Effect of Finite-Size Heat Source’s Heat Capacity on the Efficiency of Heat Engine
<p>Heat engine working between two finite-size heat sources. <math display="inline"><semantics> <msub> <mi>T</mi> <mi mathvariant="normal">H</mi> </msub> </semantics></math> (<math display="inline"><semantics> <msub> <mi>T</mi> <mi mathvariant="normal">L</mi> </msub> </semantics></math>) and <math display="inline"><semantics> <msub> <mi>C</mi> <mi mathvariant="normal">H</mi> </msub> </semantics></math> (<math display="inline"><semantics> <msub> <mi>C</mi> <mi mathvariant="normal">L</mi> </msub> </semantics></math>) are the temperature and heat capacity of the high (low) temperature source <math display="inline"><semantics> <mi mathvariant="normal">H</mi> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="normal">L</mi> </semantics></math>), respectively. <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <msub> <mi>Q</mi> <mi mathvariant="normal">H</mi> </msub> <mo>−</mo> <msub> <mi>Q</mi> <mi mathvariant="normal">L</mi> </msub> </mrow> </semantics></math> is the output work of the engine per cycle while <math display="inline"><semantics> <msub> <mi>Q</mi> <mi mathvariant="normal">H</mi> </msub> </semantics></math> is the heat absorbed from the hot source and <math display="inline"><semantics> <msub> <mi>Q</mi> <mi mathvariant="normal">L</mi> </msub> </semantics></math> the heat releases to the cold source.</p> "> Figure 2
<p>EMW <math display="inline"><semantics> <msub> <mi>η</mi> <mi>MW</mi> </msub> </semantics></math> as the function of <math display="inline"><semantics> <msub> <mi>η</mi> <mi mathvariant="normal">C</mi> </msub> </semantics></math> with different <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <msub> <mi>C</mi> <mi mathvariant="normal">L</mi> </msub> <mo>/</mo> <msub> <mi>C</mi> <mi mathvariant="normal">H</mi> </msub> <mo>.</mo> </mrow> </semantics></math> The curves relate to infinite heat capacity (in comparison with the hot one) of low-temperature source (<math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>) and infinite heat capacity (in comparison with the cold one) of high-temperature source (<math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>→</mo> <mn>0</mn> </mrow> </semantics></math>) are given by Equation (<a href="#FD13-entropy-22-01002" class="html-disp-formula">13</a>). The other are plot with Equation (<a href="#FD12-entropy-22-01002" class="html-disp-formula">12</a>).</p> "> Figure 3
<p>EMW <math display="inline"><semantics> <msub> <mi>η</mi> <mi>MW</mi> </msub> </semantics></math> as the function of <math display="inline"><semantics> <msub> <mi>η</mi> <mi mathvariant="normal">C</mi> </msub> </semantics></math> with different source dimension <span class="html-italic">n</span>. The curves relate to <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>→</mo> <mn>0</mn> </mrow> </semantics></math> are given by Equation (<a href="#FD19-entropy-22-01002" class="html-disp-formula">19</a>) and Equation (<a href="#FD20-entropy-22-01002" class="html-disp-formula">20</a>), respectively.</p> "> Figure 4
<p>EMW <math display="inline"><semantics> <msub> <mi>η</mi> <mi>MW</mi> </msub> </semantics></math> as the function of <math display="inline"><semantics> <msub> <mi>η</mi> <mi mathvariant="normal">C</mi> </msub> </semantics></math> with different <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> for source dimension <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. The curves with finite <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> are plotted with Equation (<a href="#FD17-entropy-22-01002" class="html-disp-formula">17</a>), while the curves relate to <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>→</mo> <mn>0</mn> </mrow> </semantics></math> are given by Equation (<a href="#FD19-entropy-22-01002" class="html-disp-formula">19</a>) and Equation (<a href="#FD20-entropy-22-01002" class="html-disp-formula">20</a>), respectively.</p> "> Figure 5
