Wealth Redistribution and Mutual Aid: Comparison Using Equivalent/Non-Equivalent Exchange Models of Econophysics
<p>Exchange models: (<b>a</b>) basic exchange model; (<b>b</b>) equivalent exchange model (EX) with redistribution rate <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> and time period <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> </mrow> </semantics></math>; and (<b>c</b>) non-equivalent exchange model (NX) with surplus contribution rate <math display="inline"><semantics> <mi>γ</mi> </semantics></math>. <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>j</mi> </msub> </mrow> </semantics></math> represent the wealth of agents <math display="inline"><semantics> <mi>i</mi> </semantics></math> and <math display="inline"><semantics> <mi>j</mi> </semantics></math>, respectively, at times <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>+</mo> <mo>∆</mo> </mrow> </semantics></math>. <math display="inline"><semantics> <mi>λ</mi> </semantics></math> represents the common savings rate, and <math display="inline"><semantics> <mi>ε</mi> </semantics></math> represents the random division probability.</p> "> Figure 2
<p>Wealth distribution. (<b>a1</b>) and (<b>a2</b>) represent EX models, and (<b>b1</b>) and (<b>b2</b>) represent NX models. In all models, the number of agents is <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>, the initial values of wealth at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> are <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> <mfenced> <mn>0</mn> </mfenced> <mo>=</mo> <mn>1</mn> <mo> </mo> <mfenced> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mo> </mo> <mi>N</mi> </mrow> </mfenced> </mrow> </semantics></math>, and the savings rate is <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. In the EX model, the transfer rate is <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and the time period is <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>4</mn> </msup> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>5</mn> </msup> </mrow> </semantics></math>. In the NX model, the surplus contribution rate is <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0.5</mn> </mrow> </semantics></math>. To determine the changes in wealth distribution, the time (number of exchange repetitions) is <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>3</mn> </msup> <mo>,</mo> <mo> </mo> <mn>3</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>3</mn> </msup> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>6</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 3
<p>Gini index on time passage. The number of agents is <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics></math>, initial values of wealth at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> are <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> <mfenced> <mn>0</mn> </mfenced> <mo>=</mo> <mn>1</mn> <mo> </mo> <mfenced> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mo> </mo> <mi>N</mi> </mrow> </mfenced> </mrow> </semantics></math>, and the savings rate is <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. In the EX model, the transfer rate is <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0.5</mn> </mrow> </semantics></math>, and the time period is <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>3</mn> </msup> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>4</mn> </msup> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>5</mn> </msup> </mrow> </semantics></math>. In the NX model, the surplus contribution rate is <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Three-dimensional graphs of Gini index <math display="inline"><semantics> <mi>g</mi> </semantics></math> and total exchange <math display="inline"><semantics> <mi>f</mi> </semantics></math> for saving rate <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and redistribution parameter <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> or mutual aid <math display="inline"><semantics> <mi>γ</mi> </semantics></math>: (<b>a</b>) EX model and (<b>b</b>) NX model.</p> "> Figure 5
<p>Relationship of Gini index <math display="inline"><semantics> <mi>g</mi> </semantics></math> for the redistribution parameter <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> or mutual aid <math display="inline"><semantics> <mi>γ</mi> </semantics></math>: (<b>a</b>) EX model and (<b>b</b>) NX model. In both models, dotted lines represent approximate curves.</p> "> Figure 6
<p>Relationship of the <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>/</mo> <mi>g</mi> </mrow> </semantics></math> parameter with the redistribution parameter <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>/</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, or mutual aid <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>λ</mi> <mo>)</mo> <mo>·</mo> <mi>γ</mi> </mrow> </semantics></math>. (<b>a</b>) EX model and (<b>b</b>) NX model. In both models, dotted lines represent approximate curves.</p> "> Figure 7
<p>Relationship between redistribution parameter <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> and mutual aid <math display="inline"><semantics> <mi>γ</mi> </semantics></math>. The savings rate is <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, and the time period of redistribution is <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>625</mn> <mo>,</mo> <mo> </mo> <mn>1250</mn> <mo>,</mo> <mo> </mo> <mn>2500</mn> <mo>,</mo> <mo> </mo> <mn>5000</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Exchange Models
2.1.1. Basic Exchange Model
2.1.2. Equivalent Exchange Model
2.1.3. Non-Equivalent Exchange Model
2.2. Evaluation Indices
2.2.1. Gini Index
2.2.2. Total Exchange
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peterson, E.W.F. Is economic inequality really a problem? A review of the arguments. Soc. Sci. 2017, 6, 147. [Google Scholar] [CrossRef] [Green Version]
- Chancel, L.; Piketty, T.; Saez, E.; Zucman, G. World Inequality Report 2022. World Inequality Lab. Available online: https://wir2022.wid.world/www-site/uploads/2022/03/0098-21_WIL_RIM_RAPPORT_A4.pdf (accessed on 16 November 2022).
