FASTENER Feature Selection for Inference from Earth Observation Data
<p>Iterative improvements of Pareto front from the first generation. Each next generation’s Pareto front achieves better <math display="inline"><semantics> <msub> <mi>F</mi> <mn>1</mn> </msub> </semantics></math> score.</p> "> Figure 2
<p>The flow diagram of the FASTENER graphically represents Algorithm 1 and puts Algorithms 2 and 3 into context. In the figure, red/orange colour objects represent population-based operations, while blue colour objects represent Pareto front related operations. The violet colour represents both, the population and the Pareto front. Green boxes refer to technical details of the algorithm. The algorithm includes the initialization phase and the main loop. In the initialization phase, the initial population is prepared and evaluated and the technical prerequisites for the algorithm are created. In the main loop, the population is first split into a mating pool and a (gene) carry-over elitist pool. The mating pool first enters the crossover phase based on Algorithm 2 and is being mutated together with the elitist pool. Then the new Pareto front is updated and purged (Algorithm 3). Finally, the main loop is closed by registering the new population as the next generation Pareto front.</p> "> Figure 3
<p>Schema of mating of 2 genes. With bit-wise <span class="html-small-caps">and</span> operation we produce the intermediate set and with bit-wise exclusive or <span class="html-small-caps">xor</span> we produce the rest (features) set.</p> "> Figure 4
<p>Visualization of the rest set and final mating result. Information gain of a particular feature is depicted by the height of the column above a particular feature.</p> "> Figure 5
<p>Partial input data, ground truth data and classification results.</p> "> Figure 6
<p>Examples of features derived from EO time series. Each feature represents a potentially significant parameter for land cover classification [<a href="#B20-entropy-22-01198" class="html-bibr">20</a>].</p> "> Figure 7
<p>Pareto front comparison.</p> "> Figure 8
<p>Comparison of the Pareto fronts produced by FASTENER and POSS algorithms after different numbers of iterations.</p> "> Figure 9
<p>The comparison of the Pareto fronts generated by FASTENER and POSS algorithms after a different number of iterations. FASTENER exhibits better <math display="inline"><semantics> <mi mathvariant="italic">AUF</mi> </semantics></math> scores and the discovery of several jumps, indicating the discovery of a distinct new best combination of features.</p> "> Figure 10
<p>The generalization of results on unseen data presents small performance discrepancies between test data and previously unseen data.</p> "> Figure 11
<p>Low <math display="inline"><semantics> <mi mathvariant="italic">AUF</mi> </semantics></math> difference between the test and unseen data shows good generalization abilities of the FASTENER algorithm.</p> "> Figure 12
<p>Visualization of optimal features for different feature subset sizes. The <span class="html-italic">x</span> axis represents the feature index, while the <span class="html-italic">y</span> axis depicts the number of features <span class="html-italic">k</span> (increasing with each row). FASTENER does not simply add new features as <span class="html-italic">k</span> is increased, but rather finds the best possible combination of features that gives the best possible classification result for a given <span class="html-italic">k</span>.</p> "> Figure 13
<p>Number of feature evaluations. Although some features are not represented in <a href="#entropy-22-01198-f012" class="html-fig">Figure 12</a>, they have often been evaluated by the algorithm.</p> ">
Abstract
:1. Introduction
- A novel genetic algorithm for feature selection based on entropy (FASTENER). Such an algorithm reduces the number of features while preserving (or even improving) the accuracy of the classification. The algorithm is particularly useful for data sets containing a large number of instances and hundreds of features. A reduced number of features reduces learning and inference times of classification algorithms as well as the time needed to derive the features. By using an entropy based approach, the algorithm converges to the (near) optimal subset faster than competing methods.
- Improvement of the state-of-the-art in feature selection in the field of Earth Observation. FASTENER yields better result than current state-of-the-art algorithms in remote sensing. The algorithm has been tested and compared to other methods within the scope of the land-cover classification problem.
- Usage of pre-trained models for information gain calculation for feature selection in Earth Observation scenarios. Usually, it is computationally expensive to train a machine learning model. The inference phase is much faster. FASTENER exploits the pre-trained models in order to estimate the information gain of certain features by inferring from data sets with randomly permuted values of the evaluated feature. This approach improves the convergence speed of the algorithm.