<p>Upper (<math display="inline"><semantics> <msubsup> <mi>η</mi> <mrow> <mi mathvariant="normal">U</mi> </mrow> <mi>FT</mi> </msubsup> </semantics></math>) and lower (<math display="inline"><semantics> <msubsup> <mi>η</mi> <mrow> <mi mathvariant="normal">L</mi> </mrow> <mi>FT</mi> </msubsup> </semantics></math>) bounds for efficiency of the heat engine in finite-time operation as the function of <math display="inline"><semantics> <msub> <mi>η</mi> <mi mathvariant="normal">C</mi> </msub> </semantics></math> in different limit of <math display="inline"><semantics> <mi>ξ</mi> </semantics></math>. <math display="inline"><semantics> <msubsup> <mi>η</mi> <mrow> <mi mathvariant="normal">U</mi> </mrow> <mi>FT</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>η</mi> <mrow> <mi mathvariant="normal">L</mi> </mrow> <mi>FT</mi> </msubsup> </semantics></math> respectively correspond to <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>→</mo> <mn>0</mn> </mrow> </semantics></math>. Here <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> and <math display="inline"><semantics> <mi>γ</mi> </semantics></math> respectively characterize the asymmetry in size and in dissipation of the two heat sources. As the comparison, the red(black) dashed line represent the upper (lower) bound of EMP in the reversible limit given by Equation (<a href="#FD13-entropy-22-01002" class="html-disp-formula">13</a>). Other are plotted with Equations (<a href="#FD38-entropy-22-01002" class="html-disp-formula">38</a>)–(<a href="#FD41-entropy-22-01002" class="html-disp-formula">41</a>).</p> "> Figure 6
<p>Efficiency at maximum work <math display="inline"><semantics> <msub> <mi>η</mi> <mi>MW</mi> </msub> </semantics></math> of a heat engine working between two Schwarzschild black holes.</p> ">
Abstract
:1. Introduction
2. Heat Engine Working between Finite-Size Heat Source
2.1. High Temperature Regime
2.2. Low Temperature Regime
3. Finite-Time Performance of the Heat Engine
4. Black Holes Served as Heat Sources
5. Conclusions and Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Optimization of Low-Dissipation Carnot-Like Engine
Appendix B. Bounds for Efficiency in Finite Time in the Limit of
References
- Huang, K. Introduction To Statistical Physics, 2nd ed.; T&F/CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Tolman, R.C.; Fine, P.C. On the irreversible production of entropy. Rev. Mod. Phys. 1948, 20, 51. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 2009, 81, 1665–1702. [Google Scholar] [CrossRef] [Green Version]
- Campisi, M.; Hänggi, P.; Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 2011, 83, 771–791. [Google Scholar] [CrossRef] [Green Version]
- Kosloff, R.; Levy, A. Quantum heat engines and refrigerators: Continuous devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [Green Version]
- Pekola, J.P. Towards quantum thermodynamics in electronic circuits. Nat. Phys. 2015, 11, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [Google Scholar] [CrossRef] [Green Version]
- Binder, F.; Correa, L.A.; Gogolin, C.; Anders, J.; Adesso, G. (Eds.) Thermodynamics in the Quantum Regime; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Kosloff, R. Quantum thermodynamics and open-systems modeling. J. Chem. Phys. 2019, 150, 204105. [Google Scholar] [CrossRef]
- Scovil, H.; Schulz-DuBois, E. Three-level masers as heat engines. Phys. Rev. Lett. 1959, 2, 262. [Google Scholar] [CrossRef]
- Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A Math. Gen. 1979, 12, L103. [Google Scholar] [CrossRef]
- Kosloff, R. A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 1984, 80, 1625–1631. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S.; Agarwal, G.S.; Walther, H. Extracting work from a single heat bath via vanishing quantum coherence. Science 2003, 299, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.T.; Liu, Y.X.; Sun, C.P.; Nori, F. Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 2007, 76, 031105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brantut, J.P.; Grenier, C.; Meineke, J.; Stadler, D.; Krinner, S.; Kollath, C.; Esslinger, T.; Georges, A. A Thermoelectric Heat Engine with Ultracold Atoms. Science 2013, 342, 713–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechant, A.; Kiesel, N.; Lutz, E. All-Optical Nanomechanical Heat Engine. Phys. Rev. Lett. 2015, 114, 183602. [Google Scholar] [CrossRef] [Green Version]
- Rossnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Abah, O.; Lutz, E. Performance of shortcut-to-adiabaticity quantum engines. Phys. Rev. E 2018, 98, 032121. [Google Scholar] [CrossRef] [Green Version]
- Passos, M.; Santos, A.C.; Sarandy, M.S.; Huguenin, J. Optical simulation of a quantum thermal machine. Phys. Rev. A 2019, 100, 022113. [Google Scholar] [CrossRef] [Green Version]
- Fialko, O.; Hallwood, D.W. Isolated Quantum Heat Engine. Phys. Rev. Lett. 2012, 108, 085303. [Google Scholar] [CrossRef]
- Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 2014, 112, 030602. [Google Scholar] [CrossRef]
- Ma, Y.H.; Su, S.H.; Sun, C.P. Quantum thermodynamic cycle with quantum phase transition. Phys. Rev. E 2017, 96, 022143. [Google Scholar] [CrossRef] [Green Version]
- Brandner, K.; Bauer, M.; Seifert, U. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response. Phys. Rev. Lett. 2017, 119, 170602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.; Chen, J.; Ma, Y.; Chen, J.; Sun, C. The heat and work of quantum thermodynamic processes with quantum coherence. Chin. Phys. B 2018, 27, 060502. [Google Scholar] [CrossRef] [Green Version]
- Dorfman, K.E.; Xu, D.; Cao, J. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. Phys. Rev. E 2018, 97, 042120. [Google Scholar] [CrossRef] [Green Version]
- Camati, P.A.; Santos, J.F.G.; Serra, R.M. Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 2019, 99, 062103. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Sun, C.P.; Dong, H. Boosting the performance of quantum Otto heat engines. Phys. Rev. E 2019, 100, 032144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Courier Corporation: North Chelmsford, MA, USA, 2013. [Google Scholar]
- Andresen, B. Finite-Time Thermodynamics; University of Copenhagen Copenhagen: Copenhagen, Denmark, 1983. [Google Scholar]
- Andresen, B.; Berry, R.S.; Ondrechen, M.J.; Salamon, P. Thermodynamics for processes in finite time. Acc. Chem. Res. 1984, 17, 266–271. [Google Scholar] [CrossRef]
- Wu, C. Recent Advances in Finite-Time Thermodynamics; Nova Publishers: Hauppauge, NY, USA, 1999. [Google Scholar]
- Tu, Z.C. Recent advance on the efficiency at maximum power of heat engines. Chin. Phys. B 2012, 21, 020513. [Google Scholar] [CrossRef]
- Holubec, V.; Ryabov, A. Diverging, but negligible power at Carnot efficiency: Theory and experiment. Phys. Rev. E 2017, 96, 062107. [Google Scholar] [CrossRef] [Green Version]
- Yvon, J. The Saclay Reactor: Two Years of Experience in the Use of a Compressed Gas as a Heat Transfer Agent. In Proceedings of the First Geneva Conf. Proc. UN, Geneva, Switzerland, 8–20 August 1955. [Google Scholar]
- Novikov, I. The efficiency of atomic power stations (a review). J. Nuclear Energy (1954) 1958, 7, 125–128. [Google Scholar] [CrossRef]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Andresen, B.; Berry, R.S.; Nitzan, A.; Salamon, P. Thermodynamics in finite time. I. The step-Carnot cycle. Phys. Rev. A 1977, 15, 2086–2093. [Google Scholar] [CrossRef]
- Chen, J. The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D Appl. Phys. 1994, 27, 1144. [Google Scholar] [CrossRef]
- Sekimoto, K.; Sasa, S.I. Complementarity Relation for Irreversible Process Derived from Stochastic Energetics. J. Phys. Soc. Jpn. 1997, 66, 3326–3328. [Google Scholar] [CrossRef] [Green Version]
- den Broeck, C.V. Thermodynamic Efficiency at Maximum Power. Phys. Rev. Lett. 2005, 95, 190602. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Kawai, R.; Lindenberg, K.; den Broeck, C.V. Efficiency at Maximum Power of Low-Dissipation Carnot Engines. Phys. Rev. Lett. 2010, 105, 150603. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.C. Efficiency at maximum power of Feynman’s ratchet as a heat engine. J. Phys. A Math. Theor. 2008, 41, 312003. [Google Scholar] [CrossRef] [Green Version]
