Integration of Geospatial Tools and Multi-source Geospatial Data to Evaluate the Tropical Forest Cover Change in Central America and Its Methodological Replicability in Brazil and the DRC
"> Figure 1
<p>Example of a mosaic of Landsat satellite images of Central America.</p> "> Figure 2
<p>Phases and methodological steps applied.</p> "> Figure 3
<p>Average spectral signatures of different vegetation types from Central America derived from Landsat ETM+ images.</p> "> Figure 4
<p>Zones selected for scaling up and replication of the methodology.</p> "> Figure 5
<p>Forest cover maps generated in this study in the Central America region for the years 2000, 2012, and 2017. 1 = Belize, 2 = Guatemala, 3 = El Salvador, 4 = Honduras, 5 = Nicaragua, 6 = Costa Rica, and 7 = Panama.</p> "> Figure 6
<p>Central America forest cover change dynamics. Period 2000–2017.</p> "> Figure 7
<p>Percentage distribution and area of the forest cover change dynamics categories in Central American countries.</p> "> Figure 8
<p>Forest cover loss/gain ratio by country in the period 2000–2017.</p> "> Figure 9
<p>The Democratic Republic of the Congo forest cover change dynamics. Period 2000–2017.</p> "> Figure 10
<p>The State of Pará, Brazil, forest cover change dynamics. Period 2000–2017.</p> ">
Abstract
:1. Introduction
1.1. State of the Research Field
1.2. Contextual Framework
2. Materials and Methods
2.1. Study Region
2.2. Target Period
2.3. Data
2.3.1. Worldwide Data
2.3.2. National Data
2.4. Methodological Framework
2.4.1. Training Samples
2.4.2. Classification Process
- p(Xk|i) = probability function for a pixel Xk as a member of class i
- n = number of spectral bands
- Xk = spectral values vector for the pixel in all bands
- ui = mean vector for class i over all pixels
- Vi = variance–covariance matrix for class i
- (Xk − ui)T Vi−1 (Xk − ui) = spectral distance between the pixel value and the centroid value of class i
- L(i|Xk) = a posteriori probabilities of a pixel Xk belonging to class i
- i = class number
- t = total number of classes
- Pi = a priori probability of membership of class i
2.4.3. Post-Classification Adjustment for Improbable Changes
2.4.4. Post-Classification Adjustment for Separation of Forest from Another Tree Vegetation
2.4.5. Mapping of Forest Cover Change Dynamics
2.4.6. Validation
2.5. Scaling Up and Methodology Replica in Other Tropical Regions
3. Results
3.1. Reliability of Forest Cover Mapping
3.2. Forest Cover
3.3. Forest Cover Change Dynamics
3.4. Application of the Methodology in Other Tropical Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muchoney, D.; Borak, J.; Chi, H.; Friedl, M.; Gopal, S.; Hodges, J.; Morrow, N.; Strahler, A. Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America. Int. J. Remote Sens. 2000, 21, 1115–1138. [Google Scholar] [CrossRef]
- Vreugdenhil, D.; Meerman, J.; Meyrat, A.; Gómez, L.D.; Graham, D.J. Map of the Ecosystems of Central America: Final Report; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Giri, C.; Jenkins, C. Land cover mapping of Greater Mesoamerica using MODIS data. Can. J. Remote Sens. 2005, 31, 274–282. [Google Scholar] [CrossRef]
- CATHALAC-SIMEPAR. Mapa Centroamericano de Cobertura y Uso de la Tierra: Cambios de Cobertura y Uso de la Tierra 1980-1990-2000-2010; Technical Report; PREVDA: Panama City, Panama, 2011. [Google Scholar]
