Econophysics and the Entropic Foundations of Economics
<p>Log–log United States Income Distribution, Boltzmann–Gibbs, and Pareto Sections in 1997 from Yakovenko (Figure 4.6) [<a href="#B144-entropy-23-01286" class="html-bibr">144</a>].</p> "> Figure 2
<p>Log–log US Annual Income Distribution during 1983–2001 from Yakovenko (Figure 4.7) [<a href="#B144-entropy-23-01286" class="html-bibr">144</a>].</p> ">
Abstract
:1. Where Econophysics Came From
2. The Important Role of the Pareto Distribution
3. The Influence of Statistical Mechanics
4. Forms of Entropy
5. Ontological Entropy, Econophysics, and the Foundations of Growth
6. Ontological Entropy and Economic Value
7. Thermodynamic Sustainability of Urban–Regional Systems
8. An Anti-Entropic Econophysics Alternative in Urban–Regional Systems
9. General Equilibrium Value and Metaphorical Entropy
10. Metaphorical Entropic Financial Modeling
“Entropy is a measure of dispersion, uncertainty, disorder and diversification used in dynamic process, in statistics and information theory, and has been increasingly adopted in financial theory”.
11. Using Statistical Mechanics to Model Income and Wealth Distributions
12. The Revenge of Metaphorical Entropy as Bubbles Crash
13. Conclusions
Funding
Conflicts of Interest
References
- Mirowski, P. More Heat than Light: Economics as Social Physics: Physics as Nature’s Economics; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Samuelson, P.A. Foundations of Economic Analysis; Harvard University Press: Cambridge, MA, USA, 1947. [Google Scholar]
- Chakrabarti, B.K. Econophys-Kolkata: A short story. In Econophysics of Weatlh Distributions; Chatterjee, A., Yarlagadda, S., Chakrabarti, B.K., Eds.; Springer: Milan, Italy, 2005; pp. 225–228. [Google Scholar]
- Stanley, H.E.; Afanasyev, V.; Amaral, I.A.N.; Buldyrev, S.V.; Goldberger, A.I.; Havlin, S.; Leschhorn, H.; Masss, P.; Mantegna, R.N.; Peng, X.-K.; et al. Anomalous fluctuations in the dynamics of complex systems from DNA and physiology to econophysics. Phys. A 1996, 224, 302–323. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Stanley, H.E. An Introduction to Econophysics: Correlations and Complexity in Finance; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Majorana, E. Il valore delle leggi statistiche nelle fisica e nelle scienze. Scientia 1942, 36, 58–66. [Google Scholar]
- Gibbs, J.W. Elementary Principles of Statistical Mechanics; Dover: New York, NY, USA, 1902. [Google Scholar]
- Spitzer, F. Random Fields and Interacting Particle Systems; American Mathematical Society: Providence, RI, USA, 1971. [Google Scholar]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus Press for Springer: New York, NY, USA, 1996. [Google Scholar]
- Sornette, D. Why Stock Markets Crash: Critical Events in Complex Financial Systems; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Mantegna, R.N. Lévy walks and enhanced diffusion in Milan stock exchange. Phys. A 1991, 179, 232–242. [Google Scholar] [CrossRef]
- Levy, M.; Solomon, S. New evidence for the power-law distribution of wealth. Phys. A 1997, 242, 90–94. [Google Scholar] [CrossRef]
- Bouchaud, J.-P.; Cont, R. A Langevin approach to stock market fluctuations and crashes. Eur. Phys. J. B 2000, 6, 542–550. [Google Scholar] [CrossRef] [Green Version]
- Gopakrishnan, P.; Plerou, V.; Amaral, I.A.N.; Meyer, M.; Stanley, H.R. Scaling of the distributions of financial market indices. Phys. Rev. E 1999, 60, 5305–5316. [Google Scholar] [CrossRef] [Green Version]
- Lux, T.; Marchesi, M. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 1999, 397, 498–500. [Google Scholar] [CrossRef]
- Sornette, D.; Johansen, A. Significance of log-periodic precursors to financial crashes. Quant. Financ. 2001, 1, 452–471. [Google Scholar] [CrossRef]
