Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Comparative Study on Reciprocal Tribology Performance of Mono-Hybrid Ceramic Reinforced Al-9Si-3Cu Graded Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This research compares the reciprocating tribo-mechanical behaviour of functionally graded A333 (Al-9Si-3Cu) alloy, Al-9Si-3Cu/6wt%B4C mono-composite and Al-9Si-3Cu/6wt%B4C/4wt%TiB2 hybrid-composite. Cylindrical test samples of both alloy and composites were horizontal centrifuge cast. Metallography of alloy revealed grain refinement and throughout presence of B4C particles along the cross-section of both functionally graded composites. Whereas, a rising gradient of TiB2 particles were observed towards the outer zone of hybrid composite. Comparative analysis on micro-hardness and tensile strength, revealed an improvement of 37.4% and 17.6% respectively for outer hybrid-composite; 22.6%, and 12.2% respectively for outer mono-composite with respect to alloy. Reciprocating wear analysis confirmed superior anti-wearing at outer hybrid-composite. Worn morphological analysis confirmed predominant delamination wear mechanism for outer zones of alloy, mono and hybrid composites. Abrasive, adhesive and delamination wear in combination, led to oxide layer formation at intermediate sliding distances. Hybrid composite is functionally graded and developed for automotive engine component applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chin ES (1999) Army focused research team on functionally graded armor composites. Mater Sci Eng A 259:155–161. https://doi.org/10.1016/S0921-5093(98)00883-1

    Article  Google Scholar 

  2. Das S, Chandrasekaran M, Samanta S (2018) Comparison of mechanical properties of AA6061 reinforced with (SiC/B4C) micro/nano ceramic particle reinforcements. Mater Today: Proc 5:18110–18119. https://doi.org/10.1016/j.matpr.2018.06.146

    Article  CAS  Google Scholar 

  3. Sivasankaran S, Ramkumar KR, Al-Mufadi FA, Irfan OM (2019) Effect of TiB2/gr hybrid reinforcements in Al 7075 matrix on sliding Wear behavior analyzed by response surface methodology. Met Mater Int 1:01–17. https://doi.org/10.1007/s12540-019-00543-5

    Article  CAS  Google Scholar 

  4. Kandpal BC, Kumar J, Singh H (2018) Manufacturing and technological challenges in stir casting of metal matrix composites– a review. Mater Today Proc 5:05–10. https://doi.org/10.1016/J.MATPR.2017.11.046

    Article  Google Scholar 

  5. Velhinho A, Botas JD, Avila EA, Gomes JR, Rocha LA (2004) Tribo corrosion studies in centrifugally cast Al-matrix SiCp reinforced functionally graded composites. Mater Sci Forum 455–456:871–875. https://doi.org/10.4028/www.scientific.net/MSF.455-456.871

    Article  Google Scholar 

  6. Radhika N, Raghu R (2016) Development of functionally graded aluminium composites using centrifugal casting and influence of reinforcements on mechanical and wear properties. Trans Nonferrous Met Soc China 26:905–916. https://doi.org/10.1016/S1003-6326(16)64185-7

    Article  CAS  Google Scholar 

  7. Ravichandran M, Dineshkumar S (2016) Experimental investigations of Al-TiO2-gr hybrid composites fabricated by stir casting. Mater Test 58:211–217. https://doi.org/10.3139/120.110839

    Article  CAS  Google Scholar 

  8. Ashok KR, Sait AN, Subramanian K (2017) Mechanical properties and microstructure of stir casted Al/B4C/garnet composites. Mater Test 59:338–343. https://doi.org/10.3139/120.111007

    Article  CAS  Google Scholar 

  9. Saleh B, Jiang J, Ma A, Song D, Yang D, Xu Q (2019) Review on the influence of different reinforcements on the microstructure and Wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met Mater Int 1:01–28. https://doi.org/10.1007/s12540-019-00491-0

    Article  CAS  Google Scholar 

  10. Ebhota WS, Karun AS, Inambao FL (2016) Principles and baseline knowledge of functionally graded aluminium matrix materials (FGAMMs): fabrication techniques and applications. Int J Eng Res Afr 26:47–67. https://doi.org/10.4028/www.scientific.net/JERA.26.47

    Article  Google Scholar 

  11. Radhika N, Sam M (2019) Enhancement of tribological performance of centrifuge cast functionally graded cu–10Sn–5Ni alloy with ceramic reinforcements. J Mater Res Tech 8:3415–3423. https://doi.org/10.1016/j.jmrt.2019.06.007

