A Security-Enhanced Image Communication Scheme Using Cellular Neural Network
<p>Lyapunov exponents spectrum. The exponents tend to 42.8487, 2.0230 and −0.0230, and −49.0391, as can be seen in (<b>a</b>–<b>c</b>), respectively.</p> "> Figure 2
<p>Chaos-based attractors generated by the fourth-order CNN: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>g</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>h</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 2 Cont.
<p>Chaos-based attractors generated by the fourth-order CNN: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>g</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math>; (<b>h</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>Principle and mechanism of image encryption and decryption.</p> "> Figure 4
<p>Sequence diagram of the fourth-order CNN.</p> "> Figure 5
<p>The histograms of images before and after encryption: (<b>a</b>) plain image of “Zhong shan”; (<b>b</b>) histogram of the plain image of “Zhong shan”; (<b>c</b>) cipher image of “Zhong shan”; (<b>d</b>) histogram of the cipher image of “Zhong shan”; (<b>e</b>) plain image of “Greenlake10”; (<b>f</b>) histogram of the plain image of “Greenlake10”; (<b>g</b>) cipher image of “Greenlake10”; (<b>h</b>) histogram of the cipher image of “Greenlake10”; (<b>i</b>) plain image of “Greenlake13”; (<b>j</b>) histogram of the plain image of “Greenlake13”; (<b>k</b>) cipher image of “Greenlake13”; (<b>l</b>) histogram of the cipher image of “Greenlake13”; (<b>m</b>) plain image of “Greenlake47”; (<b>n</b>) histogram of the plain image of “Greenlake47”; (<b>o</b>) cipher image of “Greenlake47”; (<b>p</b>) histogram of cipher image of “Greenlake47”.</p> "> Figure 6
<p>Correlation coefficients distribution map of plain image and cipher image of “7.1.02.tiff”: (<b>a</b>) “7.1.02.tiff” plain image horizontal correlation; (<b>b</b>) “7.1.02.tiff” plain image is vertical correlation; (<b>c</b>) “7.1.02.tiff” plain image diagonal correlation; (<b>d</b>) “7.1.02.tiff” plain image against angular direction correlation; (<b>e</b>) “7.1.02.tiff” cipher image horizontal correlation; (<b>f</b>) “7.1.02.tiff” cipher image vertical correlation; (<b>g</b>) “7.1.02.tiff” cipher image diagonal correlation; (<b>h</b>) “7.1.02.tiff” cipher image inverse diagonal correlation.</p> "> Figure 7
<p>The key sensitivity test: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>c</b>) Difference image after key perturbation; (<b>d</b>) Difference histogram after key perturbation; (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>g</b>) Difference image after key perturbation; (<b>h</b>) Difference histogram after key perturbation.</p> "> Figure 8
<p>Comparison of four sequences (<b>a</b>–<b>d</b>) before and after key <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> perturbation.</p> "> Figure 9
<p>NPCR (<b>a</b>) and UACI (<b>b</b>).</p> "> Figure 10
<p>(<b>a</b>) Salt-and-pepper noise cipher image; (<b>b</b>) Occlusion noise cipher image; (<b>c</b>) Decryption of cipher image with salt-and-pepper noise; (<b>d</b>) Decryption of cipher image with occlusion noise.</p> ">
Abstract
:1. Introduction
2. Correlation Theory
3. The Proposed Encryption Algorithm
4. Experimental Verification and Discussion
4.1. Key Space Analysis
4.2. Nist 800-22 Test
4.3. Histogram Analysis
4.4. Correlation Analysis
4.5. Sensitivity Analysis
4.6. Information Entropy Analysis
4.7. Psnr and Ssim
4.8. Robust Noise Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chunyan, S.; Yulong, Q. A Novel Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos. Entropy 2015, 17, 6954–6968. [Google Scholar]
- Gopalakrishnan, T.; Ramakrishnan, S. Chaotic Image Encryption with Hash Keying as Key Generator. IETE J. Res. 2017, 63, 172–187. [Google Scholar] [CrossRef]