- Farmer, J.D.; Joshi, S. The price dynamics of common trading strategies. J. Econ. Behav. Organ. 2002, 49, 149–171. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Rosser, J.B., Jr. Market dynamics and stock price volatility. Eur. Phys. J. B 2004, 39, 409–413. [Google Scholar] [CrossRef]
- Bak, P.; Chen, K.; Scheinkman, J.; Woodford, M. Aggregate fluctuations from independent sectoral shocks: Self-organized criticality in a model of production and inventory dynamics. Ric. Econ. 1993, 47, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Canning, D.; Amaral, I.A.N.; Lee, Y.; Meyer, M.; Stanley, H.E. A power law for scaling the volatility of GDP growth rates with country size. Econ. Lett. 1998, 60, 335–341. [Google Scholar] [CrossRef]
- Rosser, J.B., Jr. Dynamics of emergent urban hierarchy. Chaos Solitons Fractals 1994, 4, 553–562. [Google Scholar] [CrossRef]
- Gabaix, X. Zipf’s law for cities. Q. J. Econ. 1999, 114, 739–767. [Google Scholar] [CrossRef] [Green Version]
- Takayasu, H.; Okuyama, K. Country dependence on company size distributions and a numerical model based on competition and cooperation. Fractals 1998, 6, 67–79. [Google Scholar] [CrossRef]
- Botazzi, G.; Secchi, A. A stochastic model of firm growth. Phys. A 2003, 324, 213–219. [Google Scholar] [CrossRef]
- Plerou, V.; Amaral, I.A.N.; Gopakrishnan, P.; Meyer, M.; Stanley, H.E. Similarities between the growth dynamics of university research and competitive economic activities. Nature 1999, 400, 433–437. [Google Scholar] [CrossRef]
- Sornette, D.; Zajdenweber, D. Economic returns of research: The Pareto law and its implications. Eur. Phys. J. B 1999, 8, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Bouchaud, J.-P.; Mézard, M. Wealth condensation in a simple model of economy. Phys. A 2000, 282, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Drăgulescu, A.A.; Yakovenko, V.M. Exponential and power law probability distributions of wealth and income in the United Kingdom and the United States. Phys. A 2001, 299, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Chatterjeee, A.; Yarlagadda, S.; Chakrabarti, B.K. (Eds.) Econophysics of Wealth Distributions; Springer: Milan, Italy, 2005. [Google Scholar]
- Anderson, P.W.; Arrow, K.J.; Pines, D. (Eds.) The Economy as a Complex Evolving System; Addison-Wesley: Redwood City, CA, USA, 1988. [Google Scholar]
- Arthur, W.B.; Durlauf, S.N.; Lane, D.A. (Eds.) The Economy as a Complex Evolving System II; Addison-Wesley: Reading, PA, USA, 1997. [Google Scholar]
- McCauley, J.L. Dynamics of Markets: Econophysics and Finance; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Chatterjee, A.; Chakrabarti, B.K. (Eds.) Econophysics of Stock and other Markets; Springer: Milan, Italy, 2006. [Google Scholar]
- Lux, T. Applications of statistical physics in finance and economics. In Handbook of Complexity Research; Rosser, J.B., Jr., Ed.; Edward Elgar: Cheltenham, UK, 2009; pp. 213–258. [Google Scholar]
- Pareto, V. Cours d’Économie Politique; R. Rouge: Lausanne, Switzerland, 1897. [Google Scholar]
- Gibrat, R. Les Inégalités Économiques; Sirey: Paris, France, 1931. [Google Scholar]
- Bachelier, L. Théeorie de la spéculation. Ann. Sci. L’école Norm. Supér. 1900, III-17, 21–86. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen theorie der warme geforderte bewegung von der ruhenden flūsstigkeiten teichen. Ann. Phys. 1905, 17, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Clementi, F.; Gallegati, M. Power law tails in the Italian personal income distribution. Phys. A 2005, 350, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Yakovenko, V.M.; Rosser, J.B., Jr. Colloquium: Statistical mechanics of money, wealth, and income. Rev. Mod. Phys. 2009, 81, 1704–1725. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, A. Capitalism: Competition, Conflict, and Crisis; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Shaikh, A.; Jacobo, E.J. Economic arbitrage and the econophysics of income inequality. Rev. Behav. Econ. 2020, 7, 299–315. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Osborne, M.F.M. Brownian motion in stock markets. Oper. Res. 1959, 7, 134–173. [Google Scholar] [CrossRef]
