Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
<p><math display="inline"><semantics> <mrow> <mi>T</mi> <mo>−</mo> <mi>s</mi> </mrow> </semantics></math> diagram for the irreversible steady-flow Lenoir cycle (SFLC).</p> "> Figure 2
<p><math display="inline"><semantics> <mrow> <mi>p</mi> <mo>−</mo> <mi>v</mi> </mrow> </semantics></math> diagram for the irreversible SFLC.</p> "> Figure 3
<p>The power output (POW) and thermal efficiency (TEF) characteristics when the HCs of HACHEX are given.</p> "> Figure 4
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>E</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>-</mo> <mi>η</mi> </mrow> </semantics></math> characteristics when the HCs of HACHEX are given.</p> "> Figure 5
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mi>T</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> </mrow> </semantics></math> characteristics when <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3.25</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mi>T</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> </mrow> </semantics></math> characteristics when <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3.75</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mi>T</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> </mrow> </semantics></math> characteristics when <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3.25</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mi>T</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> </mrow> </semantics></math> characteristics when <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3.75</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>E</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> </mrow> </semantics></math> characteristics.</p> "> Figure 10
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>E</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> </mrow> </semantics></math> characteristics.</p> ">
Abstract
:1. Introduction
2. Cycle Model
3. Analysis and Discussion
3.1. Power and Thermal Efficiency Expressions
3.2. Case with Given Hot- and Cold-Side HCs
3.3. Case with Variable Hot- and Cold-Side HCs When Total HC Is Given
4. Numerical Examples
5. Conclusions
- (1)
- When the HCs are constants, the corresponding POW and TEF are fixed values. When and the HCs of the HEXs increase, the corresponding POW and TEF increase. When and HCs of the HEXs are constants, with the increase in (the decrease in irreversible loss), the corresponding and increase.
- (2)
- When the distribution of HCs can be optimized, the relationships of and are parabolic-like ones.
- (3)
- When is given, with the increase in , , , , and increase.
- (4)
- When is given, with the increase in , and increase, while and decrease. When and are given, the corresponding is bigger than .
- (5)
- When and , with the increase in , and increase, while the corresponding and decrease.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Specific heat at constant pressure () | |
Specific heat at constant volume () | |
Effectiveness of heat exchanger | |
Specific heat ratio (-) | |
Mass flow rate of the working fluid () | |
Number of heat transfer units | |
Cycle power () | |
Quantity of heat transfer rate () | |
Temperature () | |
Heat conductance () | |
Total heat conductance () | |
Heat conductance distribution | |
Greek symbols | |
Temperature ratio | |
Cycle thermal efficiency | |
Subscripts | |
Hot-side | |
Cold-side | |
Maximum value | |
Optimal | |
Maximum power point | |
Maximum thermal efficiency point | |
Cycle state points |
Abbreviations
FTT | Finite time thermodynamic |
HACHEX | Hot- and cold-side heat exchangers |
HC | Heat conductance |
HEG | Heat engine |
HEX | Heat exchanger |
LC | Lenoir cycle |
POW | Power output |
SFLC | Steady flow Lenoir cycle |
SH | Specific heat |
TEF | Thermal efficiency |
WF | Working fluid |
References
- Andresen, B.; Berry, R.S.; Ondrechen, M.J. Thermodynamics for processes in finite time. Acc. Chem. Res. 1984, 17, 266–271. [Google Scholar] [CrossRef]
- Andresen, B. Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef]
- Feidt, M. The history and perspectives of efficiency at maximum power of the Carnot engine. Entropy 2017, 19, 369. [Google Scholar] [CrossRef]
- Berry, R.S.; Salamon, P.; Andresen, B. How it all began. Entropy 2020, 22, 908. [Google Scholar] [CrossRef] [PubMed]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 1. Fundamental; ISTE Press and Elsevier: London, UK, 2017. [Google Scholar]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 2. Complex. Systems; ISTE Press and Elsevier: London, UK, 2018. [Google Scholar]
- Blaise, M.; Feidt, M.; Maillet, D. Influence of the working fluid properties on optimized power of an irreversible finite dimensions Carnot engine. Energy Convers. Manag. 2018, 163, 444–456. [Google Scholar] [CrossRef]