    Article  CAS  Google Scholar 

  12. Teter A, Mania RJ, Kolakowski Z (2017) Effect of selected elements of the coupling stiffness submatrix on the load-carrying capacity of hybrid columns under compression. Compos Struct 180:140–147. https://doi.org/10.1016/j.compstruct.2017.08.001

    Article  Google Scholar 

  13. Sam M, Radhika N (2019) Mechanical and tribological analysis of functionally graded aluminium hybrid composite using RSM approach. Mater Res Express 6:096595–096608. https://doi.org/10.1088/2053-1591/ab3168

    Article  CAS  Google Scholar 

  14. Mistry JM, Gohil PP (2017) An overview of diversified reinforcement on aluminum metal matrix composites: Tribological aspects. P I Mech Eng J-J Eng 231:399–421. https://doi.org/10.1177/1350650116658572

    Article  CAS  Google Scholar 

  15. Bajakke PA, Malik VR, Deshpande AS (2019) Particulate metal matrix composites and their fabrication via friction stir processing–a review. Mater Manuf Proc 34:833–881. https://doi.org/10.1080/10426914.2019.1605181

    Article  CAS  Google Scholar 

  16. Narimani M, Lotfi B, Sadeghian Z (2016) Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surf Coat Tech 285:01–10. https://doi.org/10.1016/j.surfcoat.2015.11.015

    Article  CAS  Google Scholar 

  17. Rajeev VR, Dwivedi DK, Jain SC (2016) Dry reciprocating wear of Al–Si–SiCp composites: a statistical analysis. Tribol Int 43:1532–1541. https://doi.org/10.1016/J.TRIBOINT.2010.02.014

    Article  Google Scholar 

  18. Tyagi R (2005) Synthesis and tribological characterization of in situ cast Al–TiC composites. Wear 259:569–576. https://doi.org/10.1016/j.wear.2005.01.051

    Article  CAS  Google Scholar 

  19. Lakshmipathy J, Kulendran B (2014) Reciprocating wear behavior of 7075Al/SiC in comparison with 6061Al/Al2O3 composites. Int J Refract Met Hard Mater 46:137–144. https://doi.org/10.1016/j.ijrmhm.2014.06.007

    Article  CAS  Google Scholar 

  20. Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT (2009) Wear behavior of Al–mg–cu–based composites containing SiC particles. Tribol Int 42:1230–1238. https://doi.org/10.1016/j.triboint.2009.04.030

    Article  CAS  Google Scholar 

  21. Kumar GV, Rao CS, Selvaraj N (2012) Studies on mechanical and dry sliding wear of Al6061–SiC composites. Compos Part B 43:1185–1191. https://doi.org/10.1016/j.compositesb.2011.08.046

    Article  CAS  Google Scholar 

  22. Pasha MB, Kaleemulla M (2018) Processing and characterization of aluminum metal matrix composites: an overview. Rev Adv Mater Sci 56:79–90. https://doi.org/10.1515/rams-2018-0039

    Article  Google Scholar 

  23. Gautam G, Mohan A (2015) Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2+ Al3Zr)/AA5052 insitu composites. J Alloy Compd 649:174–183. https://doi.org/10.1016/j.jallcom.2015.07.096

    Article  CAS  Google Scholar 

  24. Nai SML, Gupta M, Lim CYH (2003) Synthesis and wear characterization of Al based, free standing functionally graded materials: effects of different matrix compositions. Compos Sci Technol 63:1895–1909. https://doi.org/10.1016/S0266-3538(03)00158-1

    Article  CAS  Google Scholar 

  25. Kerti I, Toptan F (2008) Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Mater Lett 62:1215–1218. https://doi.org/10.1016/j.matlet.2007.08.015

    Article  CAS  Google Scholar 

  26. Toptan F, Kerti I, Rocha LA (2012) Reciprocal dry sliding wear behaviour of B4Cp reinforced aluminium alloy matrix composites. Wear 290:74–85. https://doi.org/10.1016/j.wear.2012.05.007

    Article  CAS  Google Scholar 

  27. Kennedy AR (2002) The microstructure and mechanical properties of Al-Si-B4C metal matrix composites. J Mater Sci 37:317–323. https://doi.org/10.1023/A:1013600328599

    Article  CAS  Google Scholar 

  28. Watanabe Y, Kawamoto A, Matsuda K (2002) Particle size distributions in functionally graded materials fabricated by the centrifugal solid-particle method. Compos Sci Technol 62:881–888. https://doi.org/10.1016/S0266-3538(02)00023-4