- Li, A.; Belazi, A.; Kharbech, S.; Talha, M.; Xiang, W. Fourth Order MCA and Chaos-Based Image Encryption Scheme. IEEE Access 2019, 7, 66395–66409. [Google Scholar] [CrossRef]
- Chai, X.; Chen, Y.; Broyde, L. A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 2017, 88, 197–213. [Google Scholar] [CrossRef]
- Kalpana, M.; Ratnavelu, K.; Balasubramaniam, P.; Kamali, M. Synchronization of chaotic-type delayed neural networks and its application. Nonlinear Dyn. 2018, 93, 543–555. [Google Scholar] [CrossRef]
- Li, M.; Guo, Y.; Huang, J.; Li, Y. Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure. Signal Process. Image Commun. 2018, 62, 164–172. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Zhou, Z.; Niu, Y. A chaos-based image encryption technique utilizing hilbert curves and h-fractals. IEEE Access 2019, 7, 74734–74746. [Google Scholar] [CrossRef]
- Xie, E.Y.; Li, C.; Yu, S.; Lu, J. On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process. 2017, 132, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Panna, B.; Kumar, S.; Jha, R.K. Image Encryption Based on Block-wise Fractional Fourier Transform with Wavelet Transform. IETE Tech. Rev. 2019, 36, 600–613. [Google Scholar] [CrossRef]
- Noshadian, S.; Ebrahimzade, A.; Kazemitabar, S. Optimizing chaos based image encryption. Multimed. Tools Appl. 2018, 77, 25569–25590. [Google Scholar] [CrossRef]
- Musanna, F.; Dangwal, D.; Kumar, S.; Malik, V. A chaos-based image encryption algorithm based on multiresolution singular value decomposition and a symmetric attractor. Imaging Sci. J. 2020, 68, 24–40. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Chen, H. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt. Lasers Eng. 2017, 90, 238–246. [Google Scholar] [CrossRef]
- El-Khamy, S.; Korany, N.; ElSherif, M. A security enhanced robust audio steganography algorithm for image hiding using sample comparison in discrete wavelet transform domain and RSA encryption. Multimed. Tools Appl. 2017, 76, 24091–24106. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, J. Cryptanalzing a Novel Hyper-Chaotic Image Encryption Scheme Based on Pixel-Level Filtering and DNA-Level Diffusion. IEEE Access 2020, 8, 209471–209482. [Google Scholar] [CrossRef]
- Tsafack, N.; Sankar, S.; Abd-El-Atty, B.; Kengne, J.; Jithin, K.C.; Belazi, A.; Mehmood, I.; Bashir, A.; Song, O.Y.; Abd El-Latif, A. A New Chaotic Map With Dynamic Analysis and Encryption Application in Internet of Health Things. IEEE Access 2020, 8, 137731–137744. [Google Scholar] [CrossRef]
- Wang, N.; Li, Q.; Abd El-Latif, A.; Peng, J.; Yan, X.; Niu, X. A novel template protection scheme for multibiometrics based on fuzzy commitment and chaotic system. Signal Image Video Process. 2015, 9, 99–109. [Google Scholar] [CrossRef]
- Abd EL-Latif, A.A.; Abd-El-Atty, B.; Abou-Nassar, E.M.; Venegas-Andraca, S.E. Controlled alternate quantum walks based privacy preserving healthcare images in Internet of Things. Opt. Laser Technol. 2020, 124, 105942. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, C.; Chen, Y.; Cui, M.; Huang, H.; Zhang, Z.; Wen, H.; Zhao, X.; Qiu, K. Compressive sensing chaotic encryption algorithms for OFDM-PON data transmission. Opt. Express 2021, 29, 3669–3684. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Han, D.; Wu, P.; Moon, Y.S. A multidimensional chaotic image encryption algorithm based on the region of interest. Multimed. Tools Appl. 2020, 79, 17669–17705. [Google Scholar] [CrossRef]
- Li, C.; Luo, G.; Qin, K.; Li, C. An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 2017, 87, 127–133. [Google Scholar] [CrossRef]
- Ozkaynak, F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 2018, 92, 305–313. [Google Scholar] [CrossRef]