2. Related Work
2.1. Multi-Objective Optimization and Its Usage in Feature Selection
2.2. Feature Selection and Dimensionality Reduction for EO Tasks
2.3. Land Cover Classification and Feature Engineering
3. FASTENER—A Genetic Algorithm for Feature Selection
3.1. Algorithm
Algorithm 1 Basic algorithm |
Require: |
|
3.2. Mutation
3.3. Crossover
Algorithm 2 Randomized crossover with information gain weighting |
Require: |
|
3.4. Purging Features from Pareto Front Using Information Gain
Algorithm 3 Gene purging algorithm |
Require: |
|
4. Data
4.1. EO Data
4.2. Feature Engineering and Sampling
4.3. Feature Selection Benchmark Data Sets
5. Results
5.1. Experimental Setup
5.2. Comparison with Similarity-Based Methods on EO Data
5.3. Detailed Comparison with Wrapper Methods for EO Validation
5.4. Benchmark Data Set with Wrapper Methods
6. Discussion
6.1. Comparisons with other Methods
6.2. Generalization
7. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ARVI | Atmoshperically adjusted vegetation index |
ASTFS | Automatic spectro-temporal feature selection |
AUF | Area Under (Pareto) Front |
DT | Decision Tree |
EO | Earth Observation |
ESA | European Space Agency |
EVI | Enhanced Vegetation Index |
FASTENER | Feature Selection Enabled by Entropy |
LDA | Latent Dirichlet Allocation |
LPIS | Land Parcel Identification System |
NIR | Near Infra Red |
NDVI | Normalized differential vegetation index |
NDWI | Normalized differential water index |
NLPCA | Non-linear Principal Components Analysis |
PB | Petabyte |
PCA | Principal Components Analysis |
POSS | Pareto Optimization for Subset Selection |
PPOSS | Parallel Pareto Optimization for Subset Selection |
SAVI | Soil-adjusted Vegetation Index |
FS-SDS | Feature Selection using Stohastic Diffucion Search |
SIPI | Structure Insensitive Pigment Index |
References
- European Space Agency. Mission Status Report 158. Available online: https://sentinel.esa.int/documents/247904/4114743/Sentinel-2-Mission-Status-Report-158-25-Jan-3-Apr-2020.pdf (accessed on 15 May 2020).
- Kenda, K.; Kažič, B.; Novak, E.; Mladenić, D. Streaming Data Fusion for the Internet of Things. Sensors 2019, 19, 1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koprivec, F.; Čerin, M.; Kenda, K. Crop Classification using Perceptive Sentinel. In Proceedings of the 21th International Multiconference, Ljubljana, Slovenia, 24–28 September 2018; Volume C, pp. 37–40. [Google Scholar]
- Koprivec, F.; Peternelj, J.; Kenda, K. Feature Selection in Land-Cover Classification Using EO-learn. In Proceedings of the 22nd International Multiconference, Ljubljana, Slovenia, 7–11 October 2019; Volume C, pp. 37–50. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 16. [Google Scholar]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2018, 50, 94. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Baig, A.R. Multi-objective feature subset selection using non-dominated sorting genetic algorithm. J. Appl. Res. Technol. 2015, 13, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Gaspar-Cunha, A.; Covas, J.A. RPSGAe—reduced Pareto set genetic algorithm: Application to polymer extrusion. In Metaheuristics for Multiobjective Optimisation; Springer: Berlin/Heidelberg, Germany, 2004; pp. 221–249. [Google Scholar]
