Improvement in Manufacturing of Aluminium-Based Functionally Graded Materials through Centrifugal Casting—A Review †
Abstract
:1. Introduction
2. FGM Fabrication through Centrifugal Casting
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prabhuram, T.; Prathap Singh, S.; Immanuel Durairaj, J.; Elilraja, D.; Chrispin Das, M.; Arthur Jebastine Sunderraj, D. Optimization of operation parameters in machining of functionally graded metal matrix composite using TOPSIS. Mater. Today Proc. 2022, 62, 429–433. [Google Scholar] [CrossRef]
- Radhika, N.; Sam, M. Microstructural, mechanical and tribological analysis of functionally graded copper composite. Int. J. Cast. Met. Res. 2020, 33, 123–133. [Google Scholar]
- Prathap Singh, S.; Prabhuram, T.; Vinoth Babu, K.; Elilraja, D.; Uthayakumar, M.; Rajan, T.P.D. Solid particle erosion studies on SiC reinforced functionally graded aluminium matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 2020, 764, 012005. [Google Scholar] [CrossRef]
- Prathap Singh, S.; Ananthapadmanaban, D.; Arun Vasantha Geethan, K.; Ravichandran, P. Microscopical and corrosion studies on Al6061- 10% Al2O3 functionally graded metal matrix composites. Mater. Today Proc. 2022, 62, 459–462. [Google Scholar] [CrossRef]
- Prathap Singh, S.; Prabhuram, T.; Elilraja, D.; Immanuel Durairaj, J. Influence of Drilling Operation Variables on Surface Roughness and Thrust Force of Aluminium Reinforced with 10% Al2O3 Functionally Graded Metal Matrix Composite. In Recent Advances in Manufacturing, Automation, Design and Energy Technologies. Lecture Notes in Mechanical Engineering; Natarajan, S.K., Prakash, R., Sankaranarayanasamy, K., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Baghal, S.L.; Sohi, M.H.; Amadeh, A. A functionally gradient nano-Ni-Co/SiC composite coating on aluminum and its tribological properties. Surf. Coat. Technol. 2012, 206, 4032–4039. [Google Scholar] [CrossRef]
- Prathap Singh, S.; Tittu George, D.X.; Maria Jebin, M. Optimization of WEDM control parameters for machining of functionally graded Al6061-10% Al2O3 composite. Mater. Today Proc. 2022, 63, 607–612. [Google Scholar] [CrossRef]
- Kawasaki, A.; Watanabe, R. Concept and P/M fabrication of functionally gradient materials. Ceram. Int. 1997, 23, 73–83. [Google Scholar] [CrossRef]
- Mistry, J.M.; Gohil, P.P. Research review of diversified reinforcement on aluminum metal matrix composites: Fabrication processes and mechanical characterization. Sci. Eng. Compos. Mater. 2018, 25, 633–647. [Google Scholar] [CrossRef]
- Prathap Singh, S.; Ananthapadmanaban, D.; Elil Raja, D.; Sonar, T.; Ivanov, M.; Prabhuraj, P.; Sivamaran, V. Investigating the Microstructure, Tensile Strength, and Acidic Corrosion Behaviour of Liquid Metal Stir Casted Aluminium-Silicon Carbide Composite. Adv. Mater. Sci. Eng. 2023, 2023, 2131077. [Google Scholar] [CrossRef]
- Ramanathan, A.; Krishnan, P.K.; Muraliraja, R. A review on the production of metal matrix composites through stir casting-furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 2019, 42, 213–245. [Google Scholar] [CrossRef]
- Prathap Singh, S.; Arun Vasantha Geethan, K.; Elilraja, D.; Prabhuram, T.; Immanuel Durairaj, J. Optimization of dry sliding wear performance of functionally graded Al6061/20% SiC metal matrix composite using Taguchi method. Mater. Today Proc. 2020, 22, 2824–2831. [Google Scholar] [CrossRef]
- Vinoth Babu, K.; Prathap Singh, S.; Marichamy, S.; Ganesan, P.; Uthayakumar, M. Optimization of Drilling Process in Heat-Treated Al–20% SiC Functionally Graded Composite Using Grey Relational Analysis. In Proceedings of ICDMC 2019. Lecture Notes in Mechanical Engineering; Yang, L.J., Haq, A., Nagarajan, L., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Sam, M.; Radhika, N. Comparative study on reciprocal tribology performance of mono-hybrid ceramic reinforced Al-9Si-3Cu graded composites. Silicon 2021, 13, 2671–2687. [Google Scholar] [CrossRef]
- Ogawa, T.; Watanabe, Y.; Sato, H.; Kim, I.S.; Fukui, Y. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid particle method. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2194–2200. [Google Scholar] [CrossRef]
- Saleh, B.I.; Ahmed, M.H. Development of Functionally Graded Tubes Based on Pure Al/Al2O3 Metal Matrix Composites Manufactured by Centrifugal Casting for Automotive Applications. Met. Mater. Int. 2019, 26, 1430–1440. [Google Scholar] [CrossRef]
- Ambigai, R.; Prabhu, S. Characterization and Mechanical Analysis of Functionally Graded Al-Si3N4 Composites through Centrifugal Process. J. Mater. Eng. Perform. 2021, 30, 7328–7342. [Google Scholar] [CrossRef]