- Ouannas, A.; Karouma, A.; Grassi, G.; Pham, V.; Luong, V.S. A novel secure communications scheme based on chaotic modulation, recursive encryption and chaotic masking. Alex. Eng. J. 2021, 60, 1873–1884. [Google Scholar] [CrossRef]
- Ratnavelu, K.; Kalpana, M.; Balasubramaniam, P.; Wong, K.; Raveendran, P. Image encryption method based on chaotic fuzzy cellular neural networks. Signal Process. 2017, 140, 87–96. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, C.; Xu, C. A novel hyper-chaotic image encryption scheme based on quantum genetic algorithm and compressive sensing. Multimed. Tools Appl. 2020, 79, 29243–29263. [Google Scholar] [CrossRef]
- Roy, A.; Misra, A.; Banerjee, S. Chaos-based image encryption using vertical-cavity surface-emitting lasers. Optik 2019, 176, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, Y.; Xie, E.Y. When an attacker meets a cipher-image in 2018: A year in review. J. Inf. Secur. Appl. 2019, 48, 102361. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, Z.; Li, J.; Hua, W. A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 2016, 78, 17–25. [Google Scholar] [CrossRef]
- He, C.; Ming, K.; Wang, Y.; Wang, Z. A Deep Learning Based Attack for The Chaos-based Image Encryption. arXiv 2019, arXiv:1907.12245. [Google Scholar]
- Li, G.; Yang, B.; Pu, Y.; Xu, W. Synchronization of generalized using to image encryption. Int. J. Pattern Recognit. Artif. Intell. 2017, 31, 1754009. [Google Scholar] [CrossRef]
- Norouzi, B.; Mirzakuchaki, S. An image encryption algorithm based on DNA sequence operations and cellular neural network. Multimed. Tools Appl. 2017, 76, 13681–13701. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X. Multiple-image encryption algorithm based on bit planes and chaos. Multimed. Tools Appl. 2020, 79, 20753–20771. [Google Scholar] [CrossRef]
- Li, M.; Fan, H.; Xiang, Y.; Li, Y.; Zhang, Y. Cryptanalysis and Improvement of a Chaotic Image Encryption by First-Order Time-Delay System. IEEE Multimed. 2018, 25, 92–101. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Dundar, M.; Badve, S.; Zhang, S. Towards large-scale histopathological image analysis: Hashing-based image retrieval. IEEE Trans. Med. Imaging 2015, 34, 496–506. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Zheng, Z. An efficient chaotic image encryption algorithm based on self-adaptive model and feedback mechanism. KSII Trans. Internet Inf. Syst. 2017, 11, 1785–1801. [Google Scholar]
- Musanna, F.; Kumar, S. A novel fractional order chaos-based image encryption using Fisher Yates algorithm and 3-D cat map. Multimed. Tools Appl. 2019, 78, 14867–14895. [Google Scholar] [CrossRef]
- Wang, J.; Zhi, X.; Chai, X.; Lu, Y. Chaos-based image encryption strategy based on random number embedding and DNA-level self-adaptive permutation and diffusion. Multimed. Tools Appl. 2021, 80, 16087–16122. [Google Scholar] [CrossRef]
- Lin, M.; Long, F.; Guo, L. Grayscale image encryption based on Latin square and cellular neural network. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 2787–2793. [Google Scholar]
- Alawida, M.; Samsudin, A.; Sen Teh, J.; Alkhawaldeh, R.S. A new hybrid digital chaotic system with applications in image encryption. Signal Process. 2019, 160, 45–58. [Google Scholar] [CrossRef]
- Preishuber, M.; Huetter, T.; Katzenbeisser, S.; Uhl, A. Depreciating Motivation and Empirical Security Analysis of Chaos-Based Image and Video Encryption. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2137–2150. [Google Scholar] [CrossRef]
- The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database (accessed on 23 June 2021).
- The Ground Truth Database. Available online: http://www.cs.washington.edu/research/imagedatabase (accessed on 23 June 2021).