- Bardales, D. Mapa Forestal de Honduras 1995; AFE-COHDEFOR: Tegucigalpa, Honduras, 1998. [Google Scholar]
- Castellanos, E.; Regalado, O.; Pérez, G.; Montenegro, R.; Ramos, V.H.; Incer, D. Mapa de Cobertura Forestal de Guatemala 2006 y Dinámica de la Cobertura Forestal 2001–2006; Technical Report; Universidad de Valle de Guatemala: Guatemala City, Guatemala; Instituto Nacional de Bosques: Guatemala City, Guatemala; Consejo Nacional de Áreas Protegidas: Guatemala City, Guatemala; Universidad Rafael Landívar: Guatemala City, Guatemala, 2011. [Google Scholar]
- Regalado, O.; Villagrán, X.; Pérez, G.; Castellanos, E.; Martínez, G.; Incer, D.; Ramos, V.H.; Molina, O.; Beltetón, C.; Gómez, J.M. Mapa de Cobertura Forestal de Guatemala 2010 y Dinámica de la Cobertura Forestal 2006–2010; National Forestry Institute (INAB): Guatemala City, Guatemala; National Council for Protected Areas (CONAP): Guatemala City, Guatemala; Universidad del Valle de Guatemala: Guatemala City, Guatemala; Universidad Rafael Landívar: Guatemala City, Guatemala, 2012. [Google Scholar]
- Cherrington, E.A.; Ek, E.; CHO, P.; Howell, B.F.; Hernandez, B.E.; Anderson, E.R.; Flores, A.I.; Garcia, B.C.; Sempris, E.; Irwin, D.E. Forest Cover and Deforestation in Belize: 1980–2010; SERVIR-Cathalac: Panama City, Panama, 2010. [Google Scholar]
- Sierra, R.; Cambronero, A.; Vega, E. Patrones y Factores de Cambio de la Cobertura Forestal Natural de Costa Rica, 1987–2013; Gobierno de Costa Rica/Fondo Cooperativo para el Carbono de los Bosques (FCPF): San José, Costa Rica, 2015.
- Duarte, E.; Orellana, O.; Maradiaga, I.; Casco, F.; Fuentes, D.; Jimenez, A.; Emanuelli, P.; Milla, F. Mapa Forestal y de Cobertura de la Tierra de Honduras: Análisis de Cifras Nacionales; Programa REDD-CCAD/GIZ; ICF: Tegucigalpa, Honduras, 2014. [Google Scholar]
- Ortiz Malavassi, E. Cartografía Base Para el Inventario Forestal Nacional de Costa Rica 2013-2014; SINAC, Programa REDD-CCAD/GIZ; FONAFIFO: San José, Costa Rica, 2015.
- Catalán, M.; Castillo, F. Mapa de Cobertura Forestal por Tipo y Subtipo de Bosque para la República de Guatemala, 2012; INAB-CONAP: Guatemala City, Guatemala, 2015. [Google Scholar]
- Castillo, M.; Samaniego, R.; Kindgard, A. Mapa de cobertura y uso de la tierra 2012; ONU-REDD (FAO); Ministerio de Ambiente de Panamá: Panama City, Panama, Programa, 2015. [Google Scholar]
- MARENA. Niveles de Referencia de las Emisones Forestales República de Nicaragua; Ministerio del Ambiente y los Recursos Naturales: Managua, Nicargua, 2019; p. 56.
- Grupo Interinstitucional de Monitoreo de Bosques y Uso de la Tierra (GIMBUT). Mapa de Cobertura Forestal de Guatemala 2016 y Dinámica de la Cobertura Forestal 2010–2016; Technical Report; Instituto Nacional de Bosques: Guatemala City, Guatemala; Consejo Nacional de Áreas Protegidas: Guatemala City, Guatemala; Ministerio de Agricultura, Ganadería y Alimentación: Guatemala City, Guatemala; Ministerio de Ambiente y Recursos Naturales: Guatemala City, Guatemala; Universidad de Valle de Guatemala: Guatemala City, Guatemala; Universidad Rafael Landívar: Guatemala City, Guatemala, 2019; Volume 127. [Google Scholar]
- MiAmbiente. Diagnóstico sobre la Cobertura de Bosques y otras Tierras Boscosas de Panamá, 2019; Ministerio de Ambiente: Panama City, Panama, 2020.