- Lévy, P. Calcul des Probabilités; Gauthier-Villars: Paris, France, 1925. [Google Scholar]
- Lotka, A.J. The frequency distribution of scientific productivity. J. Wash. Acad. Sci. 1926, 12, 317–323. [Google Scholar]
- Zipf, G.K. Human Behavior and the Principle of Least Effort; Addison-Wesley: Cambridge, MA, USA, 1941. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1982. [Google Scholar]
- Mandelbrot, B.B. Fractals and Scaling in Finance; Springer: New York, NY, USA, 1997. [Google Scholar]
- Mandelbrot, B.B. The variation of certain speculative prices. J. Bus. 1963, 36, 392–419. [Google Scholar] [CrossRef]
- Ijirii, Y.; Simon, H.A. Skew Distributions and the Size of Business Firms; North-Holland: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Axtell, R.L. Zipf distribution of firm sizes. Science 2001, 293, 1818–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canard, N.F. Principes d’Économie Politique; 1801. Reprint by Edizioni Bizzari: Rome, Italy, 1969. [Google Scholar]
- Fisher, I. Mathematical Investigations into the Theory of Value and Price; Yale University Press: New Haven, CT, USA, 1926. [Google Scholar]
- Föllmer, H. Random economies with many interacting agents. J. Math. Econ. 1974, 1, 51–62. [Google Scholar] [CrossRef]
- Blume, L.E. The statistical mechanics of strategic interaction. Games Econ. Behav. 1993, 5, 387–424. [Google Scholar] [CrossRef] [Green Version]
- Durlauf, S.N. Nonergodic economic growth. Rev. Econ. Stud. 1993, 60, 340–366. [Google Scholar] [CrossRef]
- Brock, W.A. Pathways to randomness in the economy. Estud. Econ. 1993, 8, 2–55. [Google Scholar]
- Foley, D.K. A statistical equilibrium theory of markets. J. Econ. Theory 1994, 62, 321–345. [Google Scholar] [CrossRef]
- Stutzer, M.J. The statistical mechanics of asset prices. In Differential Equations, Dynamical Systems, and Control Science: A Festschrift in Honor of Lawrence Markuss; Elsworthy, K.D., Everett, W.N., Lee, E.B., Eds.; Marcel Dekker: New York, NY, USA, 1994; Volume 152, pp. 321–342. [Google Scholar]
- Arrow, K.J. Essays in the Theory of Risk Bearing; North-Holland: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Brock, W.A.; Durlauf, S.N. Discrete choice with social interactions. Rev. Econ. Stud. 2002, 68, 235–260. [Google Scholar] [CrossRef]
- Gallegati, M.; Keen, S.; Lux, T.; Ormerod, P. Worrying trends in econophysics. Phys. A 2006, 370, 1–6. [Google Scholar] [CrossRef]
- McCauley, J.L. Response to ‘Worrying trends in econophysics’. Phys. A 2008, 371, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Rosser, J.B., Jr. Debating the role of econophysics. Nonlinear Dyn. Psychol. Life Sci. 2008, 12, 311–323. [Google Scholar]
- Rosser, J.B., Jr. Econophysics and economic complexity. Adv. Complex Syst. 2008, 11, 745–761. [Google Scholar] [CrossRef]
- Boltzmann, L. Über die eigenschaften monocycklischer und andere damit verwandter systems. Crelle’s J. Reine Angwandte Math. 1884, 109, 201–212. [Google Scholar]
- Uffink, J. Boltzmann’s work in statistical physics. In Stanford Encylopedia of Philosophy; Center for the Study of Language and Information, Stanford University: Stanford, CA, USA, 2014; Available online: https://plato.stanford.edu/entries/statphys-Boltzmann (accessed on 25 May 2021).