- Chen, G.; Mao, Y.; Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004, 21, 749–761. [Google Scholar] [CrossRef]
- Wen, H.; Yu, S.; Luuml, J. Breaking an Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos. Entropy 2019, 21, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasikaladevi, N.; Geetha, K.; Sriharshini, K.; Durga Aruna, M. RADIANT - hybrid multilayered chaotic image encryption system for color images. Multimed. Tools Appl. 2019, 78, 11675–11700. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, C.; Huang, L.; Ke, J.; Xiong, D. Security Analysis of a Color Image Encryption Algorithm Using a Fractional-Order Chaos. Entropy 2021, 23, 258. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ahmad, J.; Javaid, Q.; Saqib, N. An efficient and secure partial image encryption for wireless multimedia sensor networks using discrete wavelet transform, chaotic maps and substitution box. J. Mod. Opt. 2017, 64, 531–540. [Google Scholar] [CrossRef]
- Weng, H.; Zhang, C.; Chen, P.; Chen, R.; Xu, J.; Liao, Y.; Liang, Z.; Shen, D.; Zhou, L.; Ke, J. A Quantum Chaotic Image Cryptosystem and Its Application in IoT Secure Communication. IEEE Access 2021, 9, 20481–20492. [Google Scholar]
- Faragallah, O.S.; Afifi, A.; ElShafai, W.; ElSayed, H.S.; Naeem, E.A.; Alzain, M.A.; AlAmri, J.F.; Soh, B.; ElSamie, F.E.A. Investigation of Chaotic Image Encryption in Spatial and FrFT Domains for Cybersecurity Applications. IEEE Access 2020, 8, 42491–42503. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, C.; Huang, H.; Zhang, Z.; Wei, H.; Wen, H.; Qiu, K. Security Improvement for OFDM-PON via DNA Extension Code and Chaotic Systems. IEEE Access 2020, 8, 75119–75126. [Google Scholar] [CrossRef]
- Mani, P.; Rajan, R.; Shanmugam, L.; Hoon Joo, Y. Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inf. Sci. 2019, 491, 74–89. [Google Scholar] [CrossRef]
- Meng, L.; Yin, S.; Zhao, C.; Li, H.; Sun, Y. An improved image encryption algorithm based on chaotic mapping and discrete wavelet transform domain. Int. J. Netw. Secur. 2020, 22, 155–160. [Google Scholar]
- Luo, Y.; Yu, J.; Lai, W.; Liu, L. A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimed. Tools Appl. 2019, 78, 22023–22043. [Google Scholar] [CrossRef]
- Wen, H.; Yu, S. Cryptanalysis of an image encryption cryptosystem based on binary bit planes extraction and multiple chaotic maps. Eur. Phys. J. Plus 2019, 134, 337. [Google Scholar] [CrossRef]
- Pan, X.; Wu, J.; Li, Z.; Zhang, C.; Deng, C.; Zhang, Z.; Wen, H.; Gao, Q.; Yang, J.; Yi, Z.; et al. Laguerre-Gaussian mode purity of Gaussian vortex beams. Optik 2021, 230, 166320. [Google Scholar] [CrossRef]
- Yan, X.; Wang, X.; Xian, Y. Chaotic Image Encryption Algorithm Based on Fractional Order Scrambling Wavelet Transform and 3D Cyclic Displacement Operation. IEEE Access 2020, 8, 208718–208736. [Google Scholar] [CrossRef]
- Li, C.; Lin, D.; Feng, B.; Lu, J.; Hao, F. Cryptanalysis of a Chaotic Image Encryption Algorithm Based on Information Entropy. IEEE J. Transl. Eng. Health Med. 2018, 6, 75834–75842. [Google Scholar] [CrossRef]
- Joshi, A.B.; Kumar, D.; Mishra, D.; Guleria, V. Colour-image encryption based on 2D discrete wavelet transform and 3D logistic chaotic map. J. Mod. Opt. 2020, 67, 933–949. [Google Scholar] [CrossRef]
- Li, G.; Wang, L. Double chaotic image encryption algorithm based on optimal sequence solution and fractional transform. Vis. Comput. 2019, 35, 1267–1277. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, C. A New Chaotic Image Encryption Scheme Using Breadth-First Search and Dynamic Diffusion. Int. J. Bifurc. Chaos 2018, 28, 1850047. [Google Scholar] [CrossRef]
- Lai, H.; Yan, P.; Shu, X.; Wei, Y.; Yan, S. Instance-aware hashing for multi-label image retrieval. IEEE Trans. Image Process. 2016, 25, 2469–2479. [Google Scholar] [CrossRef] [Green Version]