- Gaspar-Cunha, A. Feature selection using multi-objective evolutionary algorithms: Application to cardiac SPECT diagnosis. In Advances in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 85–92. [Google Scholar]
- Spolaôr, N.; Lorena, A.C.; Diana Lee, H. Feature selection via pareto multi-objective genetic algorithms. Appl. Artif. Intell. 2017, 31, 764–791. [Google Scholar] [CrossRef]
- Qian, C.; Yu, Y.; Zhou, Z.H. Subset Selection by Pareto Optimization. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 1774–1782. [Google Scholar]
- Alhakbani, H.; al Rifaie, M.M. Feature Selection Using Stochastic Diffusion Search. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; pp. 385–392. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Yin, L.; You, N.; Zhang, G.; Huang, J.; Dong, J. Optimizing Feature Selection of Individual Crop Types for Improved Crop Mapping. Remote Sens. 2020, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Somers, B.; Asner, G.P. Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens. Environ. 2013, 136, 14–27. [Google Scholar] [CrossRef]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens. 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [Green Version]
- Ross, B.C. Mutual Information between Discrete and Continuous Data Sets. PLoS ONE 2014, 9, e0087357. [Google Scholar] [CrossRef] [PubMed]
- Valero, S.; Morin, D.; Inglada, J.; Sepulcre, G.; Arias, M.; Hagolle, O.; Dedieu, G.; Bontemps, S.; Defourny, P.; Koetz, B. Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions. Remote Sens. 2016, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Kiala, Z.; Mutanga, O.; Odindi, J.; Peerbhay, K. Feature Selection on Sentinel-2 Multispectral Imagery for Mapping a Landscape Infested by Parthenium Weed. Remote Sens. 2019, 11, 1892. [Google Scholar] [CrossRef] [Green Version]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef] [Green Version]
- Walton, N.S.; Sheppard, J.W.; Shaw, J.A. Using a Genetic Algorithm with Histogram-Based Feature Selection in Hyperspectral Image Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13–17 July 2019; pp. 1364–1372. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Trans. Geosci. Remote Sens. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Yu, Y.; Zhou, Z.H. Pareto Ensemble Pruning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Qian, C.; Shi, J.C.; Yu, Y.; Tang, K.; Zhou, Z.H. Parallel Pareto Optimization for Subset Selection. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 1939–1945. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Šircelj, B.; Kenda, K.; Koprivec, F. Land Patch Samples. PANGAEA 2020. [Google Scholar] [CrossRef]
- Teschendorff, A.E. Avoiding common pitfalls in machine learning omic data science. Nat. Mater. 2019, 18, 422–427. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Yu, Y.; Qian, C. Subset Selection: Acceleration. In Evolutionary Learning: Advances in Theories and Algorithms; Springer: Singapore, 2019; pp. 285–293. [Google Scholar] [CrossRef]
Data Set | Instances | Features | Classes | I | I |
---|---|---|---|---|---|
ALLAML | 72 | 7129 | 2 | 35 | 65 |
arcene | 200 | 10,000 | 2 | 44 | 56 |
BASEHOCK | 1993 | 4862 | 2 | 50 | 50 |
CLL_SUB_111 | 111 | 11,340 | 3 | 10 | 46 |
COIL20 | 1440 | 1024 | 20 | 5 | 5 |