- Chakrabarti, C.G.; Chakraborty, J. Boltzmann-Shannon entropy: Generalization and application. Mod. Phys. Lett. B 2006, 20, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Rosser, J.B., Jr. Entropy and econophysics. Eur. Phys. J. Spec. Top. 2016, 225, 3091–3104. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. 1957, 108, 171–180. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics, and Probability, 1960: Contributions to the Theory of Statistics; University of California Press: Berkeley, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Tsallis, C. Possible generalizations of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Thurner, S.; Hanel, R. The entropy of non-ergodic complex systems: A derivation from first principles. Int. J. Mod. Phys. Conf. Ser. 2012, 16, 105–115. [Google Scholar] [CrossRef]
- Carnot, S. Réflexions sur la Puissance Motrice du Feu etr sur les Machines Propres a Déveloper Cette Puissance; Vein: Paris, France, 1824. [Google Scholar]
- Clausius, R. Über verschiedene fūr die nverdung bequeme formen du hauptgleichungen du mechanischer warmtheorie. Ann. Phys. 1865, 125, 353–400. [Google Scholar] [CrossRef] [Green Version]
- Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Rosser, J.B., Jr. From Catastrophe to Chaos: A General Theory of Economic Discontinuities; Kluwer: Boston, MA, USA, 1991. [Google Scholar]
- Schrödinger, E. What Is Life? The Physical Aspects of the Living Cell; Cambridge University Press: London, UK, 1945. [Google Scholar]
- Lotka, A.J. Elements of Physical Biology; Williams & Wilkens: Baltimore, MD, USA, 1925. [Google Scholar]
- Martinez-Allier, J. Ecological Economics: Energy, Environment and Scarcity; Blackwell: Oxford, UK, 1987. [Google Scholar]
- Gerelli, E. Entropy and the end of the world. Ric. Econ. 1985, 34, 435–438. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Lethal model 2: The limits to growth revisited. Brook. Pap. Econ. Act. 1992, 1992, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Young, J.T. Entropy and natural resource scarcity: A reply to the critics. J. Environ. Econ. Manag. 1994, 26, 210–213. [Google Scholar] [CrossRef]
- Simon, J.L. The Ultimate Resource; Princeton University Press: Princeton, NJ, USA, 1981. [Google Scholar]
- Helm, G. Die Lehre von der Energie; Felix: Leipzig, Germany, 1887. [Google Scholar]
- Winiarski, L. Essai sur la mécanique sociale: L’énergie sociale et ses mensurations. Rev. Philos. 1900, 49, 265–287. [Google Scholar]
- Ostwald, W. Die Energie; J.A. Barth: Leipzig, Germany, 1908. [Google Scholar]
- Davidson, J. One of the physical foundations of economics. Q. J. Econ. 1919, 33, 717–724. [Google Scholar] [CrossRef]
- Davis, H.J. The Theory of Econometrics; Indiana University Press: Bloomington, IN, USA, 1941. [Google Scholar]
- Lisman, J.H.C. Econometrics and thermodynamics: A remark on Davis’s theory of budgets. Econometrica 1949, 17, 56–62. [Google Scholar] [CrossRef]
- Samuelson, P.A. Maximum principles in analytical economics. Am. Econ. Rev. 1972, 62, 2–17. [Google Scholar]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Balocco, C.; Paeschi, S.; Grazzini, G.; Basosi, R. Using exergy to analyze the sustainability of an urban area. Ecol. Econ. 2004, 48, 211–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Z.; Li, W. Analyses of urban ecosystem based on information entropy. Ecol. Model. 2006, 197, 1–12. [Google Scholar] [CrossRef]
- Marchinetti, N.; Pulselli, F.M.; Tierzi, E. Entropy and the city. WTI Trans. Ecol. Environ. 2006, 93, 263–272. [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Entropy and its applications to urban systems. Entropy 2019, 21, 56. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.G. Entropy in Urban and Regional Modelling: Retrospect and Prospect. Geogr. Anal. 2010, 42, 265–287. [Google Scholar] [CrossRef]
- Prigogine, I. From Being to Becoming; W.H. Freeman: San Francisco, CA, USA, 1980. [Google Scholar]
- Rant, Z. Exergie, ein neues wort fūr “technische arbeitagikeit”. Forsch. Geb. Inginieurwesens 1956, 22, 36–37. [Google Scholar]