- ICF; MiAmbiente+. Propuesta Nivel de Referencia Forestal de Honduras; ONU-REDD/FAO: Roma, Italia, 2020. [Google Scholar]
- Cherrington, E.; Cho, P.; Waight, I.; Escalante, A.; Nabet, J.; Usher, L.; Santos, T. Belize Forest Cover Change, 2010–2012: Summary of Findings. Ministry of Forestry, Fisheries, and Sustainable Development of Belize (MFFSD); UB-ERI.: Belmopan, Belize; Lancaster University: Lancaster, UK; CATHALAC: Panamá, Panama, 2012. [Google Scholar]
- Gutman, G.; Huang, C.; Chander, G.; Noojipady, P.; Masek, J.G. Assessment of the NASA–USGS global land survey (GLS) datasets. Remote Sens. Environ. 2013, 134, 249–265. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.T.; Hansen, M.C. Google Earth Engine: A New Cloud-Computing Platform for Global-Scale Earth Observation Data and Analysis; American Geophysical Union: Washington, DC, USA, 2011; Volume 1, p. 2. [Google Scholar]
- Gorelick, N. Google Earth Engine. In Proceedings of the European Geosciences Union (EGU) General Assembly Conference, Vienna, Austria, 7–12 April 2013; Volume 15, p. 11997. [Google Scholar]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Strahler, A.H. The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens. Environ. 1980, 10, 135–163. [Google Scholar] [CrossRef]
- Foody, G.M.; Campbell, N.A.; Trodd, N.M.; Wood, T.F. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58, 1335–1341. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Evaluación de Los Recursos Forestales Mundiales 2015: Como Están Cambiando Los Bosques del Mundo? Segunda Edición; FAO: Roma, Italia, 2016. [Google Scholar]
- Chavarría Espinoza, I. Evaluación de los Recursos Forestales Mundiales 2015: Informe Nacional Costa Rica; SINAC-MINAE: San José, Costa Rica, 2014.
- Herrera Guzmán, R.A.; Cruz Rodríguez, E.A. Evaluación de los Recursos Forestales Mundiales 2015: Informe Nacional El Salvador; DGFCR-MAG: San Salvador, El Salvador, 2014. [Google Scholar]
- ESA Land Cover CCI. Product User Guide, version 2.0; ESA: Paris, France, 2017. [Google Scholar]
- MEDD. Niveau D’Emissions de Reference des Forets Pour la Reduction des Emissions Dues a la Deforestation en République Démocratique du Congo; Ministère de l’environnement et de Développement Durable: Kinshasa, République Démocratique du Congo, 2018.
- MapBiomas. Project MapBiomas. Available online: www.mapbiomas.org (accessed on 8 September 2019).
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
Map T1 | Map T2 | Map T3 | ||||
---|---|---|---|---|---|---|
ARBBROADLEAF | ARBCONIFEROUS | ARBMANGROVE | noARB | Water | ||
ARBBROADLEAF | ARBBROADLEAF | B-B-B | B-B-B | B-B-B | B-B-NA | B-B-B |
ARBCONIFEROUS | B-B-B | C-C-C | M-M-M | C-C-NA | C-C-C | |
ARBMANGROVE | B-B-B | C-C-C | M-M-M | M-M-NA | M-M-M | |
noARB | B-NA-B | C-NA-C | M-NA-M | B-NA-NA | B-NA-NA | |
Water | B-B-B | C-C-C | M-M-M | B-NA-NA | W-W-W | |
ARBCONIFEROUS | ARBBROADLEAF | B-B-B | C-C-C | M-M-M | B-B-NA | B-B-B |