- Feidt, M.; Costea, M. From finite time to finite physical dimensions thermodynamics: The Carnot engine and Onsager’s relations revisited. J. Non-Equilib. Thermodyn. 2018, 43, 151–162. [Google Scholar] [CrossRef]
- Dumitrascu, G.; Feidt, M.; Popescu, A.; Grigorean, S. Endoreversible trigeneration cycle design based on finite physical dimensions thermodynamics. Energies 2019, 12, 3165. [Google Scholar]
- Feidt, M.; Costea, M.; Feidt, R.; Danel, Q.; Périlhon, C. New criteria to characterize the waste heat recovery. Energies 2020, 13, 789. [Google Scholar] [CrossRef] [Green Version]
- Moutier, J. Éléments de Thermodynamique; Gautier-Villars: Paris, France, 1872. [Google Scholar]
- Cotterill, J.H. Steam Engines, 2nd ed.; E & F.N. Spon: London, UK, 1890. [Google Scholar]
- Novikov, I.I. The efficiency of atomic power stations (A review). J. Nucl. Energy 1957, 7, 125–128. [Google Scholar] [CrossRef]
- Chambadal, P. Les Centrales Nucleaires; Armand Colin: Paris, France, 1957; pp. 41–58. [Google Scholar]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Hoffman, K.H.; Burzler, J.; Fischer, A.; Schaller, M.; Schubert, S. Optimal process paths for endoreversible systems. J. Non-Equilib. Thermodyn. 2003, 28, 233–268. [Google Scholar] [CrossRef]
- Zaeva, M.A.; Tsirlin, A.M.; Didina, O.V. Finite time thermodynamics: Realizability domain of heat to work converters. J. Non-Equilib. Thermodyn. 2019, 44, 181–191. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Endoreversible modeling of a hydraulic recuperation system. Entropy 2020, 22, 383. [Google Scholar] [CrossRef] [Green Version]
- Masser, R.; Khodja, A.; Scheunert, M.; Schwalbe, K.; Fischer, A.; Paul, R.; Hoffmann, K.H. Optimized piston motion for an alpha-type Stirling engine. Entropy 2020, 22, 700. [Google Scholar] [CrossRef]
- Muschik, W.; Hoffmann, K.H. Modeling, simulation, and reconstruction of 2-reservoir heat-to-power processes in finite-time thermodynamics. Entropy 2020, 22, 997. [Google Scholar] [CrossRef]
- Andresen, B.; Essex, C. Thermodynamics at very long time and space scales. Entropy 2020, 22, 1090. [Google Scholar] [CrossRef]
- Scheunert, M.; Masser, R.; Khodja, A.; Paul, R.; Schwalbe, K.; Fischer, A.; Hoffmann, K.H. Power-optimized sinusoidal piston motion and its performance gain for an Alpha-type Stirling engine with limited regeneration. Energies 2020, 13, 4564. [Google Scholar] [CrossRef]
- Chen, L.G.; Feng, H.J.; Ge, Y.L. Maximum energy output chemical pump configuration with an infinite-low- and a finite-high-chemical potential mass reservoirs. Energy Convers. Manag. 2020, 223, 113261. [Google Scholar] [CrossRef]
- Qi, C.Z.; Ding, Z.M.; Chen, L.G.; Ge, Y.L.; Feng, H.J. Modeling and performance optimization of an irreversible two-stage combined thermal Brownian heat engine. Entropy 2021, 23, 419. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, Z.W.; Ge, Y.L.; Wu, F. Performance analysis and optimization for irreversible combined Carnot heat engine working with ideal quantum gases. Entropy 2021, 23. in press. [Google Scholar]
- Bejan, A. Theory of heat transfer-irreversible power plant. Int. J. Heat Mass Transf. 1988, 31, 1211–1219. [Google Scholar] [CrossRef]
- Morisaki, T.; Ikegami, Y. Maximum power of a multistage Rankine cycle in low-grade thermal energy conversion. Appl. Therm. Eng. 2014, 69, 78–85. [Google Scholar] [CrossRef]
- Sadatsakkak, S.A.; Ahmadi, M.H.; Ahmadi, M.A. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Convers. Manag. 2015, 94, 124–129. [Google Scholar] [CrossRef]
- Yasunaga, T.; Ikegami, Y. Application of finite time thermodynamics for evaluation method of heat engines. Energy Proc. 2017, 129, 995–1001. [Google Scholar] [CrossRef]
- Yasunaga, T.; Fontaine, K.; Morisaki, T.; Ikegami, Y. Performance evaluation of heat exchangers for application to ocean thermal energy conversion system. Ocean Therm. Energy Convers. 2017, 22, 65–75. [Google Scholar]
- Yasunaga, T.; Noguchi, T.; Morisaki, T.; Ikegami, Y. Basic heat exchanger performance evaluation method on OTEC. J. Mar. Sci. Eng. 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, K.; Yasunaga, T.; Ikegami, Y. OTEC maximum net power output using Carnot cycle and application to simplify heat exchanger selection. Entropy 2019, 21, 1143. [Google Scholar] [CrossRef] [Green Version]
- Fawal, S.; Kodal, A. Comparative performance analysis of various optimization functions for an irreversible Brayton cycle applicable to turbojet engines. Energy Convers. Manag. 2019, 199, 111976. [Google Scholar] [CrossRef]
- Yasunaga, T.; Ikegami, Y. Finite-time thermodynamic model for evaluating heat engines in ocean thermal energy conversion. Entropy 2020, 22, 211. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.F.; Wang, C.; Yu, D.R. Minimization of entropy generation of a closed Brayton cycle based precooling-compression system for advanced hypersonic airbreathing engine. Energy Convers. Manag. 2020, 209, 112548. [Google Scholar] [CrossRef]
