Surface Roughness Evaluation of Pre- Versus Post-Crystallization Polish of Two High-Strength Silicate Ceramics for Chairside CAD/CAM Technology
<p>Sample design using CEREC SW 5.2 (Dentsply Sirona).</p> "> Figure 2
<p>Silicate wheel polishers, from left to right: Brasseler Dialite LD, pre-polishing and high gloss; Meisinger polishing wheels for silicate ceramics, pre-polishing and high shine; and Vita Suprinity polishing set technical, pre-polishing and high gloss.</p> "> Figure 3
<p>The Y axis represents surface roughness values (Sa) in microns, and the X axis represents baseline groups for both materials, IPS e.max CAD and Vita Suprinity PC, before and after the final crystallization of the samples.</p> "> Figure 4
<p>IPS e.max CAD—two-dimensional (2D) and three-dimensional (3D) micrographs produced by Olympus LEXT OLS4100 Confocal Laser Scanning Microscope. (<b>A</b>) IPS e.max CAD after milling (baseline) with surface roughness more apparent, (<b>B</b>) LDS polished using Brasseler pre-crystallization, (<b>C</b>) LDS polished using Brasseler post-crystallization, (<b>D</b>) LDS polished using Meisinger pre-crystallization, and (<b>E</b>) LDS polished using Meisinger post-crystallization.</p> "> Figure 5
<p>VITA Suprinity PC—two-dimensional (2D) and three-dimensional (3D) micrographs produced by Olympus LEXT OLS4100 Confocal Laser Scanning Microscope. (<b>A</b>) Suprinity PC after milling (baseline), (<b>B</b>) ZLS polished using Brasseler pre-crystallization, (<b>C</b>) ZLS polished using Brasseler post-crystallization, (<b>D</b>) ZLS polished using VITA Suprinity set pre-crystallization, (<b>E</b>) ZLS polished using VITA Suprinity set post-crystallization.</p> "> Figure 6
<p>The Y axis represents the surface roughness value (Sq) in microns, and the X axis represents the polished groups of Vita Suprinity PC, either by Brasseler or Vita Polishers, before and after final crystallization of the samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Chairside polishing of lithium disilicate (IPS e.max CAD) and zirconia-reinforced lithium silicate (Vita Suprinity PC) without the use of diamond polishing paste effectively reduced surface roughness in silicate CAD/CAM ceramics, regardless of whether it took place before or after the final crystallization.
- When polishing timing was assessed, no significant differences were detected, neither before nor after final crystallization of IPS e.max CAD.
- The timing of the post-milling procedure was a critical factor in the 3D surface roughness for Vita Suprinity PC. Polishing before crystallization led to significantly rougher surface textures than polishing after crystallization. Therefore, the polishing procedure of ZLS is recommended to be carried out after the final crystallization stage of the material.
- Among the three polishing systems tested, no significant differences were observed in their ability to smooth both materials. LDS and ZLS when polished post-crystallization exhibited comparable polishability, with no significant variances in 3D surface smoothness values.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mörmann, W.H.; Brandestini, M.; Lutz, F.; Barbakow, F. Chairside Computer-Aided Direct Ceramic Inlays. Quintessence Int. 1989, 20, 329–339. [Google Scholar] [PubMed]
