On the Quantumness of Multiparameter Estimation Problems for Qubit Systems
<p>Plots of the quantumness parameter <math display="inline"><semantics> <mi mathvariant="script">R</mi> </semantics></math> (blue solid line) and of the renormalized difference <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> for simultaneous estimation of frequency and dephasing rate, as a function of the initial state parameter <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. The black dashed line corresponds to <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> with an optimized diagonal weight matrix <b>W</b> for every value of <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. Yellow and green correspond to <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> with diagonal weight matrix optimized, respectively, for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mo>{</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math> (in some of the plots, these curves are not visible as they are perfectly superimposed by the dashed-black line corresponding to the optimized <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> </mrow> </semantics></math>). Blue points correspondl to <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> evaluated for random generic weight matrices. The three plots correspond to different values of the dephasing rate: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mi>t</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mi>t</mi> <mo>=</mo> <mn>3.0</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Plots of the quantumness parameter <math display="inline"><semantics> <mi mathvariant="script">R</mi> </semantics></math> (blue solid line) and of the renormalized difference <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> for simultaneous estimation of frequency and amplitude damping rage, as a function of the initial state parameter <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. The black dashed line corresponds to <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> with an optimized diagonal weight matrix <b>W</b> for every value of <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. Yellow, green, and red lines correspond to <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> with diagonal weight matrix optimized, respectively, for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mo>{</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>. Blue points correspond to <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>C</mi> <mo>(</mo> <mi mathvariant="bold-italic">λ</mi> <mo>,</mo> <mi mathvariant="bold">W</mi> <mo>)</mo> </mrow> </semantics></math> evaluated for random generic weight matrices. The three plots correspond to different values of the amplitude damping rate: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mi>t</mi> <mo>=</mo> <mi>ln</mi> <mn>2</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mi>t</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Multi-Parameter Quantum Metrology and a Measure of Quantumness for Quantum Statistical Models
2.1. On the Quantumness Parameter
- [P1]
- the quantumness measure is bounded as follows
- [P2]
- one has thatConsequently, in this case, one has that for all weight matrices , and thus the quantum statistical model is said to be asympotically classical: the SLD-bound is asymptotically achievable via collective measurements on , with [54].
- [P3]
- Given any possible weight matrix , the following inequality holds:
- [P4]
- If the number of parameters to be estimated is , one has that
- [P5]
- The quantumness is invariant under reparametrization of the quantum statistical model: given a new statistical model , such that the new set of n parameters are obtained as a function of the original ones, , then
2.2. On the Evaluation of the Holevo Bound for Single Qubit Statistical Models
- Asymptotically classical models: as previously discussed if , then one has straightforwardly that .
