R Libraries for Remote Sensing Data Classification by K-Means Clustering and NDVI Computation in Congo River Basin, DRC
<p>Study area with the location of the three target cities in Congo River Basin, DCR. Cartography: Generic Mapping Tools (GMT). Data source: GEBCO/SRTM. Map source: authors.</p> "> Figure 2
<p>Workflow of the study project summarising general steps of the study, including aim and objectives, methodology and results used in a framework of R application for remote sensing data processing and land cover change detection by unsupervised classification (k-means clustering) of Landsat satellite images for selected regions of Congo, D.R.C.</p> "> Figure 3
<p>The functionality of R packages used for satellite image processing and classification in this study. Major packages include terra, raster, Rstoolbox, rgdal, rgeos, cluster, graphics, and RColorBrewer.</p> "> Figure 4
<p>Composite of monochrome 11 bands: Landsat-8 OLI/TIRS C1 for Basoko region (Arowumi and Congo rivers). Multi-spectral image ’LC81770592022039LGN00’: ultra blue (B1), blue (B2), green (B3), red (B4), near infrared (NIR) (B5), shortwave infrared (SWIR) 1 (B6), shortwave infrared (SWIR) 2 (B7), panchromatic (B8), cirrus (B9), thermal infrared (TIRS) 1 (B10), TIRS2 (B11). Plotting: R.</p> "> Figure 5
<p>Natural (bands 4-3-2) and false colour (bands 5-4-3) composites of the Landsat 8 OLI/TIRS image for the three target areas: Bumba, Basoko and Kisangani. Mapping: RStudio. (<b>a</b>) Bumba: natural colour composite, 2013. (<b>b</b>) Bumba: false colour composite: 2013. (<b>c</b>) Basoko: natural colour composite: 2013. (<b>d</b>) Basoko: false colour composite: 2013. (<b>e</b>) Kisangani: Natural colour composite: 2013. (<b>f</b>) Kisangani: False colour composite: 2013.</p> "> Figure 6
<p>Executing the k-means clustering classification algorithm in RStudio using the RStoolbox package. Parameters of cluster centroids and sum of squares by cluster are displayed in the console of R. Spatial parameters of the output map are listed. Here is shown the example of Landsat image of Basoko.</p> "> Figure 7
<p>Bumba town and surroundings of the Congo River: raw Landsat-8 OLI/TIRS scene for years 2013 and 2022 and the classified outputs by k-means clustering. Mapping: RStudio. Source: authors. (<b>a</b>) Monochrome image for Bumba region: 2013. (<b>b</b>) Classified scene using k-means clustering: 2013. (<b>c</b>) Monochrome image for Bumba region: 2022. (<b>d</b>) Classified scene using k-means clustering: 2022.</p> "> Figure 8
<p>Basoko town (Tshopo Province) and surroundings in the confluence of the Aruwimi River tributary into the main stream of the Congo River: raw Landsat-8 OLI/TIRS scene for years 2013 and 2022 and the classified outputs by k-means clustering. Mapping: RStudio. Source: authors. (<b>a</b>) True-colour composite image for Basoko: 2013. (<b>b</b>) Classified scene using k-means clustering: 2013. (<b>c</b>) True-colour composite image for Basoko: 2022. (<b>d</b>) Classified scene using k-means clustering: 2022.</p> "> Figure 9
<p>Kisangani city (Tshopo Province) and region in the junction of the Tshopo and Lindi tributaries into the Congo River: raw Landsat-8 OLI/TIRS scene for years 2013, 2015 and 2022 and the classified outputs by k-means clustering. Mapping: RStudio. Source: authors. (<b>a</b>) True-colour composite image, Kisangani, 2013. (<b>b</b>) Classified scene using k-means clustering: 2013. (<b>c</b>) Classified scene using k-means clustering: 2015. (<b>d</b>) Classified scene using k-means clustering: 2022.</p> "> Figure 10
<p>NDVI computed from 5 and 4 bands of the Landsat-8 OLI/TIRS scenes for years 2013 and 2022 for the three key areas: Bumba, Basoko, Kisangani. Mapping: RStudio. Source: authors. (<b>a</b>) Bumba region: 2013. (<b>b</b>) Bumba region: 2022. (<b>c</b>) Basoko region: 2013. (<b>d</b>) Basoko region: 2022. (<b>e</b>) Kisangani region: 2013. (<b>f</b>) Kisangani region: 2022.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Research Design