ARBCONIFEROUS | C-C-C | C-C-C | C-C-C | C-C-NA | C-C-C | |
ARBMANGROVE | B-B-B | C-C-C | M-M-M | M-M-NA | M-M-M | |
noARB | B-NA-B | C-NA-C | M-NA-M | C-NA-NA | C-NA-NA | |
Water | B-B-B | C-C-C | M-M-M | C-NA-NA | W-W-W | |
ARBMANGROVE | ARBBROADLEAF | B-B-B | C-C-C | M-M-M | B-B-NA | B-B-B |
ARBCONIFEROUS | B-B-B | C-C-C | M-M-M | C-C-NA | C-C-C | |
ARBMANGROVE | M-M-M | M-M-M | M-M-M | M-M-NA | M-M-M | |
noARB | B-NA-B | C-NA-C | M-NA-M | M-NA-NA | M-NA-NA | |
Water | B-B-B | C-C-C | M-M-M | M-NA-NA | W-W-W | |
noARB | ARBBROADLEAF | NA-B-B | NA-C-C | NA-M-M | NA-B-NA | NA-B-NA |
ARBCONIFEROUS | NA-B-B | NA-C-C | NA-M-M | NA-C-NA | NA-C-NA | |
ARBMANGROVE | NA-B-B | NA-C-C | NA-M-M | NA-M-NA | NA-M-NA | |
noARB | NA-NA-B | NA-NA-C | NA-NA-M | NA- NA-NA | NA- NA-NA | |
Water | NA-NA-B | NA-NA-C | NA-NA-M | NA- NA-NA | W-W-W | |
Water | ARBBROADLEAF | B-B-B | C-C-C | M-M-M | NA-B-NA | W-W-W |
ARBCONIFEROUS | B-B-B | C-C-C | M-M-M | NA-C-NA | W-W-W | |
ARBMANGROVE | B-B-B | C-C-C | M-M-M | NA-M-NA | W-W-W | |
noARB | NA-NA-B | NA-NA-C | NA-NA-M | NA- NA-NA | W-W-W | |
Water | W-W-W | W-W-W | W-W-W | W-W-W | W-W-W |
Input Rasters | Combination Code (ID) | Adjustment | Change Vector [T1–T2] * | ||||
---|---|---|---|---|---|---|---|
Tree Cover T1 | Loss [T1–T2] | Forest Mask MT2 | Tree Cover T2 | Map T1 Adjusted | Map T2 Adjusted | ||
Arboreal (10) | Loss (1000) | Non-Forest (100) | Arboreal (7) | 1117 | Forest (1) | Oth. Veg. (2) | 1→2 |
Non-Arboreal (8) | 1118 | Forest (1) | Non-T. Veg. (3) | 1→3 | |||
Forest (200) | Arboreal (7) | 1217 | Forest (1) | Forest (1) | 1→1 | ||
Non-Arboreal (8) | 1218 | Forest (1) | Non-T. Veg. (3) | 1→3 | |||
Non-Loss (2000) | Non-Forest (100) | Arboreal (7) | 2117 | Oth. Veg. (2) | Oth. Veg. (2) | 2→2 | |
Non-Arboreal (8) | 2118 | Oth. Veg. (2) | Non-T. Veg. (3) | 2→3 | |||
Forest (200) | Arboreal (7) | 2217 | Forest (1) | Forest (1) | 1→1 | ||
Non-Arboreal (8) | 2218 | Oth. Veg. (2) | Non-T. Veg. (3) | 2→3 | |||
Non-Arboreal (20) | Loss (1000) | Non-Forest (100) | Arboreal (7) | 1127 | Oth. Veg. (2) | Oth. Veg. (2) | 2→2 |
Non-Arboreal (8) | 1128 | Oth. Veg. (2) | Non-T. Veg. (3) | 2→3 | |||
Forest (200) | Arboreal (7) | 1227 | Oth. Veg. (2) | Oth. Veg. (2) | 2→2 | ||
Non-Arboreal (8) | 1228 | Oth. Veg. (2) | Non-T. Veg. (3) | 2→3 | |||
Non-Loss (2000) | Non-Forest (100) | Arboreal (7) | 2127 | Non-T. Veg. (3) | Oth. Veg. (2) | 3→2 | |
Non-Arboreal (8) | 2128 | Non-T. Veg. (3) | Non-T. Veg. (3) | 3→3 | |||
Forest (200) | Arboreal (7) | 2227 | Non-T. Veg. (3) | Forest (1) | 3→1 | ||
Non-Arboreal (8) | 2228 | Non-T. Veg. (3) | Non-T. Veg. (3) | 3→3 |
Input Raster Classes | Combination Code (ID) | Map T2 Adjusted | Map T3 Adjusted | Change Vector [T2–T3] * | ||
---|---|---|---|---|---|---|
Loss [T2–T3] | Map T2 Adjusted | Tree Cover T3 | ||||
Loss (1000) | Forest (10) | Arboreal (7) | 1017 | Forest (1) | Oth. Veg. (2) | 1→2 |
Non-Arboreal (8) | 1018 | Forest (1) | Non-T. Veg. (3) | 1→3 | ||