  29. Kennedy AR, Karantzalis AE, Wyatt SM (1999) The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites. J Mater Sci 34:933–940. https://doi.org/10.1023/A:1004519306186

    Article  CAS  Google Scholar 

  30. Dev S, Aherwar A, Patnaik A (2018) Preliminary evaluations on development of recycled porcelain reinforced LM-26/Al-Si10Cu3Mg1 alloy for piston materials. Silicon 11:1557–1573. https://doi.org/10.1007/s12633-018-9979-9

    Article  CAS  Google Scholar 

  31. Radhika N, Raghu R (2018) Study on three-body abrasive wear behavior of functionally graded Al/TiB2 composite using response surface methodology. Part Sci Technol 36:816–823. https://doi.org/10.1080/02726351.2017.1305024

    Article  CAS  Google Scholar 

  32. Sahoo S, Jha BB, Mahata TS, Sharma J, Murthy TC, Mandal A (2018) Impression creep behaviour of TiB2 particles reinforced steel matrix composites. Mater Sci Tech 34:1965–1975. https://doi.org/10.1080/02670836.2018.1497130

    Article  CAS  Google Scholar 

  33. Ul HMI, Anand A (2018) Dry sliding friction and Wear behavior of AA7075-Si3N4 composite. Silicon 10:1819–1829. https://doi.org/10.1007/s12633-017-9675-1

    Article  CAS  Google Scholar 

  34. Kumar S, Chakraborty M, SubramanyaSarma V, Murty BS (2008) Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites. Wear 265:134–142. https://doi.org/10.1016/j.wear.2007.09.007

    Article  CAS  Google Scholar 

  35. Li XS, Cai AH, Zeng JJ (2014) Effect of B refinement on structure and fracture morphology of Al-7 wt.% Si alloy. Appl Mech Mater 590:181–186. https://doi.org/10.4028/www.scientific.net/AMM.590.181

    Article  CAS  Google Scholar 

  36. Toptan F, Kerti I, Rocha LA (2012) Reciprocal dry sliding wear behaviour of B4Cp reinforced aluminium alloy matrix composites. Wear. 290:74–85. https://doi.org/10.1016/j.wear.2012.05.007

    Article  CAS  Google Scholar 

  37. Gomes JR, Ramalho A, Gaspar MC, Carvalho SF (2005) Reciprocating wear tests of Al–Si/SiCp composites: a study of the effect of stroke length. Wear 259:545–552. https://doi.org/10.1016/j.wear.2005.02.088

    Article  CAS  Google Scholar 

  38. Ambigai R, Prabhu S (2019) Experimental and ANOVA analysis on tribological behavior of Al/B4C micro and nanocomposite. Aust J Mech Eng 17:53–63. https://doi.org/10.1080/14484846.2017.1299663

    Article  Google Scholar 

  39. Medeiros Jr MS, Parente Jr E, Melo AM (2019) Influence of the micromechanics models and volume fraction distribution on the overall behavior of SiC/Al functionally graded pressurized cylinders. Lat Am J Solids Stru 16:01–15. https://doi.org/10.1590/1679-78255433

    Article  Google Scholar 

  40. Panda S, Sarangi M, Chowdhury SKR (2019) Examinations on PEEK wear debris accumulation over counter surfaces in room and vacuum sliding environments. Polym Test 77:105880–105890. https://doi.org/10.1016/j.polymertesting.2019.04.027

    Article  CAS  Google Scholar 

  41. Naebe M, Shirvanimoghaddam K (2016) Functionally graded materials: a review of fabrication and properties. Appl Mater Today 5:223–245. https://doi.org/10.1016/j.apmt.2016.10.001

    Article  Google Scholar 

  42. Kumar RK, Radhika N, Sam M (2019) Synthesis of Aluminium composites using squeeze casting and investigating the effect of reinforcements on their mechanical and Wear properties. T Indian I Metals 72:2299–2310. https://doi.org/10.1007/s12666-019-01680-6

    Article  CAS  Google Scholar 

  43. Radhika N, Sasikumar J, Arulmozhivarman J (2020) Tribo-mechanical behaviour of Ti-based particulate reinforced as-cast and heat treated A359 composites. Silicon 1:1–14. https://doi.org/10.1007/s12633-019-00370-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Radhika.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, M., Radhika, N. Comparative Study on Reciprocal Tribology Performance of Mono-Hybrid Ceramic Reinforced Al-9Si-3Cu Graded Composites. Silicon 13, 2671–2687 (2021). https://doi.org/10.1007/s12633-020-00623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00623-x

Keywords

Navigation