- United Nations Habitat. State of the World’s Cities 2008/2009—Harmonious Cities; Earthscan Publications: London, UK, 2008; Available online: https://unhabitat.org/state-of-the-worlds-cities-20082009-harmonious-cities-2 (accessed on 16 November 2022).
- The World Bank. Gini Index. Available online: https://data.worldbank.org/indicator/SI.POV.GINI (accessed on 16 November 2022).
- Saadi, T.; Xu, R. A Vicious Cycle: How Pandemics Lead to Economic Despair and Social Unrest. IMF Working Paper. 2020. Available online: https://www.imf.org/en/Publications/WP/Issues/2020/10/16/A-Vicious-Cycle-How-Pandemics-Lead-to-Economic-Despair-and-Social-Unrest-49806 (accessed on 11 December 2022).
- United Nations. Department of Economic and Social Affairs, Sustainable Development. Available online: https://sdgs.un.org/ (accessed on 16 November 2022).
- United Nations University. The Impact of Inequality on Growth, Human Development, and Governance. Available online: https://www.wider.unu.edu/project/impact-inequality-growth-human-development-and-governance-equal (accessed on 10 December 2022).
- Polanyi, K. The Livelihood of Man; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Graeber, D. Debt: The First 5000 Years; Melville House: New York, NY, USA, 2011. [Google Scholar]
- Karatani, K. The Structure of World History: From Modes of Production to Modes of Exchange; Duke University Press: Durham, NC, USA, 2014. [Google Scholar]
- Piketty, T. Capital in the Twenty-First Century; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Taleb, N.N. Skin in the Game: Hidden Asymmetries in Daily Life; Random House: New York, NY, USA, 2018. [Google Scholar]
- Chakrabarti, A.S.; Chakrabarti, B.K. Statistical theories of income and wealth distribution. Economics 2010, 4, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Rosser, J.B., Jr. Econophysics and the entropic foundations of economics. Entropy 2021, 23, 1286. [Google Scholar] [CrossRef]
- Ribeiro, M.B. Income Distribution Dynamics of Economic Systems: An Econophysical Approach; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Champernowne, D.G. A model of income distribution. Econ. J. 1953, 63, 318–351. [Google Scholar] [CrossRef]
- Angle, J. The surplus theory of social stratification and the size distribution of personal wealth. Soc. Forces. 1986, 65, 293–326. [Google Scholar] [CrossRef]
- Dragulescu, A.; Yakovenko, V.M. Statistical mechanics of money. Eur. Phys. J. B 2000, 17, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Chakraborti, A. Distributions of money in model markets of economy. Int. J. Mod. Phys. C 2002, 13, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B. Follow the money. Am. Sci. 2002, 90, 400–405. Available online: http://bit-player.org/wp-content/extras/bph-publications/AmSci-2002-09-Hayes-money.pdf (accessed on 16 November 2022). [CrossRef]
- Chatterjee, A.; Chakrabarti, B.K. Kinetic exchange models for income and wealth distributions. Eur. Phys. J. B 2007, 60, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Chakraborti, A.; Chakrabarti, B.K. Statistical mechanics of money: How saving propensity affects its distribution. Eur. Phys. J. B 2000, 17, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Kudo, Y.; Mizuno, H.; Hiroi, Y. Regional inequality simulations based on asset exchange models with exchange range and local support bias. Appl. Econ. Fin. 2020, 7, 10–23. [Google Scholar] [CrossRef]
- Guala, S. Taxes in a wealth distribution model by inelastically scattering of particles. Interdiscip. Descript. Complex Syst. 2009, 7, 1–7. Available online: https://www.indecs.eu/2009/indecs2009-pp1-7.pdf (accessed on 16 November 2022).