- D-invariant models: if a model is D-invariant (we refer to these references [12,55] for a precise definition and characterization of quantum statistical models, as it goes beyond the scope of this work), then
3. Quantumness of Single-Qubit Multiparameter Quantum Statistical Models
3.1. Pure State Model
3.2. Full Tomography of a Qubit Mixed State
3.3. Simultaneous Estimation of Frequency and Dephasing Rate
3.4. Simultaneous Estimation of Frequency and Amplitude Damping Rate
3.5. Asymptotically Classical Models
- Simultaneous estimation of frequency and depolarizing channel rate, corresponding to the master equation
- Simultanoues estimation of amplitude damping and dephasing rates, corresponding to the master equation
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, M.G.A. Quantum estimation for quantum technology. Int. J. Quantum Inf. 2009, 7, 125–137. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzański, R.; Jarzyna, M.; Kołodyński, J. Quantum Limits in Optical Interferometry. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Chapter 4; Volume 60, pp. 345–435. [Google Scholar] [CrossRef] [Green Version]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef] [Green Version]
- Braun, D.; Adesso, G.; Benatti, F.; Floreanini, R.; Marzolino, U.; Mitchell, M.W.; Pirandola, S. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys. 2018, 90, 035006. [Google Scholar] [CrossRef] [Green Version]
- Pezzè, L.; Smerzi, A.; Oberthaler, M.K.; Schmied, R.; Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 2018, 90, 035005. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.A.C.; Giani, T.; Paris, M.G.A. Probing deformed quantum commutators. Phys. Rev. D 2016, 94, 024014. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.A.C.; Albarelli, F.; Paris, M.G.A. Enhanced estimation of loss in the presence of Kerr nonlinearity. Phys. Rev. A 2016, 93, 053805. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.A.C.; Bina, M.; Paris, M.G.A.; Genoni, M.G.; Adesso, G.; Tufarelli, T. Probing the diamagnetic term in light–matter interaction. Quantum Sci. Technol. 2017, 2, 01LT01. [Google Scholar] [CrossRef] [Green Version]
- Garbe, L.; Bina, M.; Keller, A.; Paris, M.G.A.; Felicetti, S. Critical Quantum Metrology with a Finite-Component Quantum Phase Transition. Phys. Rev. Lett. 2020, 124, 120504. [Google Scholar] [CrossRef] [Green Version]
- Albarelli, F.; Barbieri, M.; Genoni, M.; Gianani, I. A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging. Phys. Lett. A 2020, 384, 126311. [Google Scholar] [CrossRef] [Green Version]
- Demkowicz-Dobrzański, R.; Górecki, W.; Guţă, M. Multi-parameter estimation beyond quantum Fisher information. J. Phys. A Math. Theor. 2020, 53, 363001. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, H.; Lu, X.M.; Wang, X. Quantum Fisher information matrix and multiparameter estimation. J. Phys. A Math. Theor. 2019, 53, 023001. [Google Scholar] [CrossRef]
- Szczykulska, M.; Baumgratz, T.; Datta, A. Multi-parameter quantum metrology. Adv. Phys. X 2016, 1, 621–639. [Google Scholar] [CrossRef]
- Ballester, M.A. Estimation of unitary quantum operations. Phys. Rev. A 2004, 69, 022303. [Google Scholar] [CrossRef] [Green Version]
- Vaneph, C.; Tufarelli, T.; Genoni, M.G. Quantum estimation of a two-phase spin rotation. Quantum Meas. Quantum Metrol. 2013, 1, 12–20. [Google Scholar] [CrossRef]
- Genoni, M.G.; Paris, M.G.A.; Adesso, G.; Nha, H.; Knight, P.L.; Kim, M.S. Optimal estimation of joint parameters in phase space. Phys. Rev. A 2013, 87, 012107. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, P.C.; Barbieri, M.; Datta, A.; Walmsley, I.A. Quantum Enhanced Multiple Phase Estimation. Phys. Rev. Lett. 2013, 111, 070403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Falco, D.; Tamascelli, D. Noise-assisted quantum transport and computation. J. Phys. A Math. Theor. 2013, 46, 225301. [Google Scholar] [CrossRef] [Green Version]
- Tamascelli, D.; Zanetti, L. A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A Math. Theor. 2014, 47, 325302. [Google Scholar] [CrossRef] [Green Version]