colon | 62 | 2000 | 2 | 35 | 65 |
gisette | 7000 | 5000 | 2 | 50 | 50 |
GLIOMA | 50 | 4434 | 4 | 14 | 30 |
GLI_85 | 85 | 22,283 | 2 | 30 | 70 |
Isolet | 1560 | 617 | 26 | 4 | 4 |
leukemia | 72 | 7070 | 2 | 35 | 65 |
lung | 203 | 3312 | 5 | 3 | 68 |
lung_discrete | 73 | 325 | 7 | 7 | 29 |
lymphoma | 96 | 4026 | 9 | 2 | 48 |
nci9 | 60 | 9712 | 9 | 3 | 15 |
ORL | 400 | 1024 | 40 | 3 | 3 |
orlraws10P | 100 | 10,304 | 10 | 10 | 10 |
PCMAC | 1943 | 3289 | 2 | 50 | 50 |
Prostate_GE | 102 | 5966 | 2 | 49 | 51 |
RELATHE | 1427 | 4322 | 2 | 45 | 54 |
TOX_171 | 171 | 5748 | 4 | 23 | 26 |
USPS | 9298 | 256 | 10 | 8 | 17 |
warpAR10P | 130 | 2400 | 10 | 10 | 10 |
warpPIE10P | 210 | 2420 | 10 | 10 | 10 |
Yale | 165 | 1024 | 15 | 7 | 7 |
EOData | 480,000 | 182 | 24 | 4 | 4 |
Method | avg. | sd | eval_n |
---|---|---|---|
POSS | 0.66 | 0.0008 | 1000 |
FS-SDS | 0.62 | 0.0008 | 120,000 |
FASTENER | 0.71 | 0.0008 | 1000 |
FS-SDS | FASTENER | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data Set | Mean | Max | Medi | sd | eval_n* | Mean | Max | Medi | sd | eval_n |
ALLAML | 0.643 | 0.717 | 0.65 | 0.039 | 30,000 | 0.776 | 0.894 | 0.78 | 0.062 | 11,238 |
arcene | 0.608 | 0.673 | 0.607 | 0.037 | 30,000 | 0.707 | 0.785 | 0.713 | 0.034 | 12,083 |
BASEHOCK | 0.58 | 0.618 | 0.58 | 0.018 | 30,000 | 0.742 | 0.78 | 0.744 | 0.019 | 13,847 |
CLL_SUB_111 | 0.537 | 0.671 | 0.534 | 0.053 | 30,000 | 0.626 | 0.79 | 0.623 | 0.067 | 11,911 |
COIL20 | 0.655 | 0.673 | 0.657 | 0.01 | 30,000 | 0.687 | 0.714 | 0.687 | 0.012 | 14,214 |
colon | 0.658 | 0.77 | 0.652 | 0.069 | 30,000 | 0.763 | 0.9 | 0.757 | 0.076 | 11,256 |
gisette | 0.672 | 0.682 | 0.671 | 0.005 | 30,000 | 0.786 | 0.802 | 0.786 | 0.006 | 13,213 |
GLIOMA | 0.549 | 0.687 | 0.561 | 0.067 | 30,000 | 0.618 | 0.827 | 0.617 | 0.095 | 11,674 |
GLI_85 | 0.659 | 0.746 | 0.665 | 0.063 | 30,000 | 0.755 | 0.894 | 0.77 | 0.065 | 11,238 |
Isolet | 0.365 | 0.392 | 0.364 | 0.012 | 30,000 | 0.396 | 0.432 | 0.395 | 0.012 | 14,572 |
leukemia | 0.62 | 0.77 | 0.618 | 0.06 | 30,000 | 0.824 | 0.9 | 0.833 | 0.057 | 11,248 |
lung | 0.663 | 0.75 | 0.656 | 0.031 | 30,000 | 0.727 | 0.828 | 0.731 | 0.038 | 11,802 |
lung_discrete | 0.533 | 0.666 | 0.532 | 0.068 | 30,000 | 0.511 | 0.716 | 0.516 | 0.086 | 11,753 |
lymphoma | 0.539 | 0.619 | 0.548 | 0.058 | 30,000 | 0.59 | 0.757 | 0.58 | 0.07 | 11,719 |
nci9 | 0.331 | 0.513 | 0.311 | 0.097 | 30,000 | 0.405 | 0.61 | 0.406 | 0.088 | 12,081 |
ORL | 0.347 | 0.395 | 0.351 | 0.029 | 30,000 | 0.39 | 0.488 | 0.389 | 0.04 | 13,540 |
orlraws10P | 0.675 | 0.77 | 0.686 | 0.053 | 30,000 | 0.694 | 0.821 | 0.695 | 0.062 | 13,571 |
PCMAC | 0.596 | 0.624 | 0.594 | 0.012 | 30,000 | 0.71 | 0.736 | 0.708 | 0.013 | 15,768 |
Prostate_GE | 0.676 | 0.734 | 0.691 | 0.041 | 30,000 | 0.748 | 0.837 | 0.749 | 0.05 | 14,002 |
RELATHE | 0.52 | 0.554 | 0.519 | 0.017 | 30,000 | 0.667 | 0.707 | 0.667 | 0.018 | 15,541 |
TOX_171 | 0.421 | 0.509 | 0.427 | 0.046 | 30,000 | 0.553 | 0.647 | 0.55 | 0.039 | 14,759 |
USPS | 0.561 | 0.569 | 0.561 | 0.005 | 30,000 | 0.583 | 0.593 | 0.583 | 0.005 | 16,670 |
warpAR10P | 0.502 | 0.588 | 0.525 | 0.052 | 30,000 | 0.523 | 0.672 | 0.518 | 0.065 | 13,840 |
warpPIE10P | 0.582 | 0.646 | 0.589 | 0.037 | 30,000 | 0.633 | 0.741 | 0.634 | 0.041 | 13,630 |
