Effect of Spindle Speed and Feed Rate on Surface Roughness and Milling Duration in the Fabrication of Milled Complete Dentures: An In Vitro Study
<p>Designed specimen and locations of surface roughness measurement on the specimen.</p> "> Figure 2
<p>Locations of the specimens on the CAM software (hyperDENT V9; FOLLOW-ME! Technology Group).</p> "> Figure 3
<p>Specimen immediately after milling.</p> "> Figure 4
<p>Surface roughness on the left slope of the specimen.</p> "> Figure 5
<p>Surface roughness on the right slope of the specimen.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Specimen
2.2. Data for Milling
2.3. Milling the Specimens
2.4. Evaluation of Surface Roughness
2.5. Measurement of Milling Duration
2.6. Statistical Analysis
3. Results
3.1. Surface Roughness
3.2. Milling Duration
4. Discussion
5. Conclusions
- Among the milling parameters, increasing the feed rate led to a reduction in the milling duration.
- The combination of a spindle speed of 40,000 rpm and a feed rate of 3500 mm/min resulted in the shortest milling duration with improved surface roughness, i.e., machining accuracy, among the milling conditions assessed in this study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed]
- van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Goodacre, C.J.; Garbacea, A.; Naylor, W.P.; Daher, T.; Marchack, C.B.; Lowry, J. CAD/CAM fabricated complete dentures: Concepts and clinical methods of obtaining required morphological data. J. Prosthet. Dent. 2012, 107, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, M.S.; Erdem, A.; Aglarci, O.S.; Dilber, E. Fabricating complete dentures with CAD/CAM and RP technologies. J. Prosthodont. 2015, 24, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Soeda, Y.; Kanazawa, M.; Arakida, T.; Iwaki, M.; Minakuchi, S. CAD-CAM milled complete dentures with custom disks and prefabricated artificial teeth: A dental technique. J. Prosthet. Dent. 2022, 127, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Otake, R.; Kanazawa, M.; Iwaki, M.; Soeda, Y.; Hada, T.; Katheng, A.; Komagamine, Y.; Minakuchi, S. Patient-reported outcome and cost-effectiveness analysis of milled and conventionally fabricated complete dentures in a university clinic: A retrospective study. J. Prosthet. Dent. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Iwaki, M.; Kanazawa, M.; Arakida, T.; Minakuchi, S. Mechanical properties of a polymethyl methacrylate block for CAD/CAM dentures. J. Oral. Sci. 2020, 62, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Kanazawa, M.; Iwaki, M.; Katheng, A.; Minakuchi, S. Comparison of mechanical properties of PMMA disks for digitally designed dentures. Polymers 2021, 13, 1745. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 116, 249–256. [Google Scholar] [CrossRef]
- Srinivasan, M.; Cantin, Y.; Mehl, A.; Gjengedal, H.; Müller, F.; Schimmel, M. CAD/CAM milled removable complete dentures: An in vitro evaluation of trueness. Clin. Oral. Investig. 2017, 21, 2007–2019. [Google Scholar] [CrossRef]
- Lo Russo, L.; Salamini, A. Single-arch digital removable complete denture: A workflow that starts from the intraoral scan. J. Prosthet. Dent. 2018, 120, 20–24. [Google Scholar] [CrossRef]