3.2. Data
Listing 1: R code used for data inspection by rGDAL and raster libraries; here a case of Basoko town applied for all other images. |
3.3. Plotting Band Composites
Listing 2: R code used for colour composites by libraries raster and terra; here a case of Bumba town applied likewise for all the other images. |
Listing 3: R code used for the monochrome individual bands of the image Landsat OLI/TIRS. |
3.4. K-Means Clustering
Listing 4: R code used for running the unsupervised classification by k-means clustering; here a case of Basoko town applied for all other images. |
3.5. NDVI Calculation
Listing 5: R code using library terra used for calculation the NDVI; here a case of Basoko town (2013) with the same principle applied for all other images. |
4. Results and Discussion
4.1. Image Classification
4.2. NDVI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPT | Colour Palette Table |
DCW | Digital Chart of the World |
DEM | Digital Elevation Model |
DN | Digital Number |
GCP | Ground Control Points |
GEBCO | General Bathymetric Chart of the Oceans |
GDAL | Geospatial Data Abstraction Library |
GIS | Geographic Information System |
GLS | Global Land Survey |
GloVis | Global Visualization Viewer |
GMT | Generic Mapping Tools |
GRFM | Global Rain Forest Mapping |
Landsat 8-9 OLI/TIRS | Landsat 8–9 Operational Land Imager and Thermal Infrared Sensor |
LAI | Leaf Area Index |
LiDAR | Light Detection and Ranging |
L1TP | Level 1 Terrain Precision (Corrected) |
LULC | Land Use / Land Cover |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NDVI | Normalized Difference Vegetation Index |
NGA | National Geospatial-Intelligence Agency |
NIR | Near Infrared |
REDD | Reducing Emissions from Deforestation and Forest Degradation |
SAR | Synthetic Aperture Radar |
RMSE | Root Mean Square Error |
SAR | Synthetic Aperture Radar |
SRTM | Shuttle Radar Topography Mission |
SWIR | Short Wave Infrared |
UAV | Unmanned Aerial Vehicle |
USGS | United States Geological Survey |
UTM | Universal Transverse Mercator |
WRS | Worldwide Reference System |
References
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Manakos, I.; Braun, M. Land Use and Land Cover Mapping in Europe. Practices & Trends. In Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2014; Volume 18, p. 436. [Google Scholar] [CrossRef]
- Sikuzani, Y.U.; Muteya, H.K.; Bogaert, J. Miombo woodland, an ecosystem at risk of disappearance in the Lufira Biosphere Reserve (Upper Katanga, DR Congo)? A 39-years analysis based on Landsat images. Glob. Ecol. Conserv. 2020, 24, e01333. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P.; Desclée, B.; Mayaux, P. Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens. Environ. 2008, 112, 1969–1981. [Google Scholar] [CrossRef]
- Ygorra, B.; Frappart, F.; Wigneron, J.P.; Moisy, C.; Catry, T.; Baup, F.; Hamunyela, E.; Riazanoff, S. Deforestation Monitoring Using Sentinel-1 SAR Images in Humid Tropical Areas. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5957–5960. [Google Scholar] [CrossRef]
- Lemenkova, P. Sentinel-2 for High Resolution Mapping of Slope-Based Vegetation Indices Using Machine Learning by SAGA GIS. Transylv. Rev. Syst. Ecol. Res. 2020, 22, 17–34. [Google Scholar] [CrossRef]
- Dalimier, J.; Claverie, M.; Goffart, B.; Jungers, Q.; Lamarche, C.; De Maet, T.; Defourny, P. Characterizing the Congo Basin Forests by a Detailed Forest Typology Enriched with Forest Biophysical Variables. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 673–676. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, F.; Wang, X.; Foody, G.M.; Boyd, D.S.; Li, X.; Du, Y.; Atkinson, P.M. Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record. Remote Sens. Environ. 2021, 261, 112470. [Google Scholar] [CrossRef]