Oth. Veg. (20) | Arboreal (7) | 1027 | Oth. Veg. (2) | Non-T. Veg. (3) | 2→3 | |
Non-Arboreal (8) | 1028 | Oth. Veg. (2) | Non-T. Veg. (3) | 2→3 | ||
Non-T. Veg. (30) | Arboreal (7) | 1037 | Non-T. Veg. (3) | Non-T. Veg. (3) | 3→3 | |
Non-Arboreal (8) | 1038 | Non-T. Veg. (3) | Non-T. Veg. (3) | 3→3 | ||
Non-Loss (2000) | Forest (10) | Arboreal (7) | 2017 | Forest (1) | Forest (1) | 1→1 |
Non-Arboreal (8) | 2018 | Forest (1) | Non-T. Veg. (3) | 1→3 | ||
Oth. Veg. (20) | Arboreal (7) | 2027 | Oth. Veg. (2) | Oth. Veg. (2) | 2→2 | |
Non-Arboreal (8) | 2028 | Oth. Veg. (2) | Non-T. Veg. (3) | 2→3 | ||
Non-T. Veg. (30) | Arboreal (7) | 2037 | Non-T. Veg. (3) | Oth. Veg. (2) | 3→2 | |
Non-Arboreal (8) | 2038 | Non-T. Veg. (3) | Non-T. Veg. (3) | 3→3 |
Map T1 | Map T2 | Map T3 | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
Forest | Other Tree Vegetation | Without Tree Vegetation | ||||
100 | Forest | 10 | Forest | 111 | 112 | 113 |
20 | Other tree vegetation | 121 | 122 | 123 | ||
30 | Without tree vegetation | 131 | 132 | 133 | ||
200 | Other tree vegetation | 10 | Forest | 211 | 212 | 213 |
20 | Other tree vegetation | 221 | 222 | 223 | ||
30 | Without tree vegetation | 231 | 232 | 233 | ||
300 | Without tree vegetation | 10 | Forest | 311 | 312 | 313 |
20 | Other tree vegetation | 321 | 322 | 323 | ||
30 | Without tree vegetation | 331 | 332 | 333 |
Code | Forest Cover Change Dynamics | Class T1 | Class T2 | Class T3 |
---|---|---|---|---|
1 | Stable forest | Forest SLM (1) | Forest SLM (1) | Forest SLM (1) |
2 | Forest gain | Non-T. Veg. (6) | Forest ES (2) | Forest ES (2) |
3 | Other tree vegetation | Other SNF (3) | Other SNF (3) | Other SNF (3) |
4 | Exchange (non-forest) | Exchange (4) | Exchange (4) | Exchange (4) |
5 | Without tree vegetation | Non-T. Veg. (6) | Non-T. Veg. (6) | Non-T. Veg. (6) |
6 | Forest loss (1st period) | Forest SLM (1) | Deforest (5) | Deforest (5) |
7 | Forest loss (2nd period) | Forest SLM (1) | Forest SLM (1) | Deforest (5) |
8 | Exchange (forest) | Exchange (4) | Exchange (4) | Exchange (4) |
Region/Country | YEAR 2000 | Confusion Matrix | User’s Accuracy | Errors of Commission | Producer’s Accuracy | Errors of Omission | ||
---|---|---|---|---|---|---|---|---|
Forest | Non-Forest | Total | ||||||
Central America | Forest | 2061 | 354 | 2415 | 85.3% | 14.7% | 68.7% | 31.3% |
Non-Forest | 939 | 2084 | 3023 | 68.9% | 31.1% | 85.5% | 14.5% | |
Total | 3000 | 2438 | 5438 | |||||
Belize | Forest | 152 | 16 | 168 | 90.5% | 9.5% | 84.9% | 15.1% |
Non-Forest | 27 | 58 | 85 | 68.2% | 31.8% | 78.4% | 21.6% | |
Total | 179 | 74 | 253 | |||||
Costa Rica | Forest | 281 | 80 | 361 | 77.8% | 22.2% | 94.9% | 5.1% |
Non-Forest | 15 | 155 | 170 | 91.2% | 8.8% | 66.0% | 34.0% | |
Total | 296 | 235 | 531 | |||||
El Salvador | Forest | 54 | 9 | 63 | 85.7% | 14.3% | 54.0% | 46.0% |
Non-Forest | 46 | 102 | 148 | 68.9% | 31.1% | 91.9% | 8.1% | |
Total | 100 | 111 | 211 | |||||