- Wackernagel, M.; Rees, W.E. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Philadelphia, PA, USA, 1996. [Google Scholar]
- Moran, M.J.; Sciubba, E. Exergy analysis: Principles and practice. J. Eng. Gas Turbine Power 1994, 116, 286–290. [Google Scholar] [CrossRef]
- Haken, H. Information and Self Organization; Springer: New York, NY, USA, 1988. [Google Scholar]
- Svirezhev, Y.M. Thermodynamics and ecology. Ecol. Model. 2000, 132, 11–22. [Google Scholar] [CrossRef]
- Morin, E. Le vie della complessita. In La Sfida della Complessita; Bocchi, G., Ceruti, M., Eds.; Feltrinelli: Milan, Italy, 1995; pp. 49–60. [Google Scholar]
- Odum, E.P. The strategy of ecosystem development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulanowicz, R.E. Growth and Development: Ecosystems Phenomenology; Springer: New York, NY, USA, 2012. [Google Scholar]
- Rosser, J.B., Jr. Foundations and Applications of Complexity Economics; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Auerbach, F. Das gesetz der bevölkerungskonzentration. Peterman’s Geogr. Mittelungen 1913, 59, 74–76. [Google Scholar]
- Berry, B.J.L.; Okulicz-Kozaryn, A. The city size distribution debate: Resolution for US urban regions and megalopolitan areas. Cities 2012, 48, 517–523. [Google Scholar] [CrossRef]
- Batten, D. Complex landscapes of spatial interaction. Ann. Reg. Sci. 2001, 35, 81–111. [Google Scholar] [CrossRef]
- Fujita, M.; Krugman, P.R.; Venables, A.J. The Spatial Economy: Cities, Regions, and International Trade; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Nitsch, V. Zipf zipped. J. Urban Econ. 2005, 57, 86–100. [Google Scholar] [CrossRef]
- Arthur, W.B. Increasing Returns and Path Dependence in the Economy; University of Michigan Press: Ann Arbor, MI, USA, 1994. [Google Scholar]
- Marshall, A.; Marshall, M.P. The Economics of Industry; Macmillan: London, UK, 1879. [Google Scholar]
- Marshall, A. Industry and Trade; Macmillan: London, UK, 1919. [Google Scholar]
- Hoover, E.M.; Vernon, R. Anatomy of a Metropolis: The Changing Distribution of People and Jobs in the New York Metropolitan Area; Harvard University Press: Cambridge, MA, USA, 1959. [Google Scholar]
- Papageorgiou, Y.Y.; Smith, T.E. Agglomeration as local instability of spatially uniform steady-states. Econometrica 1983, 51, 1109–1119. [Google Scholar] [CrossRef]
- Weidlich, W.; Haag, G. A dynamic phase transition model for spatial agglomeration processes. J. Reg. Sci. 1987, 27, 529–569. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Stiglitz, J.E. Monopolistic competition and optimum product diversity. Am. Econ. Rev. 1977, 67, 297–308. [Google Scholar]
- Fujita, M. A monopolistic competition approach to spatial agglomeration: A differentiated product approach. Reg. Sci. Urban Econ. 1988, 18, 87–124. [Google Scholar] [CrossRef]
- Krugman, P.R. Increasing returns and economic geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Rosser, J.B., Jr. Complex Evolutionary Dynamics in Urban-Regional and Ecologic Systems: From Catastrophe to Chaos and Beyond; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Foley, D.K.; Smith, E. Classical thermodynamics and general equilibrium theory. J. Econ. Dyn. Control 2008, 32, 7–65. [Google Scholar]
- Baye, M.R.; Kovenock, D.; de Vries, C.G. The Herodotus paradox. Games Econ. Behav. 2012, 74, 399–406. [Google Scholar] [CrossRef]
- Schinkus, C. Economic uncertainty and econophysics. Phys. A 2009, 388, 4415–4423. [Google Scholar] [CrossRef]
- Dionisio, A.; Menezez, R.; Mendes, D. An econophysics approach to analyze uncertainty in financial markets: An application to the Portuguese stock market. Eur. Phys. J. B 2009, 60, 161–164. [Google Scholar]
- Stutzer, M.J. Simple entropic derivation of a generalized Black-Scholes model. Entropy 2000, 2, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Cozzolini, J.M.; Zahner, M.J. The maximum entropy distribution of the future distribution of the future market price of a stock. Oper. Res. 1973, 21, 1200–1211. [Google Scholar] [CrossRef]