- Chen, N.; Tsendbazar, N.E.; Hamunyela, E.; Verbesselt, J.; Herold, M. Sub-annual tropical forest disturbance monitoring using harmonized Landsat and Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102386. [Google Scholar] [CrossRef]
- Verhegghen, A.; Hugh, E.; Achard, F. Assessing forest degradation from selective logging using time series of fine spatial resolution imagery in Republic of Congo. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2044–2047. [Google Scholar] [CrossRef]
- Haarpaintner, J.; Einzmann, K.; Pedrazzani, D.; Mateos San Juan, M.; Gómez Giménez, M.; Heinzel, J.; Enßle, F.; Mane, L. Tropical forest remote sensing services for the Democratic Republic Of Congo case inside the EU FP7 ‘ReCover’ project (1st iteration). In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6392–6395. [Google Scholar] [CrossRef]
- Sakurai-Amano, T.; Onuki, S.; Takagi, M. Automatic extraction of rivers in tropical rain forests from JERS-1 SAR images using spectral and spatial information. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 6, pp. 3429–3431. [Google Scholar] [CrossRef]
- Floury, N.; Le Toan, T.; Jeanjean, H.; Beaudoin, A.; Hamel, O. L and C-band multipolarized backscatter responses of eucalyptus plantations in Congo. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; Volume 1, pp. 728–730. [Google Scholar] [CrossRef]
- Zhang, H.; Bauters, M.; Boeckx, P.; Van Oost, K. Mapping Canopy Heights in Dense Tropical Forests Using Low-Cost UAV-Derived Photogrammetric Point Clouds and Machine Learning Approaches. Remote Sens. 2021, 13, 3777. [Google Scholar] [CrossRef]
- Jiménez, A.; Hernández, A.J.; Rodríguez-Espinosa, V.M. Integration of Geospatial Tools and Multi-source Geospatial Data to Evaluate the Tropical Forest Cover Change in Central America and Its Methodological Replicability in Brazil and the DRC. Remote Sens. 2020, 12, 2705. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Goetz, S.J.; Turubanova, S.; Tyukavina, A.; Krylov, A.; Kommareddy, A.; Egorov, A. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 2016, 185, 221–232. [Google Scholar] [CrossRef] [Green Version]
- De Grandi, E.C.; Mitchard, E.T.A.; Woodhouse, I.H.; Verhegghen, A.; Muirhead, F. Statistics of TanDEM-X DSM, coherence and backscatter for the characterization of tropical forest structural configuration. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1805–1808. [Google Scholar] [CrossRef]
- Dalponte, M.; Marzini, S.; Solano-Correa, Y.T.; Tonon, G.; Vescovo, L.; Gianelle, D. Mapping forest windthrows using high spatial resolution multispectral satellite images. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102206. [Google Scholar] [CrossRef]
- Huang, W.; Min, W.; Ding, J.; Liu, Y.; Hu, Y.; Ni, W.; Shen, H. Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China. For. Ecosyst. 2022, 9, 100006. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, P.; Wan, B.; Cao, Z.; Zhang, Q. Mapping a- and b-diversity of mangrove forests with multispectral and hyperspectral images. Remote Sens. Environ. 2022, 275, 113021. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Soudani, K.; Hmimina, G.; Delpierre, N.; Pontailler, J.Y.; Aubinet, M.; Bonal, D.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; et al. Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sens. Environ. 2012, 123, 234–245. [Google Scholar] [CrossRef]
- Lemenkova, P. Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: A Case Study of Northern Iceland. Adv. Res. Life Sci. 2020, 4, 70–78. [Google Scholar] [CrossRef]
- Seaquist, J.W.; Chappell, A.; Eklundh, L. Exploring and improving NOAA AVHRR NDVI image quality for African drylands. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 4, pp. 2006–2008. [Google Scholar] [CrossRef]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; Granier, A.; et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Tegegne, Y.T.; Lindner, M.; Fobissie, K.; Kanninen, M. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 2016, 51, 312–324. [Google Scholar] [CrossRef]