- Chakrabarti, A.S.; Chakrabarti, B.K. Microeconomics of the ideal gas like market models. Physica A 2009, 388, 4151–4158. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Hiroi, Y. Wealth disparities and economic flow: Assessment using an asset exchange model with the surplus stock of the wealthy. PLoS ONE 2021, 16, e0259323. [Google Scholar] [CrossRef]
- Kato, T. Islamic and capitalist economies: Comparison using econophysics models of wealth exchange and redistribution. PLoS ONE 2022, 17, e0275113. [Google Scholar] [CrossRef]
- Iglesias, J.R. How simple regulations can greatly reduce inequality. Sci. Cult. 2010, 76, 437–443. Available online: https://arxiv.org/abs/1007.0461v2 (accessed on 11 December 2022).
- Lima, H.; Vieira, A.R.; Anteneodo, C. Nonlinear redistribution of wealth from a stochastic approach. Chaos Solit. Fractals 2022, 163, 112578. [Google Scholar] [CrossRef]
- Gini, C. Measurement of inequality of incomes. Econ. J. 1921, 31, 124–126. [Google Scholar] [CrossRef]
- Xu, K. How Has the Literature on Gini’s Index Evolved in the Past 80 Years? Economics Working Paper, Dalhousie University; SSRN: Rochester, NY, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Toscani, G. On Fourier-based inequality indices. Entropy 2022, 24, 1393. [Google Scholar] [CrossRef]
- The World Bank. Gross Savings (% of GDP). Available online: https://data.worldbank.org/indicator/NY.GNS.ICTR.ZS (accessed on 19 November 2022).
- OECD. Inheritance Taxation in OECD Countries; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Cole, A. Estate and Inheritance Taxes Around the World. 2015. Available online: https://taxfoundation.org/estate-and-inheritance-taxes-around-world/ (accessed on 17 November 2022).
- The World Bank. Expense (% of GDP). Available online: https://data.worldbank.org/indicator/GC.XPN.TOTL.GD.ZS (accessed on 17 November 2022).
- Calvo, R.A.; Peters, D. Positive Computing: Technology for Wellbeing and Human Potential; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Nagaoka, S. The future of capitalism and the Islamic economy. In The Kyoto Manifesto for Global Economics: The Platform of Community, Humanity, and Spirituality; Yamash’ta, S., Yagi, T., Hill, S., Eds.; Springer: Singapore, 2018; pp. 395–415. [Google Scholar] [CrossRef]
- Nagaoka, S. The Future of Capitalism and the Modern Islamic Economy, Japanese ed.; Shisousha: Tokyo, Japan, 2020. [Google Scholar]
- Kato, H. Social Order in the Islamic World: Another “Market and Fairness”, Japanese ed.; Shisousha: Tokyo, Japan, 2020. [Google Scholar]
- Kamdzhalov, M. Islamic finance and the new technology challenges. Eur. J. Islam. Financ. 2020, 1–6. [Google Scholar] [CrossRef]
- Arfah, A.; Olilingo, F.Z.; Syaifuddin, S.; Dahliah, D.; Nurmiati, N.; Putra, A.H.P.K. Economics during global recession: Sharia-economics as a post COVID-19 agenda. J. Asian Fin. Econ. Bus. 2020, 7, 1077–1085. [Google Scholar] [CrossRef]
- Yukti, R.H.; Supriadi, S.; Ariyadi, A. The Role of the Islamic Economic System in Tackling Global Economic Recession in the COVID-19 Era. In Proceedings of the 1st International Conference on Islamic Civilization (ICIC 2020), Semarang, Indonesia, 27 August 2020. [Google Scholar] [CrossRef]
- Grubacic, A.; Graeber, D. Anarchism, or the Revolutionary Movement of the Twenty-First Century. 2004. Available online: https://theanarchistlibrary.org/library/andrej-grubacic-david-graeber-anarchism-or-the-revolutionary-movement-of-the-twenty-first-centu (accessed on 17 November 2022).
- Yamada, H. Possible Anarchism: Marcel Mauss and the Moral of Gift, Japanese ed.; Inscript: Tokyo, Japan, 2020. [Google Scholar]
- Deguchi, Y. After corona seen from “Self-as-We”. In Beyond Smart Life, Japanese ed.; Hitachi Kyoto University Laboratory, Ed.; Nikkei Business Publications: Tokyo, Japan, 2020. [Google Scholar]
- Deguchi, Y. Philosophy—What Is Self: “Self-as-We” and After Corona, Japanese ed. Available online: https://ukihss.cpier.kyoto-u.ac.jp/1783/ (accessed on 17 November 2022).
- Deguchi, Y. Philosophy—From “Capability” to “Incapability”: After Corona’s View of Humanity, Japanese ed. Available online: https://ukihss.cpier.kyoto-u.ac.jp/2429/ (accessed on 17 November 2022).