- Kelly, J.R.; Benetti, P. Ceramic Materials in Dentistry: Historical Evolution and Current Practice. Aust. Dent. J. 2011, 56 (Suppl. S1), 84–96. [Google Scholar] [CrossRef] [PubMed]
- Suganna, M.; Kausher, H.; Ahmed, S.T.; Alharbi, H.S.; Alsubaie, B.F.; Ds, A.; Haleem, S.; Ali, A.B.M.R. Contemporary Evidence of CAD-CAM in Dentistry: A Systematic Review. Cureus 2022, 14, e31687. [Google Scholar] [CrossRef] [PubMed]
- Moörmann, W.H. The Evolution of the CEREC System. J. Am. Dent. Assoc. 2006, 137, 7S–13S. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.C., Jr.; Santos, M.J., Jr.; Rizkalla, A.S.; Madani, D.A.; El-Mowafy, O. Overview of CEREC CAD/CAM Chairside System. Gen. Dent. 2013, 61, 36–41. [Google Scholar] [PubMed]
- Fasbinder, D.J. Computerized Technology for Restorative Dentistry. Am. J. Dent. 2013, 26, 115–120. [Google Scholar]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital Dentistry: An Overview of Recent Developments for CAD/CAM Generated Restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, A.; Shenoy, N. Dental Ceramics: An Update. J. Conserv. Dent. 2010, 13, 195–203. [Google Scholar] [CrossRef]
- Conrad, H.J.; Seong, W.-J.; Pesun, I.J. Current Ceramic Materials and Systems with Clinical Recommendations: A Systematic Review. J. Prosthet. Dent. 2007, 98, 389–404. [Google Scholar] [CrossRef]
- Babu, P.J.; Alla, R.K.; Alluril, V.R.; Datla, S.R.; Konakanchi, A. Dental Ceramics: Part I—An Overview of Composition, Structure and Properties. Am. J. Mater. Eng. Technol. 2015, 3, 13–18. [Google Scholar]
- Li, R.W.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Lien, W.; Roberts, H.W.; Platt, J.A.; Vandewalle, K.S.; Hill, T.J.; Chu, T.-M.G. Microstructural Evolution and Physical Behavior of a Lithium Disilicate Glass–Ceramic. Dent. Mater. 2015, 31, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-F.; Ren, H.-T.; Yin, L. Machinability of Lithium Disilicate Glass Ceramic in In Vitro Dental Diamond Bur Adjusting Process. J. Mech. Behav. Biomed. Mater. 2016, 53, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Yara, A.; Ogura, H.; Shinya, A.; Tomita, S.; Miyazaki, T.; Sugai, Y.; Sakamoto, Y. Durability of Diamond Burs for the Fabrication of Ceramic Crowns Using Dental CAD/CAM. Dent. Mater. J. 2005, 24, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Wittneben, J.-G.; Wright, R.F.; Weber, H.-P.; Gallucci, G.O. A Systematic Review of the Clinical Performance of CAD/CAM Single-Tooth Restorations. Int. J. Prosthodont. 2009, 22, 466–471. [Google Scholar] [PubMed]
- Jagger, D.C.; Harrison, A. An In Vitro Investigation into the Wear Effects of Unglazed, Glazed, and Polished Porcelain on Human Enamel. J. Prosthet. Dent. 1994, 72, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Amer, R.; Kürklü, D.; Kateeb, E.; Seghi, R.R. Three-Body Wear Potential of Dental Yttrium-Stabilized Zirconia Ceramic after Grinding, Polishing, and Glazing Treatments. J. Prosthet. Dent. 2014, 112, 1151–1155. [Google Scholar] [CrossRef]
- Rashid, H. The Effect of Surface Roughness on Ceramics Used in Dentistry: A Review of Literature. Eur. J. Dent. 2014, 8, 571–579. [Google Scholar] [CrossRef]
- Saiki, O.; Koizumi, H.; Akazawa, N.; Kodaira, A.; Okamura, K.; Matsumura, H. Wear Characteristics of Polished and Glazed Lithium Disilicate Ceramics Opposed to Three Ceramic Materials. J. Oral Sci. 2016, 58, 117–123. [Google Scholar] [CrossRef]