- Kasekete, D.K.; Ligot, G.; Mweru, J.P.M.; Drouet, T.; Rousseau, M.; Moango, A.; Bourland, N. Growth, Productivity, Biomass and Carbon Stock in Eucalyptus saligna and Grevillea robusta Plantations in North Kivu, Democratic Republic of the Congo. Forests 2022, 13, 1508. [Google Scholar] [CrossRef]
- Brandt, J.S.; Nolte, C.; Agrawal, A. Deforestation and timber production in Congo after implementation of sustainable forest management policy. Land Use Policy 2016, 52, 15–22. [Google Scholar] [CrossRef]
- Tritsch, I.; Le Velly, G.; Mertens, B.; Meyfroidt, P.; Sannier, C.; Makak, J.S.; Houngbedji, K. Do forest-management plans and FSC certification help avoid deforestation in the Congo Basin? Ecol. Econ. 2020, 175, 106660. [Google Scholar] [CrossRef]
- Li, M.; De Pinto, A.; Ulimwengu, J.M.; You, L.; Robertson, R.D. Impacts of Road Expansion on Deforestation and Biological Carbon Loss in the Democratic Republic of Congo. Environ. Resour. Econ. 2015, 60, 433–469. [Google Scholar] [CrossRef]
- Iloweka, E. The Deforestation of Rural Areas in the Lower Congo Province. Environ. Monit. Assess. 2004, 99, 245–250. [Google Scholar] [CrossRef]
- Aquilas, N.A.; Mukong, A.K.; Kimengsi, J.N.; Ngangnchi, F.H. Economic activities and deforestation in the Congo basin: An environmental kuznets curve framework analysis. Environ. Challenges 2022, 8, 100553. [Google Scholar] [CrossRef]
- Hufkens, K.; de Haulleville, T.; Kearsley, E.; Jacobsen, K.; Beeckman, H.; Stoffelen, P.; Vandelook, F.; Meeus, S.; Amara, M.; Van Hirtum, L.; et al. Historical Aerial Surveys Map Long-Term Changes of Forest Cover and Structure in the Central Congo Basin. Remote Sens. 2020, 12, 638. [Google Scholar] [CrossRef] [Green Version]
- Kabuanga, J.M.; Kankonda, O.M.; Saqalli, M.; Maestripieri, N.; Bilintoh, T.M.; Mweru, J.P.M.; Liama, A.B.; Nishuli, R.; Mané, L. Historical Changes and Future Trajectories of Deforestation in the Ituri-Epulu-Aru Landscape (Democratic Republic of the Congo). Land 2021, 10, 1042. [Google Scholar] [CrossRef]
- Zhang, Q.; Devers, D.; Desch, A.; Justice, C.O.; Townshend, J. Mapping tropical deforestation in Central Africa. Environ. Monit. Assess. 2005, 101, 69–83. [Google Scholar] [CrossRef]
- Mukenza, M.M.; Muteya, H.K.; Nghonda, D.D.N.; Sambiéni, K.R.; Malaisse, F.; Kaleba, S.C.; Bogaert, J.; Sikuzani, Y.U. Uncontrolled Exploitation of Pterocarpus tinctorius Welw. and Associated Landscape Dynamics in the Kasenga Territory: Case of the Rural Area of Kasomeno (DR Congo). Land 2022, 11, 1541. [Google Scholar] [CrossRef]
- Shapiro, A.C.; Grantham, H.S.; Aguilar-Amuchastegui, N.; Murray, N.J.; Gond, V.; Bonfils, D.; Rickenbach, O. Forest condition in the Congo Basin for the assessment of ecosystem conservation status. Ecol. Indic. 2021, 122, 107268. [Google Scholar] [CrossRef]
- Chuma, G.B.; Mondo, J.M.; Ndeko, A.B.; Mugumaarhahama, Y.; Bagula, E.M.; Blaise, M.; Valérie, M.; Jacques, K.; Karume, K.; Mushagalusa, G.N. Forest cover affects gully expansion at the tropical watershed scale: Case study of Luzinzi in Eastern DR Congo. Trees For. People 2021, 4, 100083. [Google Scholar] [CrossRef]
- Westman, W.E.; Strong, L.L.; Wilcox, B.A. Tropical deforestation and species endangerment: The role of remote sensing. Landsc. Ecol. 1989, 3, 97–109. [Google Scholar] [CrossRef]
- Ma, H.; Song, J.; Wang, J.; Hua, Y. Comparison of the inversion ability in extrapolating forest canopy height by integration of LiDAR data and different optical remote sensing products. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 3363–3366. [Google Scholar] [CrossRef]