- Srinivasan, M.; Gjengedal, H.; Cattani-Lorente, M.; Moussa, M.; Durual, S.; Schimmel, M.; Müller, F. CAD/CAM milled complete removable dental prostheses: An in vitro evaluation of biocompatibility, mechanical properties, and surface roughness. Dent. Mater. J. 2018, 37, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Steinmassl, O.; Dumfahrt, H.; Grunert, I.; Steinmassl, P.A. Influence of CAD/CAM fabrication on denture surface properties. J. Oral. Rehabil. 2018, 45, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Kraemer Fernandez, P.; Unkovskiy, A.; Benkendorff, V.; Klink, A.; Spintzyk, S. Surface characteristics of milled and 3D printed denture base materials following polishing and coating: An in-vitro study. Materials 2020, 13, 3305. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Kalberer, N.; Kamnoedboon, P.; Mekki, M.; Durual, S.; Özcan, M.; Müller, F. CAD-CAM complete denture resins: An evaluation of biocompatibility, mechanical properties, and surface characteristics. J. Dent. 2021, 114, 103785. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, M.; Nozaki, K.; Yanaka, W.; Nemoto, R.; Takita, M.; Yamashita, K.; Matsumura, M.; Miura, H. Optimization of milling condition of composite resin blocks for CAD/CAM to improve surface roughness and flexural strength. Dent. Mater. J. 2020, 39, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.L.B.; Kwon, Y.J. Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data. J. Comput. Des. Eng. 2014, 1, 128–139. [Google Scholar] [CrossRef]
- Ribeiro, J.E.; César, M.B.; Lopes, H. Optimization of machining parameters to improve the surface quality. Procedia Struct. Integr. 2017, 5, 355–362. [Google Scholar] [CrossRef]
- Nurhaniza, M.; Ariffin, M.K.A.M.; Mustapha, F.; Baharudin, B.T.H.T. Analyzing the effect of machining parameters setting to the surface roughness during end milling of CFRP-aluminium composite laminates. Int. J. Manuf. Eng. 2016, 2016, 4680380. [Google Scholar] [CrossRef]
- Benardos, P.G.; Vosniakos, G.C. Predicting surface roughness in machining: A review. Int. J. Mach. Tool. Manuf. 2003, 43, 833–844. [Google Scholar] [CrossRef]
- Ozcelik, B.; Bayramoglu, M. The statistical modeling of surface roughness in high-speed flat end milling. Int. J. Mach. Tool. Manuf. 2006, 46, 1395–1402. [Google Scholar] [CrossRef]
- OSG Corporation MILLING TOOLS 2023-2024—OSG Corporation, Aichi. 2023. Available online: https://osg.icata.net/iportal/CatalogViewInterfaceStartUpAction.do?method=startUp&mode=PAGE&catalogId=138550000&pageGroupId=1&volumeID=OSGDCS01&designID=OSGD01 (accessed on 28 November 2023).
- ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization of Standardization (ISO): Geneva, Switzerland, 2021. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:21920:-2:ed-1:v2:en (accessed on 28 November 2023).
- Iwabe, H.; Kikuchi, K.; Futakawa, M.; Kazama, Y. Study on cutting mechanism and cutting performance of inclined surface machining with radius end mill-comparison with cutting method of contouring path and scanning path. J. Jpn. Soc. Precis. Eng. 2015, 81, 655–660. [Google Scholar] [CrossRef]
- Iwabe, H.; Kikuchi, K.; Shirai, K. Analysis of theoretical roughness of radius end milling (Geometrical analysis in case of contouring and scanning method and experiments). Trans. JSME 2015, 81, 15–289. [Google Scholar]
Milling Process | Tools | Spindle Speed (rpm) | Feed Rate (mm/min) |
---|---|---|---|
Rough (Front) | Φ6 (AE-TS-N 6 × 18) | 16,000 | 1300 |
Rough (Back) | Φ6 (AE-TS-N 6 × 18) | 16,000 | 1300 |
Rest rough (Front) | Φ3 (AE-TL-N 3 × 15) | 18,000 | 1200 |
Rest rough (Back) | Φ3 (AE-TL-N 3 × 15) | 18,000 | 1200 |