- Jojith, R.; Radhika, N. Reciprocal dry sliding wear of SiCp/Al–7Si-0.3 Mg functionally graded composites: Influence of T6 treatment and process parameters. Ceram. Int. 2021, 47, 30459–30470. [Google Scholar] [CrossRef]
- Babu, K.V.; Jappes, J.W.; Rajan, T.P.D.; Uthayakumar, M. Dry sliding wear studies on SiC reinforced functionally graded aluminium matrix composites. Proc. Inst. Mech. Eng. Part L 2016, 230, 182–189. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Karun, A.S.; Inambao, F.L. Centrifugal casting technique baseline knowledge, applications, and processing parameters: Overview. Int. J. Mater. Res. 2016, 107, 960–969. [Google Scholar] [CrossRef]
- Rajan, T.P.D.; Pai, B.C. Processing of functionally graded aluminium matrix composites by centrifugal casting technique. Mater. Sci. Forum 2011, 690, 157–161. [Google Scholar] [CrossRef]
- Saleh, B.; Jiang, J.; Ma, A.; Song, D.; Yang, D.; Xu, Q. Review on the influence of different reinforcements on the microstructure and wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met. Mater. Int. 2020, 26, 933–960. [Google Scholar] [CrossRef]
- Saadatmand, M.; Mohandesi, J.A. Optimization of mechanical and wear properties of functionally graded Al6061/SiC nanocomposites produced by friction stir processing (FSP). Acta Metall. Sin. (Engl. Lett.) 2015, 28, 584–590. [Google Scholar] [CrossRef]
- Kwak, Z.; Rzadkosz, S.; Garbacz-Klempka, A.; Perek-Nowak, M.; Krok, W. The properties of 7xxx series alloys formed by alloying additions. Arch. Foundry Eng. 2015, 15, 59–64. [Google Scholar] [CrossRef]
- Zhang, X.H.; Su, G.C.; Ju, C.W.; Wang, W.C.; Yan, W.L. Effect of modification treatment on the microstructure and mechanical properties of Al–0.35%Mg–7.0%Si cast alloy. Mater. Des. 2010, 31, 4408–4413. [Google Scholar] [CrossRef]
- Jojith, R.; Radhika, N. Heat-treatment studies on mechanical and reciprocating wear behaviour of functionally graded A356 alloy. Mater. Res. Express 2019, 6, 1165c2. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Maniara, R.; Sokolowski, J.H. The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics. J. Achiev. Mater. Manuf. Eng. 2006, 17, 217–220. [Google Scholar]
- Radhika, N.; Raghu, R. Abrasive wear behavior of monolithic alloy, homogeneous and functionally graded aluminum (LM25/AlN and LM25/SiO2) composites. Part. Sci. Technol. 2019, 37, 10–20. [Google Scholar] [CrossRef]
- Karun, A.S.; Rajan, T.P.D.; Pillai, U.T.; Pai, B.C.; Rajeev, V.R.; Farook, A. Enhancement in tribological behaviour of functionally graded SiC reinforced aluminium composites by centrifugal casting. J. Compos. Mater. 2016, 50, 2255–2269. [Google Scholar] [CrossRef]
- Rajan, T.P.D.; Pillai, R.M.; Pai, B.C. Centrifugal casting of functionally graded aluminium matrix composite components. Int. J. Cast Met. Res. 2008, 21, 214–218. [Google Scholar] [CrossRef]
- Inaguma, Y.; Sato, H.; Watanabe, Y. Fabrication of Al-based FGM containing TiO2 nano-particles by a centrifugal mixed-powder method. Mater. Sci. Forum 2010, 631, 441–447. [Google Scholar]
FGMMC Combination | Casting Route | Outer Hardness | Inner Hardness | Inference | Ref. |
---|---|---|---|---|---|
Pure Al/20 wt.% Al2O3 | HCC | 47 BHN | 43 BHN | The produced FG tubes have the largest concentration of reinforcing particles in their outer zone, confirmed through their microstructure. | [16] |
Al/10 wt.% Si3N4 | HCC | 88 HRB | 71 HRB | The concentration of reinforcement grows from the interior to the periphery of the cast ring. The radial stresses from centrifugal casting push the second distinct phase to the exterior zone of the matrix of composite materials. | [17] |
Al–7Si-0.3 Mg/10 wt.% SiC | HCC | 199 HV | 140 HV | Heat-treated composites showed variable wear rate and friction coefficient variations, with varying sliding distance. | [18] |
A356/20 wt.% SiC | VCC | 135 BHN | 110 BHN | Microstructural study confirmed the SiC particle segregation from outer to inner area. | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.P.; Rohith, R.P.; Nirmal, S.F.; Raja, D.E.; Ravichandran, P. Improvement in Manufacturing of Aluminium-Based Functionally Graded Materials through Centrifugal Casting—A Review. Eng. Proc. 2024, 61, 16. https://doi.org/10.3390/engproc2024061016
Singh SP, Rohith RP, Nirmal SF, Raja DE, Ravichandran P. Improvement in Manufacturing of Aluminium-Based Functionally Graded Materials through Centrifugal Casting—A Review. Engineering Proceedings. 2024; 61(1):16. https://doi.org/10.3390/engproc2024061016
Chicago/Turabian StyleSingh, S. Prathap, R. P. Rohith, S. Franklin Nirmal, D. Elil Raja, and P. Ravichandran. 2024. "Improvement in Manufacturing of Aluminium-Based Functionally Graded Materials through Centrifugal Casting—A Review" Engineering Proceedings 61, no. 1: 16. https://doi.org/10.3390/engproc2024061016