- Gagatsos, C.N.; Branford, D.; Datta, A. Gaussian systems for quantum-enhanced multiple phase estimation. Phys. Rev. A 2016, 94, 042342. [Google Scholar] [CrossRef] [Green Version]
- Knott, P.A.; Proctor, T.J.; Hayes, A.J.; Ralph, J.F.; Kok, P.; Dunningham, J.A. Local versus global strategies in multiparameter estimation. Phys. Rev. A 2016, 94, 062312. [Google Scholar] [CrossRef] [Green Version]
- Pezzè, L.; Ciampini, M.A.; Spagnolo, N.; Humphreys, P.C.; Datta, A.; Walmsley, I.A.; Barbieri, M.; Sciarrino, F.; Smerzi, A. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. Phys. Rev. Lett. 2017, 119, 130504. [Google Scholar] [CrossRef] [PubMed]
- Roccia, E.; Gianani, I.; Mancino, L.; Sbroscia, M.; Somma, F.; Genoni, M.G.; Barbieri, M. Entangling measurements for multiparameter estimation with two qubits. Quantum Sci. Technol. 2018, 3, 01LT01. [Google Scholar] [CrossRef] [Green Version]
- Friel, J.; Palittapongarnpim, P.; Albarelli, F.; Datta, A. Attainability of the Holevo-Cramér-Rao bound for two-qubit 3D magnetometry. arXiv 2020, arXiv:quant-ph/2008.01502. [Google Scholar]
- Vidrighin, M.D.; Donati, G.; Genoni, M.G.; Jin, X.M.; Kolthammer, W.S.; Kim, M.S.; Datta, A.; Barbieri, M.; Walmsley, I.A. Joint estimation of phase and phase diffusion for quantum metrology. Nat. Commun. 2014, 5, 3532. [Google Scholar] [CrossRef] [PubMed]
- Crowley, P.J.D.; Datta, A.; Barbieri, M.; Walmsley, I.A. Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry. Phys. Rev. A 2014, 89, 023845. [Google Scholar] [CrossRef] [Green Version]
- Altorio, M.; Genoni, M.G.; Vidrighin, M.D.; Somma, F.; Barbieri, M. Weak measurements and the joint estimation of phase and phase diffusion. Phys. Rev. A 2015, 92, 032114. [Google Scholar] [CrossRef] [Green Version]
- Roccia, E.; Cimini, V.; Sbroscia, M.; Gianani, I.; Ruggiero, L.; Mancino, L.; Genoni, M.G.; Ricci, M.A.; Barbieri, M. Multiparameter approach to quantum phase estimation with limited visibility. Optica 2018, 5, 1171. [Google Scholar] [CrossRef] [Green Version]
- Chrostowski, A.; Demkowicz-Dobrzański, R.; Jarzyna, M.; Banaszek, K. On super-resolution imaging as a multiparameter estimation problem. Int. J. Quantum Inf. 2017, 15, 1740005. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Prasad, S. Quantum Limited Superresolution of an Incoherent Source Pair in Three Dimensions. Phys. Rev. Lett. 2018, 121, 180504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoli, C.; Piano, S.; Leach, R.; Adesso, G.; Tufarelli, T. Towards Superresolution Surface Metrology: Quantum Estimation of Angular and Axial Separations. Phys. Rev. Lett. 2019, 122, 140505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H. Information complementarity: A new paradigm for decoding quantum incompatibility. Sci. Rep. 2015, 5, 14317. [Google Scholar] [CrossRef] [Green Version]
- Heinosaari, T.; Miyadera, T.; Ziman, M. An invitation to quantum incompatibility. J. Phys. A 2016, 49, 123001. [Google Scholar] [CrossRef]
- Helstrom, C.W. Minimum mean-squared error of estimates in quantum statistics. Phys. Lett. A 1967, 25, 101–102. [Google Scholar] [CrossRef]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Holevo, A.S. Statistical decision theory for quantum systems. J. Multivar. Anal. 1973, 3, 337–394. [Google Scholar] [CrossRef] [Green Version]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed.; Edizioni della Normale: Pisa, Italy, 2011. [Google Scholar] [CrossRef]
- Hayashi, M.; Matsumoto, K. Asymptotic performance of optimal state estimation in qubit system. J. Math. Phys. 2008, 49, 102101. [Google Scholar] [CrossRef]
- Guţă, M.; Kahn, J. Local asymptotic normality for qubit states. Phys. Rev. A 2006, 73, 052108. [Google Scholar] [CrossRef] [Green Version]
- Carollo, A.; Spagnolo, B.; Dubkov, A.A.; Valenti, D. On quantumness in multi-parameter quantum estimation. J. Stat. Mech. Theory Exp. 2019, 2019, 094010. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, J. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem. J. Math. Phys. 2016, 57, 042201. [Google Scholar] [CrossRef] [Green Version]
- Yuen, H.P.; Lax, M. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables. IEEE Trans. Inf. Theory 1973, 19, 740–750. [Google Scholar] [CrossRef]