- Pestoff, V.A. Third sector and co-operative services—An alternative to privatization. J. Consum. Policy 1992, 15, 21–45. [Google Scholar] [CrossRef]
- Hiroi, Y. Rethinking on Community: Connection, Cities and Future of Japanese Society, Japanese ed.; Chikumashobo: Tokyo, Japan, 2009. [Google Scholar]
- Hiroi, Y. The Design of Population-Declining Society, Japanese ed.; Toyo Keizai: Tokyo, Japan, 2019. [Google Scholar]
- Rajan, R. The Third Pillar: How Markets and the State Leave the Community Behind; Penguin Press: New York, NY, USA, 2019. [Google Scholar]
- Karatani, K. Power and Modes of Exchange, Japanese ed.; Iwanami Shoten: Tokyo, Japan, 2020. [Google Scholar]
- Sheidel, W. The Great Leveler: Violence and the History of Inequality from the Stone Age to the Twenty-First Century; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Aktaev, N.E.; Bannova, K.A. Mathematical modeling of probability distribution of money by means of potential formation. Physica A 2022, 595, 127089. [Google Scholar] [CrossRef]
- Kemp, J.T.; Bettencourt, L.M. Statistical dynamics of wealth inequality in stochastic models of growth. Physica A 2022, 607, 128180. [Google Scholar] [CrossRef]
- Nihon Nogyo Shinbun. The Origins and Future of Cooperatives: Inheriting the Spirit of Mutual Aid, Japanese ed.; Iwanami Shoten: Tokyo, Japan, 2017. [Google Scholar]
- Fujii, A.; Harada, K.; Otaka, K. Social Enterprise Tackling Social Exclusion, Japanese ed.; Keisoshobo: Tokyo, Japan, 2013. [Google Scholar]
- Yunus, M. Building Social Business: The New Kind of Capitalism that Serves Humanity’s Most Pressing Needs; Public Affairs: New York, NY, USA, 2010. [Google Scholar]
- Mizuguchi, T. ESG Investment: The Shape of New Capitalism, Japanese ed.; Nikkei Business Publications: Tokyo, Japan, 2017. [Google Scholar]
- Epstein, M.J.; Buhovac, A.R. Making Sustainability Work: Best Practices in Managing and Measuring Corporate Social, Environmental, and Economic Impacts, 2nd ed.; Berrett-Koehler Publishers: San Francisco, CA, USA, 2014. [Google Scholar]
- Takahashi, M.; Kimura, T.; Ishiguro, T. Theorizing Social Innovation: To Discover New Practice of Social Entrepreneurship, Japanese ed.; Bunshundo: Tokyo, Japan, 2018. [Google Scholar]
- Newsom, G. Citizenville: How to Take the Town Square Digital and Reinvent Government; Penguin Books: London, UK, 2013. [Google Scholar]
- Schneider, N. Everything for Everyone: The Radical Tradition That Is Shaping the Next Economy; Bold Type Books: New York, NY, USA, 2018. [Google Scholar]
- Kato, T.; Kudo, Y.; Miyakoshi, J.; Owa, M.; Asa, Y.; Numata, T.; Mine, R.; Mizuno, H. Social Co-OS: Cyber-human social co-operating system. IET Cyber Phys. Syst. Theor. Appl. 2022, in press. [Google Scholar] [CrossRef]
Typology | Polanyi | Graeber | Karatani |
---|---|---|---|
Non-equivalent exchange with obligation to return | Reciprocity | — | Mode of exchange A |
Redistribution by power center | Redistribution | Hierarchy | B |
Equivalent exchange in the market | Market exchange | Exchange | C |
Non-equivalent exchange without obligation to return | — | Baseline communism | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, T. Wealth Redistribution and Mutual Aid: Comparison Using Equivalent/Non-Equivalent Exchange Models of Econophysics. Entropy 2023, 25, 224. https://doi.org/10.3390/e25020224
Kato T. Wealth Redistribution and Mutual Aid: Comparison Using Equivalent/Non-Equivalent Exchange Models of Econophysics. Entropy. 2023; 25(2):224. https://doi.org/10.3390/e25020224
Chicago/Turabian StyleKato, Takeshi. 2023. "Wealth Redistribution and Mutual Aid: Comparison Using Equivalent/Non-Equivalent Exchange Models of Econophysics" Entropy 25, no. 2: 224. https://doi.org/10.3390/e25020224