- Sainan, Z.; Li, J.; Lei, Z.; Liying, H.; Lu, Y.; Wei, L. Influence of Surface Roughness on Oral Streptococcal Adhesion Forces to Dental Filling Materials. West China J. Stomatol. 2016, 34, 448–453. [Google Scholar] [CrossRef]
- Matzinger, M.; Hahnel, S.; Preis, V.; Rosentritt, M. Polishing Effects and Wear Performance of Chairside CAD/CAM Materials. Clin. Oral Investig. 2019, 23, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of Esthetic Dental Restorative CAD/CAM Materials and Composite Resins with Respect to Thickness and Surface Roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Kurt, M.; Güngör, M.B.; Nemli, S.K.; Bal, B.T. Effects of Glazing Methods on the Optical and Surface Properties of Silicate Ceramics. J. Prosthodont. Res. 2020, 64, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Maciel, L.C.; Silva, C.F.B.; de Jesus, R.H.; Concílio, L.R.d.S.; Kano, S.C.; Xible, A.A. Influence of Polishing Systems on Roughness and Color Change of Two Dental Ceramics. J. Adv. Prosthodont. 2019, 11, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ludovichetti, F.S.; Trindade, F.Z.; Adabo, G.L.; Pezzato, L.; Fonseca, R.G. Effect of Griding and Polishing on the Roughness and Fracture Resistance of Cemented CAD-CAM Monolithic Materials Submitted to Mechanical Aging. J. Prothet. Dent. 2019, 121, 866.e1–866.e8. [Google Scholar] [CrossRef]
- Curran, P.; Cattani-Lorente, M.; Wiskott, H.A.; Durual, S.; Scherrer, S.S. Grinding damage assessment for CAD-CAM restorative materials. Dent. Mater. 2017, 33, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Amin, M. Comparison of Surface Hardness between Polished, Glazed and Unpolished Porcelain Surfaces. Master’s Thesis, Marmara Universitesi, Istanbul, Turkey, 1998. [Google Scholar]
- Heintze, S.D.; Cavalleri, A.; Forjanic, M.; Zellweger, G.; Rousson, V. Wear of Ceramic and Antagonist—A Systematic Evaluation of Influencing Factors In Vitro. Dent. Mater. 2008, 24, 433–449. [Google Scholar] [CrossRef]
- Lawson, N.C.; Janyavula, S.; Syklawer, S.; McLaren, E.A.; Burgess, J.O. Wear of Enamel Opposing Zirconia and Lithium Disilicate after Adjustment, Polishing and Glazing. J. Dent. 2014, 42, 1586–1591. [Google Scholar] [CrossRef]
- Akar, G.C.; Pekkan, G.; Çal, E.; Eskitaşçıoğlu, G.; Özcan, M. Effects of Surface-Finishing Protocols on the Roughness, Color Change, and Translucency of Different Ceramic Systems. J. Prosthet. Dent. 2014, 112, 314–321. [Google Scholar] [CrossRef]
- Martínez-Gomis, J.; Bizar, J.; Anglada, J.M.; Samsó, J.; Peraire, M. Comparative Evaluation of Four Finishing Systems on One Ceramic Surface. Int. J. Prosthodont. 2003, 16, 74–77. [Google Scholar]
- Kang, S.-H.; Chang, J.; Son, H.-H. Flexural Strength and Microstructure of Two Lithium Disilicate Glass Ceramics for CAD/CAM Restoration in the Dental Clinic. Restor. Dent. Endod. 2013, 38, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Mota, E.G.; Smidt, L.N.; Fracasso, L.M.; Burnett, L.H., Jr.; Spohr, A.M. The Effect of Milling and Postmilling Procedures on the Surface Roughness of CAD/CAM Materials. J. Esthet. Restor. Dent. 2017, 29, 450–458. [Google Scholar] [CrossRef]