- Keil, M.; Akgoz, E.; Carl, S.; Forster, B.; Hausler, T.; Johlige, A.; Lautner, M.; Martin, K. Use of SIR-C/X-SAR and Landsat TM data for vegetation mapping in the Bavarian Forest national park and in the Ore Mountains. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; Volume 1, pp. 293–295. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. Evaluating seasonal effect on forest leaf area index mapping using multi-seasonal high resolution satellite pléiades imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 268–279. [Google Scholar] [CrossRef]
- Hoan, N.T.; Tateishi, R.; Bayan, A.; Ngigi, T.G.; Lan, M. Improving tropical forest mapping using combination of optical and microwave data of ALOS. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 736–739. [Google Scholar] [CrossRef]
- Ohmann, J.L.; Gregory, M.J.; Roberts, H.M. Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote Sens. Environ. 2014, 151, 3–15. [Google Scholar] [CrossRef]
- Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A. How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sens. 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- De Grandi, G.F.; Mayaux, P.; Massart, M.; Baraldi, A.; Sgrenzaroli, M. A vegetation map of the Central Congo basin derived from microwave and optical remote sensing data using a variable resolution classification approach. In Proceedings of the Geoscience and Remote Sensing Symposium, 2001. IGARSS ’01, Sydney, NSW, Australia, 9–13 July 2001; Volume 3, pp. 1350–1352. [Google Scholar] [CrossRef]
- Lamulamu, A.; Ploton, P.; Birigazzi, L.; Xu, L.; Saatchi, S.; Kibambe Lubamba, J.P. Assessing the Predictive Power of Democratic Republic of Congo’s National Spaceborne Biomass Map over Independent Test Samples. Remote Sens. 2022, 14, 4126. [Google Scholar] [CrossRef]
- Laporte, N.; Lin, T.S. Monitoring logging in the tropical forest of Republic of Congo with Landsat imagery. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 4, pp. 2565–2567. [Google Scholar] [CrossRef]
- Zhang, Q.; Justice, C.O.; Jiang, M.; Brunner, J.; Wilkie, D.S. A GIS-based assessment on the vulnerability and future extent of the tropical forests of the Congo basin. Environ. Monit. Assess. 2006, 114, 107–121. [Google Scholar] [CrossRef]
- Kim, D.H.; Sexton, J.O.; Noojipady, P.; Huang, C.; Anand, A.; Channan, S.; Feng, M.; Townshend, J.R. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens. Environ. 2014, 155, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Haarpaintner, J.; Hindberg, H. Multi-Temporal and Multi-Frequency SAR Analysis for Forest Land Cover Mapping of the Mai-Ndombe District (Democratic Republic of Congo). Remote Sens. 2019, 11, 2999. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Saatchi, S.; DeGrandi, G. Comparison of a decision tree and maximum likelihood classifiers: Application to SAR image of tropical forest. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 5, pp. 2129–2130. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Seifert, F.M.; Häme, T. Selective logging of tropical forests observed using L- and C-band SAR satellite data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3870–3873. [Google Scholar] [CrossRef]
- Einzmann, K.; Haarpaintner, J.; Larsen, Y. Forest monitoring in Congo Basin with combined use of SAR C- & L-band. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6573–6576. [Google Scholar] [CrossRef]
- Deutscher, J.; Gutjahr, K.; Perko, R.; Raggam, H.; Hirschmugl, M.; Schardt, M. Humid tropical forest monitoring with multi-temporal L-, C- and X-band SAR data. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, F.; Foody, G.M.; Ge, Y.; Boyd, D.S.; Li, X.; Du, Y.; Atkinson, P.M. Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016. Remote Sens. Environ. 2019, 224, 74–91. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Jiménez, M.A.; Liberoff, A.L.; Pessacg, N.; Pacheco, C.; Díaz, L.; Flaherty, S. SatRed: New classification land use/land cover model based on multi-spectral satellite images and neural networks applied to a semiarid valley of Patagonia. Remote Sens. Appl. Soc. Environ. 2022, 26, 100703. [Google Scholar] [CrossRef]