- Jizba, P.; Kleinert, H.; Shefaat, M. Rényi’s information transfer between financial time series. Phys. A 2012, 391, 2971–2989. [Google Scholar] [CrossRef] [Green Version]
- Dimpli, T.; Peter, F.J. Group transfer entropy with an application to cryptocurrencies. Phys. A 2019, 516, 534–551. [Google Scholar]
- Kim, S.; Ku, S.; Cheng, W.; Song, J.W. Predicting the direction of US stock prices using effective transfer entropy and machine learning technology. IEEE Access 2020, 8, 111680–111682. [Google Scholar]
- Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation entropy and its main biomedical and econophysics applications: A review. Entropy 2012, 14, 1553–1577. [Google Scholar] [CrossRef]
- Cowell, F.A.; Kuga, K. Additivity and the entropy concept: An axiomatic approach to inequality measurement. J. Econ. Theory 1981, 25, 131–143. [Google Scholar] [CrossRef]
- Atkinson, A.B. On the measurement of inequality. J. Econ. Theory 1970, 2, 244–263. [Google Scholar] [CrossRef]
- Bourguignon, F. Decomposition income inequality measures. Econometrica 1979, 47, 901–920. [Google Scholar] [CrossRef] [Green Version]
- Montroll, F.W.; Schlesinger, M.F. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails. J. Stat. Phys. 1983, 32, 209–230. [Google Scholar] [CrossRef]
- Angle, J. The surplus theory of social stratification and the distribution of personal wealth. Soc. Forces 1986, 65, 293–326. [Google Scholar] [CrossRef]
- Chakraborti, A.S.; Chakrabarti, B.K. Statistical mechanics of money: How savings propensities affects its distribution. Eur. Phys. J. B 2000, 17, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Richmond, P. Stable power laws in variable economics: Lotka-Volterra implies Pareto-Zipf. Eur. Phys. J. B 2002, 27, 257–261. [Google Scholar] [CrossRef]
- Huang, D.W. Wealth accumulation with random redistribution. Phys. Rev. E 2004, 69, 57–103. [Google Scholar] [CrossRef] [PubMed]
- Cockshott, W.P.; Cottrill, A.F.; Michaelson, G.J.; Wright, I.F.; Yakovenko, V.M. Classical Econophysics; Routledge: London, UK, 2008. [Google Scholar]
- Yakovenko, V.M. Applications of statistical mechanics to economics: Entropic origin of the probability distributions of money, income, and energy consumption. In Social Fairness and Economics: Economic Essays in the Spirit of Duncan Foley; Taylor, L., Rezai, A., Michl, T., Eds.; Routledge: London, UK, 2013; pp. 53–82. [Google Scholar]
- Moghaddem, M.D.; Miller, J.; Serota, R.A. Generalized prime distributions: Stochastic model of economic exchange and properties of inequality indices. arXiv 2019, arXiv:1906.04833v1. [Google Scholar]
- Minsky, H.P. Financial instability revisited: The economics of disaster. Reapprais. Fed. Reserve Discount Mech. 1972, 3, 97–136. [Google Scholar]
- Kindleberger, C.P. Manias, Panics, and Crashes: A History of Financial Crises, 4th ed.; Basic Books: New York, NY, USA, 2001. [Google Scholar]
- Rosser, J.B., Jr. The Minsky moment and the revenge of entropy. Macroecon. Dyn. 2020, 24, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Smeeding, T.M. Income, Wealth and Debt, and the Great Recession; Stanford Center on Poverty and Inequality, Stanford University: Stanford, CA, USA, 2012. [Google Scholar]
- Yakovenko, V.M. Monetary economics from econophysics perspective. Eur. Phys. J. Spec. Top. 2016, 225, 3313–3335. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Wu, X.; Zhou, T.; Yan, W.; Huang, Y.; Yu, H.; Mondal, B.; Yakovenko, V.M. Exponential structure of income inequality: Evidence from 67 countries. J. Econ. Interact. Coord. 2019, 14, 345–376. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosser, J.B., Jr. Econophysics and the Entropic Foundations of Economics. Entropy 2021, 23, 1286. https://doi.org/10.3390/e23101286
Rosser JB Jr. Econophysics and the Entropic Foundations of Economics. Entropy. 2021; 23(10):1286. https://doi.org/10.3390/e23101286
Chicago/Turabian StyleRosser, J. Barkley, Jr. 2021. "Econophysics and the Entropic Foundations of Economics" Entropy 23, no. 10: 1286. https://doi.org/10.3390/e23101286