Statistical Tests | p-Values | Result | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Seq1 | Seq2 | Seq3 | Seq4 | Seq5 | Seq6 | Seq7 | Seq8 | Seq9 | Seq10 | ||
ApproximateEntropy Text | 0.8094 | 0.1941 | 0.0781 | 0.3518 | 0.4390 | 0.3812 | 0.4203 | 0.1690 | 0.1884 | 0.0589 | Successful |
BlockFrequency Text | 0.9347 | 0.2822 | 0.9547 | 0.0925 | 0.6961 | 0.4518 | 0.1352 | 0.4160 | 0.3816 | 0.1934 | Successful |
CumulativeSums Text-1 | 0.7034 | 0.9290 | 0.7701 | 0.4770 | 0.0354 | 0.6270 | 0.4488 | 0.2083 | 0.4378 | 0.5493 | Successful |
CumulativeSums Text-2 | 0.8561 | 0.9968 | 0.8754 | 0.7377 | 0.0426 | 0.2912 | 0.2621 | 0.1019 | 0.3783 | 0.1853 | Successful |
FFT Text | 0.9732 | 0.9066 | 0.4508 | 0.2911 | 0.4921 | 0.1912 | 0.8145 | 0.4508 | 0.0226 | 0.1359 | Successful |
Frequency Text | 0.8666 | 0.8408 | 0.9040 | 0.4541 | 0.0235 | 0.6507 | 0.7674 | 0.1743 | 0.9330 | 0.5541 | Successful |
LinearComplexity Text | 0.2833 | 0.8136 | 0.5262 | 0.2415 | 0.6749 | 0.4776 | 0.9849 | 0.2676 | 0.8014 | 0.3305 | Successful |
LongestRun Text | 0.3615 | 0.2823 | 0.5065 | 0.4150 | 0.7894 | 0.7386 | 0.0683 | 0.1561 | 0.5800 | 0.2138 | Successful |
OverlappingTemplate Text | 0.2713 | 0.8537 | 0.8457 | 0.6464 | 0.2555 | 0.1803 | 0.4144 | 0.9091 | 0.7819 | 0.7349 | Successful |
Rank Text | 0.6985 | 0.1675 | 0.6198 | 0.2927 | 0.5757 | 0.3860 | 0.3147 | 0.8761 | 0.3737 | 0.2093 | Successful |
Runs Text | 0.6066 | 0.6691 | 0.6771 | 0.2721 | 0.3432 | 0.1041 | 0.5789 | 0.7783 | 0.6718 | 0.6011 | Successful |
Serial Text-1 | 0.0096 | 0.8837 | 0.0110 | 0.5441 | 0.1669 | 0.0331 | 0.8454 | 0.1955 | 0.7045 | 0.6886 | Successful |
Serial Text-2 | 0.1784 | 0.6697 | 0.2170 | 0.5832 | 0.0293 | 0.3877 | 0.9621 | 0.4920 | 0.7287 | 0.5582 | Successful |
Pictures | Plain Image | Cipher Image | ||||||
---|---|---|---|---|---|---|---|---|
Vert. | Horiz. | Diag. | Anti-Diag. | Vert. | Horiz. | Diag. | Anti-Diag. | |
7.1.02.tiff | 0.9480 | 0.9429 | 0.9113 | 0.9456 | −0.0021 | 0.0303 | 0.0087 | −0.0002 |
7.1.09.tiff | 0.9309 | 0.9654 | 0.9208 | 0.9207 | −0.0083 | −0.0257 | −0.0354 | −0.0225 |
5.1.12.tiff | 0.9709 | 0.9608 | 0.9429 | 0.9403 | −0.0256 | −0.0035 | 0.0040 | −0.0157 |
5.2.10.tiff | 0.9415 | 0.9364 | 0.9032 | 0.9015 | 0.0032 | 0.0163 | −0.0069 | −0.0107 |
Pictures | NPCR (99.6094%) | UACI (33.4635%) |
---|---|---|
1.2.04.tiff | 99.6093% | 33.5974% |
1.2.07.tiff | 99.6078% | 33.5580% |
1.2.08.tiff | 99.6154% | 33.5209% |
5.1.11.tiff | 99.5544% | 33.4018% |
Pictures | Plain Image | Cipher Image |
---|---|---|
7.1.02.tiff | 4.0045 | 7.9993 |
5.1.11.tiff | 6.4523 | 7.9970 |
5.1.12.tiff | 6.7057 | 7.9972 |
5.2.10.tiff | 5.7056 | 7.9992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Xu, J.; Liao, Y.; Chen, R.; Shen, D.; Wen, L.; Shi, Y.; Lin, Q.; Liang, Z.; Zhang, S.; et al. A Security-Enhanced Image Communication Scheme Using Cellular Neural Network. Entropy 2021, 23, 1000. https://doi.org/10.3390/e23081000
Wen H, Xu J, Liao Y, Chen R, Shen D, Wen L, Shi Y, Lin Q, Liang Z, Zhang S, et al. A Security-Enhanced Image Communication Scheme Using Cellular Neural Network. Entropy. 2021; 23(8):1000. https://doi.org/10.3390/e23081000
Chicago/Turabian StyleWen, Heping, Jiajun Xu, Yunlong Liao, Ruiting Chen, Danze Shen, Lifei Wen, Yulin Shi, Qin Lin, Zhonghao Liang, Sihang Zhang, and et al. 2021. "A Security-Enhanced Image Communication Scheme Using Cellular Neural Network" Entropy 23, no. 8: 1000. https://doi.org/10.3390/e23081000
APA StyleWen, H., Xu, J., Liao, Y., Chen, R., Shen, D., Wen, L., Shi, Y., Lin, Q., Liang, Z., Zhang, S., Liu, Y., Huo, A., Li, T., Cai, C., Wen, J., & Zhang, C. (2021). A Security-Enhanced Image Communication Scheme Using Cellular Neural Network. Entropy, 23(8), 1000. https://doi.org/10.3390/e23081000