- Vichi, A.; Fonzar, R.F.; Goracci, C.; Carrabba, M.; Ferrari, M. Effect of Finishing and Polishing on Roughness and Gloss of Lithium Disilicate and Lithium Silicate Zirconia Reinforced Glass Ceramic for CAD/CAM Systems. Oper. Dent. 2018, 43, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Mohammadibassir, M.; Rezvani, M.B.; Golzari, H.; Salehi, E.M.; Fahimi, M.A.; Fard, M.J.K. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic. J. Prosthodont. 2019, 28, E172–E180. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.M.; Ali, I.A.; Khan, K.; Mattheos, N.; Murbay, S.; Matinlinna, J.P.; Neelakantan, P. The Influence of Surface Roughening and Polishing on Microbial Biofilm Development on Different Ceramic Materials. J. Prosthodont. 2021, 30, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Bollenl, C.M.; Lambrechts, P.; Quirynen, M. Comparison of Surface Roughness of Oral Hard Materials to the Threshold Surface Roughness for Bacterial Plaque Retention: A Review of the Literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Riquieri, H.; Monteiro, J.B.; Viegas, D.C.; Campos, T.M.B.; de Melo, R.M.; Saavedra, G.d.S.F.A. Impact of Crystallization Firing Process on the Microstructure and Flexural Strength of Zirconia-Reinforced Lithium Silicate Glass-Ceramics. Dent. Mater. 2018, 34, 1483–1491. [Google Scholar] [CrossRef]
- Zarone, F.; Ruggiero, G.; Leone, R.; Breschi, L.; Leuci, S.; Sorrentino, R. Zirconia-Reinforced Lithium Silicate (ZLS) Mechanical and Biological Properties: A Literature Review. J. Dent. 2021, 109, 103661. [Google Scholar] [CrossRef]
- Krüger, S.; Deubener, J.; Ritzberger, C.; Höland, W. Nucleation Kinetics of Lithium Metasilicate in ZrO2-Bearing Lithium Disilicate Glasses for Dental Application. Int. J. Appl. Glas. Sci. 2013, 4, 9–19. [Google Scholar] [CrossRef]
- Aurélio, I.L.; Dorneles, L.S.; May, L.G. Extended Glaze Firing on Ceramics for Hard Machining: Crack Healing, Residual Stresses, Optical and Microstructural Aspects. Dent. Mater. 2017, 33, 226–240. [Google Scholar] [CrossRef]
Trademark—Polishers | Details | Product No | rpm |
---|---|---|---|
BRASSELER Dialite LD | Two-step diamond-impregnated polishers (red medium-grit and yellow fine-grit wheels for straight handpiece) | R17MLD.HP R17FLD.HP | 7000–10,000 7000–10,000 |
MEISINGER Lithium Silicate Polishing Wheels | Two-step diamond-impregnated polishing system (pre-polish and high-shine wheels for straight handpiece) | DPO09-170-HP DPO10-170HP | 10,000 6000 |
VITA SUPRINITY Polishing Set Technical | Two-step diamond-coated polishing system (pre- and high-gloss wheel polishers for straight handpiece) | ERHR15M6 ERHR15F6 | 12,000 12,000 |
Group 1 (Baseline) | Group 2 (Baseline) | Group 3 | Group 4 | Group 5 | Group 6 | ||
---|---|---|---|---|---|---|---|
IPS e.max CAD (Ivoclar- Vivadent) | Polishing | Unpolished (negative control) | Unpolished (positive control) | Brasseler Dialite LD | Brasseler Dialite LD | Meisinger LDS Polishing Wheels | Meisinger LDS Polishing Wheels |
Crystallization process | Pre- crystallization | Post- crystallization | Pre- crystallization | Post- crystallization | Pre- crystallization | Post- crystallization | |
VITA Suprinity (VITA Zahnfabrik) | Polishing | Unpolished (negative control) | Unpolished (positive control) | Brasseler Dialite LD | Brasseler Dialite LD | VITA Suprinity Polishing Set Technical | VITA Suprinity Polishing Set Technical |