- Holubec, V.; Ryabov, A. Maximum efficiency of low-dissipation heat engines at arbitrary power. J. Stat. Mech. Theory Exp. 2016, 2016, 073204. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, N.; Saito, K.; Tasaki, H. Universal Trade-Off Relation between Power and Efficiency for Heat Engines. Phys. Rev. Lett. 2016, 117, 190601. [Google Scholar] [CrossRef]
- Cavina, V.; Mari, A.; Giovannetti, V. Slow Dynamics and Thermodynamics of Open Quantum Systems. Phys. Rev. Lett. 2017, 119, 050601. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.H.; Xu, D.; Dong, H.; Sun, C.P. Universal constraint for efficiency and power of a low-dissipation heat engine. Phys. Rev. E 2018, 98, 042112. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.H.; Xu, D.; Dong, H.; Sun, C.P. Optimal operating protocol to achieve efficiency at maximum power of heat engines. Phys. Rev. E 2018, 98, 022133. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.H.; Zhai, R.X.; Sun, C.P.; Dong, H. Experimental validation of the 1/τ -scaling entropy generation in finite-time thermodynamics with dry air. arXiv 2019, arXiv:1910.13434. [Google Scholar]
- Ondrechen, M.J.; Andresen, B.; Mozurkewich, M.; Berry, R.S. Maximum work from a finite reservoir by sequential Carnot cycles. Am. J. Phys. 1981, 49, 681–685. [Google Scholar] [CrossRef] [Green Version]
- Ondrechen, M.J.; Rubin, M.H.; Band, Y.B. The generalized Carnot cycle: A working fluid operating in finite time between finite heat sources and sinks. J. Chem. Phys. 1983, 78, 4721–4727. [Google Scholar] [CrossRef]
- Leff, H.S. Available work from a finite source and sink: How effective is a Maxwell’s demon? Am. J. Phys. 1987, 55, 701–705. [Google Scholar] [CrossRef]
- Izumida, Y.; Okuda, K. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source. Phys. Rev. Lett. 2014, 112, 180603. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Optimization in finite-reservoir finite-time thermodynamics. Phys. Rev. E 2014, 90, 062140. [Google Scholar] [CrossRef]
- Johal, R.S. Optimal performance of heat engines with a finite source or sink and inequalities between means. Phys. Rev. E 2016, 94, 012123. [Google Scholar] [CrossRef] [Green Version]
- Johal, R.S.; Rai, R. Near-equilibrium universality and bounds on efficiency in quasi-static regime with finite source and sink. EPL (Europhys. Lett.) 2016, 113, 10006. [Google Scholar] [CrossRef] [Green Version]
- Tajima, H.; Hayashi, M. Finite-size effect on optimal efficiency of heat engines. Phys. Rev. E 2017, 96, 012128. [Google Scholar] [CrossRef] [Green Version]
- Sparaciari, C.; Oppenheim, J.; Fritz, T. Resource theory for work and heat. Phys. Rev. A 2017, 96, 052112. [Google Scholar] [CrossRef] [Green Version]
- Richens, J.G.; Alhambra, Á.M.; Masanes, L. Finite-bath corrections to the second law of thermodynamics. Phys. Rev. E 2018, 97, 062132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozas-Kerstjens, A.; Brown, E.G.; Hovhannisyan, K.V. A quantum Otto engine with finite heat baths: Energy, correlations, and degradation. New J. Phys. 2018, 20, 043034. [Google Scholar] [CrossRef] [Green Version]
- Mohammady, M.H.; Romito, A. Efficiency of a cyclic quantum heat engine with finite-size baths. arXiv 2019, arXiv:1902.09378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra, F. Dissipative charging of a quantum battery. Phys. Rev. Lett. 2019, 122, 210601. [Google Scholar] [CrossRef] [Green Version]
- Leff, H.S. Thermal efficiency at maximum work output: New results for old heat engines. Am. J. Phys. 1987, 55, 602–610. [Google Scholar] [CrossRef]
- Kittel, C.; McEuen, P. Introduction to Solid State Physics; Wiley: New York, NY, USA, 1976; Volume 8. [Google Scholar]
- Esposito, M.; Lindenberg, K.; Van den Broeck, C. Universality of efficiency at maximum power. Phys. Rev. Lett. 2009, 102, 130602. [Google Scholar] [CrossRef] [Green Version]