- van Strien, M.J.; Grêt-Regamey, A. Unsupervised deep learning of landscape typologies from remote sensing images and other continuous spatial data. Environ. Model. Softw. 2022, 155, 105462. [Google Scholar] [CrossRef]
- Rodrigues, N.M.; Malan, K.M.; Ochoa, G.; Vanneschi, L.; Silva, S. Fitness landscape analysis of convolutional neural network architectures for image classification. Inf. Sci. 2022, 609, 711–726. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Yang, G.D.; Chen, S.B.; Fan, J.Z.; Wei, X.H. RS image batch processing in grid. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Roberts, J.; Mwangi, R.; Mukabi, F.; Njui, J.; Nzioka, K.; Ndambiri, J.; Bispo, P.; Espirito-Santo, F.; Gou, Y.; Johnson, S.; et al. Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning. Comput. Geosci. 2022, 167, 105192. [Google Scholar] [CrossRef]
- Liaqat, M.U.; Mohamed, M.M.; Chowdhury, R.; Elmahdy, S.I.; Khan, Q.; Ansari, R. Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundw. Sustain. Dev. 2021, 14, 100587. [Google Scholar] [CrossRef]
- Asuquo Enoh, M.; Ebere Njoku, R.; Chinenye Okeke, U. Modeling and mapping the spatial–temporal changes in land use and land cover in Lagos: A dynamics for building a sustainable urban city. Adv. Space Res. 2022; in press. [Google Scholar] [CrossRef]
- Rawat, J.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Mubeen, M.; Karuppannan, S. Land use and land cover (LULC) change analysis using TM, ETM+ and OLI Landsat images in district of Okara, Punjab, Pakistan. Phys. Chem. Earth Parts A B C 2022, 126, 103117. [Google Scholar] [CrossRef]
- Abd el-sadek, E.; Elbeih, S.; Negm, A. Coastal and landuse changes of Burullus Lake, Egypt: A comparison using Landsat and Sentinel-2 satellite images. Egypt. J. Remote Sens. Space Sci. 2022, 25, 815–829. [Google Scholar] [CrossRef]
- Hedayati, A.; Vahidnia, M.H.; Behzadi, S. Paddy lands detection using Landsat-8 satellite images and object-based classification in Rasht city, Iran. Egypt. J. Remote Sens. Space Sci. 2022, 25, 73–84. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- de Wasseige, C.; Devers, D.; De, P.; Ebaá Atyi, R.; Nasi, R.; Mayaux, P. Les Forêts du Bassin du Congo—Etat des Forêts 2008; Office des Publications de Lúnion Européenne: Luxembourg, 2009. [Google Scholar] [CrossRef]
- Lescuyer, G.; Cerutti, P.O.; Essiane Mendoula, E.; Eba’a Atyi, R.; Nasi, R. An appraisal of chainsaw milling in the Congo Basin. In The forests of the Congo Basin: State of the forest 2010; Tropenbos International; Publications Office of the European Union: Luxembourg, 2010; pp. 97–107. [Google Scholar]
- Jayathilake, H.M.; Prescott, G.W.; Carrasco, L.R.; Rao, M.; Symes, W.S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. AMBIO 2021, 50, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sens. Environ. 2012, 122, 106–116. [Google Scholar] [CrossRef]
- Shapiro, A.C.; Aguilar-Amuchastegui, N.; Hostert, P.; Bastin, J.F. Using fragmentation to assess degradation of forest edges in Democratic Republic of Congo. Carbon Balance Manag. 2016, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Leutner, B.; Horning, N.; Schwalb-Willmann, J.; Hijmans, R.J. Package ‘RStoolbox’; German Aerospace Center (DLR): Köln, Germany, 2022. [Google Scholar]
- Hijmans, R.J.; Bivand, R.; Forner, K.; Ooms, J.; Pebesma, E.; Sumner, M.D. Package ‘Terra’; Maintainer: Vienna, Austria, 2022. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 2.6-7. 2017. Available online: https://CRAN.R-project.org/package=raster (accessed on 5 October 2022).
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R Package Version 1.1-2. 2014. Available online: https://CRAN.R-project.org/package=RColorBrewer (accessed on 5 October 2022).