Rest rough 2 (Front) | Φ2 (WXL-LN-EBD R1 × 20 × 4) | 26,000 | 2300 |
Rest rough 2 (Back) | Φ2 (WXL-LN-EBD R1 × 20 × 4) | 26,000 | 2300 |
Fine (Front) | Φ2 (WXL-LN-EBD R1 × 20 × 4) | 20,000 30,000 40,000 | 2000 |
2500 | |||
3000 | |||
3500 | |||
Fine (Back) | Φ2 (WXL-LN-EBD R1 × 20 × 4) | 20,000 20,000 40,000 | 2000 |
2500 | |||
3000 | |||
3500 |
ISO | ISO 21920-2:2021 |
---|---|
λc | 2.5 mm |
λs | 8 μm |
Length | 6.00 mm |
Speed | 0.5 mm/s |
Feed Rate (mm/min) | Spindle Speed (rpm) | ||
---|---|---|---|
20,000 | 30,000 | 40,000 | |
Median (IQR) | Median (IQR) | Median (IQR) | |
2000 | 1.59 (1.48–1.78) a | 1.75 (1.71–1.78) ab | 1.88 (1.67–2.16) bcde |
2500 | 1.74 (1.59–1.84) abc | 2.04 (1.75–2.33) cdef | 1.82 (1.74–1.88) abcd |
3000 | 1.90 (1.84–1.90) abcde | 1.99 (1.91–2.36) ef | 1.94 (1.93–2.01) def |
3500 | 2.04 (2.00–2.12) ef | 2.32 (2.10–2.44) f | 2.04 (1.92–2.08) ef |
Feed Rate (mm/min) | Spindle Speed (rpm) | ||
---|---|---|---|
20,000 | 30,000 | 40,000 | |
Median (IQR) | Median (IQR) | Median (IQR) | |
2000 | 3.53 (3.34–3.89) de | 2.65 (1.97–2.75) abc | 1.60 (1.55–1.75) ab |
2500 | 3.88 (3.56–3.92) de | 2.93 (2.88–3.00) cd | 1.60 (1.50–1.70) a |
3000 | 4.37 (3.99–4.61) e | 2.70 (2.59–2.97) abcd | 1.65 (1.55–1.72) a |
3500 | 4.20 (4.10–4.41) e | 2.92 (2.86–3.13) cd | 1.71 (1.63–1.90) abc |
Feed Rate (mm/min) | Spindle Speed (rpm) | ||
---|---|---|---|
20,000 | 30,000 | 40,000 | |
Median (IQR) | Median (IQR) | Median (IQR) | |
2000 | 1.52 (1.52–1.54) | 1.45 (1.52–1.58) | 1.41 (1.41–1.41) |
2500 | 1.52 (1.40–1.53) | 1.54 (1.52–1.58) | 1.47 (1.36–1.53) |
3000 | 1.43 (1.39–1.44) | 1.47 (1.44–1.50) | 1.52 (1.50–1.54) |
3500 | 1.51 (1.48–1.53) | 1.38 (1.33–1.45) | 1.45 (1.41–1.49) |
Feed Rate (mm/min) | Spindle Speed (rpm) | ||
---|---|---|---|
20,000 | 30,000 | 40,000 | |
Median (IQR) | Median (IQR) | Median (IQR) | |
2000 | 35′54″ (35′49″–35′58″) c | 35′56″ (35′50″–35′59″) c | 35′56″ (35′49″–36′00″) c |
2500 | 34′35″ (34′31″–34′39″) bc | 34′36″ (34′31″–34′41″) bc | 34′38″ (34′31″–34′43″) bc |
3000 | 33′48″ (33′44″–33′53″) ab | 33′49″ (33′45″–33′53″) ab | 33′47″ (33′43″–33′52″) a |
3500 | 33′26″ (33′23″–33′31″) a | 33′27″ (33′24″–33′33″) a | 33′27″ (33′24″–33′33″) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akiyama, Y.; Iwaki, M.; Komagamine, Y.; Minakuchi, S.; Kanazawa, M. Effect of Spindle Speed and Feed Rate on Surface Roughness and Milling Duration in the Fabrication of Milled Complete Dentures: An In Vitro Study. Appl. Sci. 2023, 13, 13338. https://doi.org/10.3390/app132413338
Akiyama Y, Iwaki M, Komagamine Y, Minakuchi S, Kanazawa M. Effect of Spindle Speed and Feed Rate on Surface Roughness and Milling Duration in the Fabrication of Milled Complete Dentures: An In Vitro Study. Applied Sciences. 2023; 13(24):13338. https://doi.org/10.3390/app132413338
Chicago/Turabian StyleAkiyama, Yo, Maiko Iwaki, Yuriko Komagamine, Shunsuke Minakuchi, and Manabu Kanazawa. 2023. "Effect of Spindle Speed and Feed Rate on Surface Roughness and Milling Duration in the Fabrication of Milled Complete Dentures: An In Vitro Study" Applied Sciences 13, no. 24: 13338. https://doi.org/10.3390/app132413338
APA StyleAkiyama, Y., Iwaki, M., Komagamine, Y., Minakuchi, S., & Kanazawa, M. (2023). Effect of Spindle Speed and Feed Rate on Surface Roughness and Milling Duration in the Fabrication of Milled Complete Dentures: An In Vitro Study. Applied Sciences, 13(24), 13338. https://doi.org/10.3390/app132413338