Crystallization process | Pre- crystallization | Post- crystallization | Pre- crystallization | Post- crystallization | Pre- crystallization | Post- crystallization |
Groups | Blocks | Polishing System | Electric Handpiece Finishing/Polishing Protocol |
---|---|---|---|
3 | IPS E.MAX CAD (n = 12) | Brasseler—Dialite LD | Pre-polishing: 40 s 10,000 rpm High-shine: 40 s 10,000 rpm |
VITA SUPRINITY PC (n = 12) | Brasseler—Dialite LD | Pre-polishing: 40 s 10,000 rpm High-shine: 40 s 10,000 rpm | |
4 | IPS E.MAX CAD (n = 12) | Brasseler—Dialite LD | Pre-polishing: 40 s 10,000 rpm High-shine: 40 s 10,000 rpm |
VITA SUPRINITY PC (n = 12) | Brasseler—Dialite LD | Pre-polishing: 40 s 10,000 rpm High-shine: 40 s 10,000 rpm | |
5 | IPS E.MAX CAD (n = 12) | Meisinger—Lithium Silicate Polishing Wheels | Pre-polishing: 40 s 10,000 rpm High-shine: 40 s 6000 rpm |
VITA SUPRINITY PC (n = 12) | Vita Suprinity Wheels Polishing Set Techincal | Pre-polishing: 40 s 10,000 rpm High-gloss: 40 s 6000 rpm | |
6 | IPS E.MAX CAD (n = 12) | Meisinger—Lithium Silicate Polishing Wheels | Pre-polishing: 40 s 10,000 rpm High-shine: 40 s 6000 rpm |
VITA SUPRINITY PC (n = 12) | Vita Suprinity Wheels Polishing Set Techincal | Pre-polishing: 40 s 12,000 rpm High-gloss: 40 s 12,000 rpm |
Areal Roughness (Sa) | ||||||
---|---|---|---|---|---|---|
IPS E.MAX CAD | VITA SUPRINITY PC | |||||
Groups | Mean | ±SD | Mann–Whitney U | Mean | ±SD | |
1 | 1.225 a | 0.083 | 132.0 (p = 0.0000555) | 0.967 c | 0.048 | |
2 | 1.107 a | 0.116 | 144.0 (p = 0.0000364) | 0.630 d | 0.044 | |
3 | 0.017 b | 0.003 | 17.0 (p = 0.0016) | 0.025 e | 0.005 | |
4 | 0.019 b | 0.004 | 123.0 (p = 0.0033) | 0.014 b | 0.003 | |
5 | 0.016 b | 0.005 | 12.0 (p = 0.000576) | 0.024 e | 0.006 | |
6 | 0.019 b | 0.003 | 126.0 (p = 0.0018) | 0.013b | 0.002 |
BASELINE (Control) Groups (n = 12) | Values (Subset for Alpha = 0.05) | ||
---|---|---|---|
VITA Suprinity PC after crystallization | 0.630 a | ||
VITA Suprinity PC before crystallization | 0.967 b | ||
IPS e.max CAD after crystallization | 1.107 c | ||
IPS e.max CAD before crystallization | 1.225 d | ||
Significance level (p-value) | 1.000 | 1.000 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rea, F.T.; Valcanaia, A.; Herrera-Fierro, P.; Verma, M.; Neiva, G.d.F. Surface Roughness Evaluation of Pre- Versus Post-Crystallization Polish of Two High-Strength Silicate Ceramics for Chairside CAD/CAM Technology. Appl. Sci. 2024, 14, 2768. https://doi.org/10.3390/app14072768
Rea FT, Valcanaia A, Herrera-Fierro P, Verma M, Neiva GdF. Surface Roughness Evaluation of Pre- Versus Post-Crystallization Polish of Two High-Strength Silicate Ceramics for Chairside CAD/CAM Technology. Applied Sciences. 2024; 14(7):2768. https://doi.org/10.3390/app14072768
Chicago/Turabian StyleRea, Felipe Tarosso, Andre Valcanaia, Pilar Herrera-Fierro, Manish Verma, and Gisele de Faria Neiva. 2024. "Surface Roughness Evaluation of Pre- Versus Post-Crystallization Polish of Two High-Strength Silicate Ceramics for Chairside CAD/CAM Technology" Applied Sciences 14, no. 7: 2768. https://doi.org/10.3390/app14072768
APA StyleRea, F. T., Valcanaia, A., Herrera-Fierro, P., Verma, M., & Neiva, G. d. F. (2024). Surface Roughness Evaluation of Pre- Versus Post-Crystallization Polish of Two High-Strength Silicate Ceramics for Chairside CAD/CAM Technology. Applied Sciences, 14(7), 2768. https://doi.org/10.3390/app14072768