- Garnier, S.; Ross, N.; Rudis, R.; Sciaini, M.; Camargo, A.P.; Scherer, C. Viridis—Colorblind-Friendly Color Maps for R; R Package Version 0.6.2.2021; New Jersey Institute of Technology: Newark, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Mushi, C.A.; Ndomba, P.M.; Trigg, M.A.; Tshimanga, R.M.; Mtalo, F. Assessment of basin-scale soil erosion within the Congo River Basin: A review. CATENA 2019, 178, 64–76. [Google Scholar] [CrossRef]
- Betbeder, J.; Gond, V.; Frappart, F.; Baghdadi, N.N.; Briant, G.; Bartholomé, E. Mapping of Central Africa Forested Wetlands Using Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Washington, R.; James, R.; Pearce, H.; Pokam, W.M.; Moufouma-Okia, W. Congo Basin rainfall climatology: Can we believe the climate models? Philos Trans R Soc Lond B Biol Sci. 2013, 368, 20120296. [Google Scholar] [CrossRef]
- Sayer, J. Zaïre. In The Conservation Atlas of Tropical Forests Africa; Palgrave Macmillan: London, UK, 1992; pp. 270–282. [Google Scholar] [CrossRef]
- Mendako, R.K.; Tian, G.; Ullah, S.; Sagali, H.L.; Kipute, D.D. Assessing the Economic Contribution of Forest Use to Rural Livelihoods in the Rubi-Tele Hunting Domain, DR Congo. Forests 2022, 13, 130. [Google Scholar] [CrossRef]
- Batra, N.; Yang, Y.C.E.; Choi, H.I.; Kumar, P.; Cai, X.; De Fraiture, C. Understanding Hydrological Cycle Dynamics Due to Changing Land Use and Land Cover: Congo Basin Case Study. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 5, pp. 491–494. [Google Scholar] [CrossRef]
- Wilkie, D.S. Remote sensing imagery for resource inventories in central Africa: The importance of detailed field data. Hum. Ecol. 1994, 22, 379–403. [Google Scholar] [CrossRef]
- Somorin, O.A.; Brown, H.C.P.; Visseren-Hamakers, I.J.; Sonwa, D.J.; Arts, B.; Nkem, J. The Congo Basin forests in a changing climate: Policy discourses on adaptation and mitigation (REDD+). Glob. Environ. Chang. 2012, 22, 288–298. [Google Scholar] [CrossRef]
- Bele, M.Y.; Sonwa, D.J.; Tiani, A.M. Adapting the Congo Basin forests management to climate change: Linkages among biodiversity, forest loss, and human well-being. For. Policy Econ. 2015, 50, 1–10. [Google Scholar] [CrossRef]
- Morgan, E.A.; Bush, G.; Mandea, J.Z.; Kermarc, M.; Mackey, B. Comparing Community Needs and REDD+ Activities for Capacity Building and Forest Protection in the Équateur Province of the Democratic Republic of Congo. Land 2022, 11, 918. [Google Scholar] [CrossRef]
- Sufo Kankeu, R.; Tsayem Demaze, M.; Krott, M.; Sonwa, D.J.; Ongolo, S. Governing knowledge transfer for deforestation monitoring: Insights from REDD+ projects in the Congo Basin region. For. Policy Econ. 2020, 111, 102081. [Google Scholar] [CrossRef]
- De Grandi, G.; Mayaux, P.; Malingreau, J.; Baraldi, A.; Simard, M.; Saatchi, S. Cornerstones and epilogue of the GRFM Africa project: A gallery of regional scale vegetation maps. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium; 2002; Volume 2, pp. 893–895. [Google Scholar] [CrossRef]
- Batsi, G.; Sonwa, D.J.; Mangaza, L.; Ebuy, J.; Kahindo, J.M. Preliminary estimation of above-ground carbon storage in cocoa agroforests of Bengamisa-Yangambi forest landscape (Democratic Republic of Congo). Agrofor. Syst. 2021, 95, 1505–1517. [Google Scholar] [CrossRef]
- Washington, R.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Kay, G.; Todd, M. African Climate Change: Taking the Shorter Route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
- Engebretson, C. Landsat 8-9 Operational Land Imager (OLI)—Thermal Infrared Sensor (TIRS) Collection 2 Level 1 (L1) Data Format Control Book (DFCB). Online, 2020. LSDS-1822 Version 6.0, USGS. Available online: https://earth.esa.int/eogateway/documents/20142/0/Landsat-8-9-OLI-TIRS-Collection-2-Level-1-Data-Format-Control-Book-DFCB.pdf (accessed on 5 October 2022).