- Belavkin, V.P. Generalized uncertainty relations and efficient measurements in quantum systems. Theor. Math. Phys. 1976, 26, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Gill, R.D.; Massar, S. State estimation for large ensembles. Phys. Rev. A 2000, 61, 042312. [Google Scholar] [CrossRef] [Green Version]
- Kahn, J.; Guţă, M. Local Asymptotic Normality for Finite Dimensional Quantum Systems. Commun. Math. Phys. 2009, 289, 597–652. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, K.; Fujiwara, A.; Gill, R.D. Quantum local asymptotic normality based on a new quantum likelihood ratio. Ann. Stat. 2013, 41, 2197–2217. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chiribella, G.; Hayashi, M. Attaining the Ultimate Precision Limit in Quantum State Estimation. Commun. Math. Phys. 2019, 368, 223–293. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K. A new approach to the Cramér-Rao-type bound of the pure-state model. J. Phys. A 2002, 35, 3111–3123. [Google Scholar] [CrossRef] [Green Version]
- Albarelli, F.; Tsang, M.; Datta, A. Upper bounds on the Holevo Cramér-Rao bound for multiparameter quantum parametric and semiparametric estimation. arXiv 2019, arXiv:quant-ph/1911.11036. [Google Scholar]
- Tsang, M.; Albarelli, F.; Datta, A. Quantum Semiparametric Estimation. Phys. Rev. X 2020, 10, 031023. [Google Scholar] [CrossRef]
- Carollo, A.; Spagnolo, B.; Valenti, D. Uhlmann curvature in dissipative phase transitions. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ragy, S.; Jarzyna, M.; Demkowicz-Dobrzański, R. Compatibility in multiparameter quantum metrology. Phys. Rev. A 2016, 94, 052108. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, J. Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory. Entropy 2019, 21, 703. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K. A new approach to the Cramer-Rao type bound of the pure state model. arXiv 1997, arXiv:quant-ph/9711008. [Google Scholar] [CrossRef] [Green Version]
- Baumgratz, T.; Datta, A. Quantum Enhanced Estimation of a Multidimensional Field. Phys. Rev. Lett. 2016, 116, 030801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, M.; Assad, S.M.; Lam, P.K. A tight Cramér–Rao bound for joint parameter estimation with a pure two-mode squeezed probe. Phys. Lett. A 2017, 381, 2598–2607. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, M.; Lam, P.K.; Assad, S.M. Ultimate precision of joint quadrature parameter estimation with a Gaussian probe. Phys. Rev. A 2018, 97, 012106. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.S.; Kok, P. Quantum Fisher information for general spatial deformations of quantum emitters. arXiv 2018, arXiv:1802.01601. [Google Scholar]
- Albarelli, F.; Friel, J.F.; Datta, A. Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology. Phys. Rev. Lett. 2019, 123, 200503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, A.; Nagaoka, H. An estimation theoretical characterization of coherent states. J. Math. Phys. 1999, 40, 4227–4239. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef]
- Kull, I.; Guérin, P.A.; Verstraete, F. Uncertainty and trade-offs in quantum multiparameter estimation. J. Phys. A Math. Theor. 2020, 53, 244001. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razavian, S.; Paris, M.G.A.; Genoni, M.G. On the Quantumness of Multiparameter Estimation Problems for Qubit Systems. Entropy 2020, 22, 1197. https://doi.org/10.3390/e22111197
Razavian S, Paris MGA, Genoni MG. On the Quantumness of Multiparameter Estimation Problems for Qubit Systems. Entropy. 2020; 22(11):1197. https://doi.org/10.3390/e22111197
Chicago/Turabian StyleRazavian, Sholeh, Matteo G. A. Paris, and Marco G. Genoni. 2020. "On the Quantumness of Multiparameter Estimation Problems for Qubit Systems" Entropy 22, no. 11: 1197. https://doi.org/10.3390/e22111197
APA StyleRazavian, S., Paris, M. G. A., & Genoni, M. G. (2020). On the Quantumness of Multiparameter Estimation Problems for Qubit Systems. Entropy, 22(11), 1197. https://doi.org/10.3390/e22111197