia) | 0.01 | Kg·m2 |
(Back EMF constant) | 0.01 | Volt·s/rad |
(Torque constant) | 0.01 | N·m/A |
(Mechanical damping factor) | 0.1 | N·m·s/rad |
Rated speed | 1200 | r.p.m |
Optimized Operating Ranges | Optimized Nonlinear Factors | ||||||
---|---|---|---|---|---|---|---|
5061.1 | 12,946 | 122,030 | 3,556,400 | 2.7357 | 0.8036 | 0.6253 | 0.1661 |
Controller | Tr (s) 10–90% | P.O. (%) | |
---|---|---|---|
Singh’s Fuzzy GA controller [20] | 0.1 | 0.121 | 5.8466 |
The proposed optimal FPID | 0.044 | 0.054 | 2.23 |
Parameter/Specification | Value | Unit |
---|---|---|
(Armature resistance) | 2.25 | Ohm |
(Armature inductance) | 4.65 × 10−2 | H |
(Rotor inertia) | 7 × 10−2 | Kg·m2 |
(Back EMF constant) | 1.1 | Volt·s/rad |
(Torque constant) | 1.1 | N·m/A |
(Mechanical damping factor) | 2 × 10−3 | N·m·s/rad |
Optimized Operating Ranges | Optimized Nonlinear Factors | |||||||
---|---|---|---|---|---|---|---|---|
The proposed optimal FPID | 11,412 | 3346.4 | 183,980 | 3,251,100 | 6.5110 | 5.9331 | 0.4719 | 2.5169 |
The proposed FPID with a similar response to Al-Maliki’s results | 1000 | 137 | 117,000 | 264,180 | 2.3145 | 2.1590 | 5.9060 | 3.1692 |
Controller | Tr (s) 10–90% | P.O. (%) | |
---|---|---|---|
Al-Maliki’s FLC-PID with KF [21] | ~0.15 | 0.257 | 0.5 |
The proposed optimal FPID | 0.0409 | 0.0516 | 1.38 |
The proposed FPID with a similar response to Al-Maliki’s results | 0.14 | 0.254 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, C.-T.; Sutarna, N.; Chiou, J.-S.; Wang, C.-J. An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors. Appl. Sci. 2019, 9, 1224. https://doi.org/10.3390/app9061224
Chao C-T, Sutarna N, Chiou J-S, Wang C-J. An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors. Applied Sciences. 2019; 9(6):1224. https://doi.org/10.3390/app9061224
Chicago/Turabian StyleChao, Chun-Tang, Nana Sutarna, Juing-Shian Chiou, and Chi-Jo Wang. 2019. "An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors" Applied Sciences 9, no. 6: 1224. https://doi.org/10.3390/app9061224
APA StyleChao, C.-T., Sutarna, N., Chiou, J.-S., & Wang, C.-J. (2019). An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors. Applied Sciences, 9(6), 1224. https://doi.org/10.3390/app9061224