Yale | 0.38 | 0.454 | 0.376 | 0.035 | 30,000 | 0.436 | 0.594 | 0.438 | 0.052 | 15,307 |
DT Forward | FASTENER | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data Set | Mean | Max | Medi | sd | eval_n | Mean | Max | Medi | sd | eval_n |
ALLAML | 0.826 | 0.893 | 0.833 | 0.044 | 106,830 | 0.776 | 0.894 | 0.78 | 0.062 | 11,238 |
arcene | 0.659 | 0.76 | 0.665 | 0.054 | 149,895 | 0.707 | 0.785 | 0.713 | 0.034 | 12,083 |
BASEHOCK | 0.753 | 0.781 | 0.751 | 0.015 | 72,825 | 0.742 | 0.78 | 0.744 | 0.019 | 13,847 |
CLL_SUB_111 | 0.54 | 0.655 | 0.54 | 0.049 | 169,995 | 0.626 | 0.79 | 0.623 | 0.067 | 11,911 |
COIL20 | 0.707 | 0.729 | 0.706 | 0.011 | 15,255 | 0.687 | 0.714 | 0.687 | 0.012 | 14,214 |
colon | 0.751 | 0.888 | 0.745 | 0.066 | 29,895 | 0.763 | 0.9 | 0.757 | 0.076 | 11,256 |
gisette | 0.8 | 0.815 | 0.799 | 0.007 | 74,895 | 0.786 | 0.802 | 0.786 | 0.006 | 13,213 |
GLIOMA | 0.592 | 0.743 | 0.626 | 0.103 | 66,405 | 0.618 | 0.827 | 0.617 | 0.095 | 11,674 |
GLI_85 | 0.724 | 0.82 | 0.733 | 0.066 | 334,140 | 0.755 | 0.894 | 0.77 | 0.065 | 11,238 |
Isolet | 0.409 | 0.445 | 0.408 | 0.014 | 9150 | 0.396 | 0.432 | 0.395 | 0.012 | 14,572 |
leukemia | 0.866 | 0.9 | 0.873 | 0.03 | 105,945 | 0.824 | 0.9 | 0.833 | 0.057 | 11,248 |
lung | 0.76 | 0.827 | 0.761 | 0.038 | 49,575 | 0.727 | 0.828 | 0.731 | 0.038 | 11,802 |
lung_discrete | 0.526 | 0.689 | 0.532 | 0.08 | 4770 | 0.511 | 0.716 | 0.516 | 0.086 | 11,753 |
lymphoma | 0.586 | 0.785 | 0.581 | 0.077 | 60,285 | 0.59 | 0.757 | 0.58 | 0.07 | 11,719 |
nci9 | 0.419 | 0.64 | 0.414 | 0.115 | 145,575 | 0.405 | 0.61 | 0.406 | 0.088 | 12,081 |
ORL | 0.407 | 0.464 | 0.41 | 0.032 | 15,255 | 0.39 | 0.488 | 0.389 | 0.04 | 13,540 |
orlraws10P | 0.76 | 0.835 | 0.765 | 0.055 | 154,455 | 0.694 | 0.821 | 0.695 | 0.062 | 13,571 |
PCMAC | 0.722 | 0.75 | 0.721 | 0.013 | 49,230 | 0.71 | 0.736 | 0.708 | 0.013 | 15,768 |
Prostate_GE | 0.787 | 0.851 | 0.793 | 0.041 | 89,385 | 0.748 | 0.837 | 0.749 | 0.05 | 14,002 |
RELATHE | 0.684 | 0.724 | 0.681 | 0.016 | 64,725 | 0.667 | 0.707 | 0.667 | 0.018 | 15,541 |
TOX_171 | 0.469 | 0.536 | 0.466 | 0.035 | 86,115 | 0.553 | 0.647 | 0.55 | 0.039 | 14,759 |
USPS | 0.564 | 0.574 | 0.565 | 0.005 | 3735 | 0.583 | 0.593 | 0.583 | 0.005 | 16,670 |
warpAR10P | 0.533 | 0.659 | 0.527 | 0.06 | 35,895 | 0.523 | 0.672 | 0.518 | 0.065 | 13,840 |
warpPIE10P | 0.669 | 0.753 | 0.676 | 0.033 | 36,195 | 0.633 | 0.741 | 0.634 | 0.041 | 13,630 |
Yale | 0.407 | 0.505 | 0.406 | 0.048 | 15,255 | 0.436 | 0.594 | 0.438 | 0.052 | 15,307 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koprivec, F.; Kenda, K.; Šircelj, B. FASTENER Feature Selection for Inference from Earth Observation Data. Entropy 2020, 22, 1198. https://doi.org/10.3390/e22111198
Koprivec F, Kenda K, Šircelj B. FASTENER Feature Selection for Inference from Earth Observation Data. Entropy. 2020; 22(11):1198. https://doi.org/10.3390/e22111198
Chicago/Turabian StyleKoprivec, Filip, Klemen Kenda, and Beno Šircelj. 2020. "FASTENER Feature Selection for Inference from Earth Observation Data" Entropy 22, no. 11: 1198. https://doi.org/10.3390/e22111198
APA StyleKoprivec, F., Kenda, K., & Šircelj, B. (2020). FASTENER Feature Selection for Inference from Earth Observation Data. Entropy, 22(11), 1198. https://doi.org/10.3390/e22111198