- Arora, R.; Arora, R. Thermodynamic optimization of an irreversible regenerated Brayton heat engine using modified ecological criteria. J. Therm. Eng. 2020, 6, 28–42. [Google Scholar] [CrossRef]
- Liu, H.T.; Zhai, R.R.; Patchigolla, K.; Turner, P.; Yang, Y.P. Analysis of integration method in multi-heat-source power generation systems based on finite-time thermodynamics. Energy Convers. Manag. 2020, 220, 113069. [Google Scholar] [CrossRef]
- Gonca, G.; Sahin, B.; Cakir, M. Performance assessment of a modified power generating cycle based on effective ecological power density and performance coefficient. Int. J. Exergy 2020, 33, 153–164. [Google Scholar] [CrossRef]
- Karakurt, A.S.; Bashan, V.; Ust, Y. Comparative maximum power density analysis of a supercritical CO2 Brayton power cycle. J. Therm. Eng. 2020, 6, 50–57. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Dehghani, S.; Mohammadi, A.H.; Feidt, M.; Barranco-Jimenez, M.A. Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Convers. Manag. 2013, 75, 635–642. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mohammadi, A.H.; Dehghani, S.; Barranco-Jimenez, M.A. Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm. Energy Convers. Manag. 2013, 75, 438–445. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Mohammadi, A.H.; Feidt, M.; Pourkiaei, S.M. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle. Energy Convers. Manag. 2014, 82, 351–360. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Mehrpooya, M.; Hosseinzade, H.; Feidt, M. Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy Convers. Manag. 2014, 88, 1051–1059. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle. Energy Convers. Manag. 2015, 89, 147–155. [Google Scholar] [CrossRef]
- Jokar, M.A.; Ahmadi, M.H.; Sharifpur, M.; Meyer, J.P.; Pourfayaz, F.; Ming, T.Z. Thermodynamic evaluation and multi-objective optimization of molten carbonate fuel cell-supercritical CO2 Brayton cycle hybrid system. Energy Convers. Manag. 2017, 153, 538–556. [Google Scholar] [CrossRef]
- Han, Z.H.; Mei, Z.K.; Li, P. Multi-objective optimization and sensitivity analysis of an organic Rankine cycle coupled with a one-dimensional radial-inflow turbine efficiency prediction model. Energy Convers. Manag. 2018, 166, 37–47. [Google Scholar] [CrossRef]
- Ghasemkhani, A.; Farahat, S.; Naserian, M.M. Multi-objective optimization and decision making of endoreversible combined cycles with consideration of different heat exchangers by finite time thermodynamics. Energy Convers. Manag. 2018, 171, 1052–1062. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Jokar, M.A.; Ming, T.Z.; Feidt, M.; Pourfayaz, F.; Astaraei, F.R. Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach. Energy 2018, 144, 707–722. [Google Scholar] [CrossRef]
- Tierney, M. Minimum exergy destruction from endoreversible and finite-time thermodynamics machines and their concomitant indirect energy. Energy 2020, 197, 117184. [Google Scholar] [CrossRef]
- Yang, H.; Yang, C.X. Derivation and comparison of thermodynamic characteristics of endoreversible aircraft environmental control systems. Appl. Therm. Eng. 2020, 180, 115811. [Google Scholar] [CrossRef]
- Tang, C.Q.; Chen, L.G.; Feng, H.J.; Ge, Y.L. Four-objective optimization for an irreversible closed modified simple Brayton cycle. Entropy 2021, 23, 282. [Google Scholar] [CrossRef] [PubMed]
- Lichty, C. Combustion Engine Processes; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Georgiou, D.P. Useful work and the thermal efficiency in the ideal Lenoir with regenerative preheating. J. Appl. Phys. 2008, 88, 5981–5986. [Google Scholar] [CrossRef]
- Shen, X.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Finite-time thermodynamic analysis for endoreversible Lenoir cycle coupled to constant-temperature heat reservoirs. Int. J. Energy Environ. 2017, 8, 272–278. [Google Scholar]
- Ahmadi, M.H.; Nazari, M.A.; Feidt, M. Thermodynamic analysis and multi-objective optimisation of endoreversible Lenoir heat engine cycle based on the thermo-economic performance criterion. Int. J. Ambient Energy 2019, 40, 600–609. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Ge, Y.; Chen, L.; Feng, H.; Wu, Z. Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle. Entropy 2021, 23, 425. https://doi.org/10.3390/e23040425
Wang R, Ge Y, Chen L, Feng H, Wu Z. Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle. Entropy. 2021; 23(4):425. https://doi.org/10.3390/e23040425
Chicago/Turabian StyleWang, Ruibo, Yanlin Ge, Lingen Chen, Huijun Feng, and Zhixiang Wu. 2021. "Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle" Entropy 23, no. 4: 425. https://doi.org/10.3390/e23040425
APA StyleWang, R., Ge, Y., Chen, L., Feng, H., & Wu, Z. (2021). Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle. Entropy, 23(4), 425. https://doi.org/10.3390/e23040425