- Pathria, R.; Beale, P. Statistical Mechanics, 3rd ed.; Academic Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Salamon, P.; Nitzan, A.; Andresen, B.; Berry, R.S. Minimum entropy production and the optimization of heat engines. Phys. Rev. A 1980, 21, 2115–2129. [Google Scholar] [CrossRef]
- Martínez, I.A.; Roldán, É.; Dinis, L.; Petrov, D.; Parrondo, J.M.R.; Rica, R.A. Brownian Carnot engine. Nat. Phys. 2015, 12, 67–70. [Google Scholar] [CrossRef]
- Taylor, E.F.; Wheeler, J.A. Exploring black holes: Introduction to general relativity, 2nd ed.; Addison-Wesley: San Francisco, CA, USA, 1975. [Google Scholar]
- Bekenstein, J.D. Black-hole thermodynamics. Phys. Today 1980, 33, 24–31. [Google Scholar] [CrossRef]
- Opatrnỳ, T.; Richterek, L. Black hole heat engine. Am. J. Phys. 2012, 80, 66–71. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Cai, Q.Y.; You, L.; Zhan, M.S. Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss. Phys. Lett. B 2009, 675, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.H.; Cai, Q.Y.; Dong, H.; Sun, C.P. Non-thermal radiation of black holes off canonical typicality. EPL (Europhys. Lett.) 2018, 122, 30001. [Google Scholar] [CrossRef]
- Ma, Y.H.; Chen, J.F.; Sun, C.P. Dark information of black hole radiation raised by dark energy. Nucl. Phys. B 2018, 931, 418–436. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Johnson, C.V. Holographic heat engines. Class. Quantum Gravity 2014, 31, 205002. [Google Scholar] [CrossRef] [Green Version]
- Hendi, S.; Panah, B.E.; Panahiyan, S.; Liu, H.; Meng, X.H. Black holes in massive gravity as heat engines. Phys. Lett. B 2018, 781, 40–47. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X. Charged AdS black hole heat engines. Nucl. Phys. B 2019, 946, 114700. [Google Scholar] [CrossRef]
- d’Agostino, M.; Gulminelli, F.; Chomaz, P.; Bruno, M.; Cannata, F.; Bougault, R.; Gramegna, F.; Iori, I.; Le Neindre, N.; Margagliotti, G.; et al. Negative heat capacity in the critical region of nuclear fragmentation: An experimental evidence of the liquid-gas phase transition. Phys. Lett. B 2000, 473, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Kusche, R.; Hippler, T.; Donges, J.; Kronmüller, W.; Von Issendorff, B.; Haberland, H. Negative heat capacity for a cluster of 147 sodium atoms. Phys. Rev. Lett. 2001, 86, 1191. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Nava, J.A.; Garzón, I.L.; Michaelian, K. Negative heat capacity of sodium clusters. Phys. Rev. B 2003, 67, 165401. [Google Scholar] [CrossRef] [Green Version]
- Campisi, M.; Fazio, R. The power of a critical heat engine. Nat. Commun. 2016, 7, 11895. [Google Scholar] [CrossRef] [PubMed]
- Abiuso, P.; Perarnau-Llobet, M. Optimal cycles for low-dissipation heat engines. arXiv 2019, arXiv:1907.02939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitlinger, H.B. Sur l’Utilisation De La Chaleur Dans Les Machines a Feu; Vaillant-Carmanne; Beranger: Paris, France; Liege, Belgium, 1929. [Google Scholar]
- Chambadal, P. Recuperation de Chaleura la Sortie d’ un Reacteur. Les Cent. Nucl. 1957, Chapter 3. 39–58. [Google Scholar]
- Vaudrey, A.; Lanzetta, F.; Feidt, M. HB Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non-Equilib. Thermodyn. 2014, 39, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Moreau, M.; Pomeau, Y. Carnot principle and its generalizations: A very short story of a long journey. Eur. Phys. J. Spec. Top. 2015, 224, 769–780. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-H. Effect of Finite-Size Heat Source’s Heat Capacity on the Efficiency of Heat Engine. Entropy 2020, 22, 1002. https://doi.org/10.3390/e22091002
Ma Y-H. Effect of Finite-Size Heat Source’s Heat Capacity on the Efficiency of Heat Engine. Entropy. 2020; 22(9):1002. https://doi.org/10.3390/e22091002
Chicago/Turabian StyleMa, Yu-Han. 2020. "Effect of Finite-Size Heat Source’s Heat Capacity on the Efficiency of Heat Engine" Entropy 22, no. 9: 1002. https://doi.org/10.3390/e22091002
APA StyleMa, Y. -H. (2020). Effect of Finite-Size Heat Source’s Heat Capacity on the Efficiency of Heat Engine. Entropy, 22(9), 1002. https://doi.org/10.3390/e22091002