- Lemenkova, P. Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts. Data 2022, 7, 74. [Google Scholar] [CrossRef]
- Lemenkova, P. Mapping Climate Parameters over the Territory of Botswana Using GMT and Gridded Surface Data from TerraClimate. ISPRS Int. J. Geo-Inf. 2022, 11, 473. [Google Scholar] [CrossRef]
- Lemenkova, P. Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences 2022, 12, 140. [Google Scholar] [CrossRef]
- Wilkie, D.S.; Finn, J.T. A spatial model of land use and forest regeneration in the Ituri forest of northeastern Zaire. Ecol. Model. 1988, 41, 307–323. [Google Scholar] [CrossRef]
- Michel, O.O.; Yu, Y.; Fan, W.; Lubalega, T.; Chen, C.; Sudi Kaiko, C.K. Impact of Land Use Change on Tree Diversity and Aboveground Carbon Storage in the Mayombe Tropical Forest of the Democratic Republic of Congo. Land 2022, 11, 787. [Google Scholar] [CrossRef]
- Bwangoy, J.R.B.; Hansen, M.C.; Potapov, P.; Turubanova, S.; Lumbuenamo, R.S. Identifying nascent wetland forest conversion in the Democratic Republic of the Congo. Wetl. Ecol. Manag. 2013, 21, 29–43. [Google Scholar] [CrossRef]
Region, Year | Landsat Product ID | Landsat Scene ID |
---|---|---|
Basoko, 2013 | LC08_L1TP_177059_20131216_20200912_02_T1 | LC81770592013350LGN01 |
Basoko, 2022 | LC08_L1TP_177059_20220208_20220212_02_T1 | LC81770592022039LGN00 |
Bumba, 2013 | LC08_L1TP_178058_20131223_20200912_02_T1 | LC81780582013357LGN01 |
Bumba, 2022 | LC08_L1TP_178058_20220130_20220204_02_T1 | LC81780582022030LGN00 |
Kisangani, 2013 | LC08_L1TP_176060_20130413_20200913_02_T1 | LC81760602013103LGN02 |
Kisangani, 2015 | LC08_L1TP_176060_20150113_20200910_02_T1 | LC81760602015013LGN01 |
Kisangani, 2022 | LC08_L1TP_176060_20220217_20220302_02_T1 | LC81760602022048LGN00 |
Parameters | Basoko (2013) | Basoko (2022) | Bumba (2013) | Bumba (2022) | Kisangani (2013) | Kisangani (2015) | Kisangani (2022) |
---|---|---|---|---|---|---|---|
Date | 16 December 2013 | 8 February 2022 | 23 December 2013 | 30 January 2022 | 13 April 2013 | 13 January 2015 | 17 February 2022 |
TWRS P. | 177 | 177 | 178 | 178 | 176 | 176 | 176 |
WRS Row | 59 | 59 | 58 | 58 | 60 | 60 | 60 |
WRS Path | 177 | 177 | 178 | 178 | 176 | 176 | 176 |
Cloudiness | 0.00 | 0.00 | 0.04 | 0.00 | 5.85 | 1.36 | 0.48 |
UTM Zone | 34 | 34 | 34 | 34 | 35 | 35 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemenkova, P.; Debeir, O. R Libraries for Remote Sensing Data Classification by K-Means Clustering and NDVI Computation in Congo River Basin, DRC. Appl. Sci. 2022, 12, 12554. https://doi.org/10.3390/app122412554
Lemenkova P, Debeir O. R Libraries for Remote Sensing Data Classification by K-Means Clustering and NDVI Computation in Congo River Basin, DRC. Applied Sciences. 2022; 12(24):12554. https://doi.org/10.3390/app122412554
Chicago/Turabian StyleLemenkova, Polina, and Olivier Debeir. 2022. "R Libraries for Remote Sensing Data Classification by K-Means Clustering and NDVI Computation in Congo River Basin, DRC" Applied Sciences 12, no. 24: 12554. https://doi.org/10.3390/app122412554
APA StyleLemenkova, P., & Debeir, O. (2022). R Libraries for Remote Sensing Data Classification by K-Means Clustering and NDVI Computation in Congo River Basin, DRC. Applied Sciences, 12(24), 12554. https://doi.org/10.3390/app122412554