Guatemala | Forest | 360 | 85 | 445 | 80.9% | 19.1% | 59.9% | 40.1% |
Non-Forest | 241 | 458 | 699 | 65.5% | 34.5% | 84.3% | 15.7% | |
Total | 601 | 543 | 1144 | |||||
Honduras | Forest | 446 | 83 | 529 | 84.3% | 15.7% | 63.4% | 36.6% |
Non-Forest | 257 | 402 | 659 | 61.0% | 39.0% | 82.9% | 17.1% | |
Total | 703 | 485 | 1188 | |||||
Nicaragua | Forest | 412 | 76 | 488 | 84.4% | 15.6% | 62.7% | 37.3% |
Non-Forest | 245 | 637 | 882 | 72.2% | 27.8% | 89.3% | 10.7% | |
Total | 657 | 713 | 1370 | |||||
Panamá | Forest | 379 | 37 | 416 | 91.1% | 8.9% | 81.7% | 18.3% |
Non-Forest | 85 | 240 | 325 | 73.8% | 26.2% | 86.6% | 13.4% | |
Total | 464 | 277 | 741 |
Region/Country | YEAR 2012 | Confusion Matrix | User’s Accuracy | Errors of Commission | Producer’s Accuracy | Errors of Omission | ||
---|---|---|---|---|---|---|---|---|
Forest | Non-Forest | Total | ||||||
Central America | Forest | 1979 | 271 | 2250 | 88.0% | 12.0% | 68.9% | 31.1% |
Non-Forest | 894 | 2294 | 3188 | 72.0% | 28.0% | 89.4% | 10.6% | |
Total | 2873 | 2565 | 5438 | |||||
Belize | Forest | 143 | 17 | 160 | 89.4% | 10.6% | 85.6% | 14.4% |
Non-Forest | 24 | 69 | 93 | 74.2% | 25.8% | 80.2% | 19.8% | |
Total | 167 | 86 | 253 | |||||
Costa Rica | Forest | 280 | 72 | 352 | 79.5% | 20.5% | 94.3% | 5.7% |
Non-Forest | 17 | 162 | 179 | 90.5% | 9.5% | 69.2% | 30.8% | |
Total | 297 | 234 | 531 | |||||
El Salvador | Forest | 55 | 11 | 66 | 83.3% | 16.7% | 59.8% | 40.2% |
Non-Forest | 37 | 108 | 145 | 74.5% | 25.5% | 90.8% | 9.2% | |
Total | 92 | 119 | 211 | |||||
Guatemala | Forest | 332 | 45 | 377 | 88.1% | 11.9% | 59.6% | 40.4% |
Non-Forest | 225 | 542 | 767 | 70.7% | 29.3% | 92.3% | 7.7% | |
Total | 557 | 587 | 1144 | |||||
Honduras | Forest | 431 | 83 | 514 | 83.9% | 16.1% | 64.6% | 35.4% |
Non-Forest | 236 | 438 | 674 | 65.0% | 35.0% | 84.1% | 15.9% | |
Total | 667 | 521 | 1188 | |||||
Nicaragua | Forest | 393 | 43 | 436 | 90.1% | 9.9% | 61.4% | 38.6% |
Non-Forest | 247 | 687 | 934 | 73.6% | 26.4% | 94.1% | 5.9% | |
Total | 640 | 730 | 1370 | |||||
Panamá | Forest | 369 | 31 | 400 | 92.3% | 7.8% | 81.5% | 18.5% |
Non-Forest | 84 | 257 | 341 | 75.4% | 24.6% | 89.2% | 10.8% | |
Total | 453 | 288 | 741 |
Country | 2000 | 2012 | ||||
---|---|---|---|---|---|---|
Overall Accuracy | Confidence Interval (±) | Kappa | Overall Accuracy | Confidence Interval (±) | Kappa | |
Belize | 83.0% | 4.6% | 0.61 | 83.8% | 4.5% | 0.65 |
Costa Rica | 82.1% | 3.3% | 0.63 | 83.2% | 3.2% | 0.65 |
El Salvador | 73.9% | 5.9% | 0.47 | 77.3% | 5.7% | 0.52 |
Guatemala | 71.5% | 2.6% | 0.44 | 76.4% | 2.5% | 0.52 |
Honduras | 71.4% | 2.6% | 0.44 | 73.1% | 2.5% | 0.47 |
Nicaragua | 76.6% | 2.2% | 0.53 | 78.8% | 2.2% | 0.57 |
Panamá | 83.5% | 2.7% | 0.66 | 84.5% | 2.6% | 0.68 |
Central America | 76.2% | 1.1% | 0.53 | 78.6% | 1.1% | 0.58 |
Country | 2000 | 2012 | 2017 | |||
---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | |
Belize | 1,417,703 | 62.5 | 1,344,840 | 59.3 | 1,269,564 | 56.0 |
Guatemala | 4,241,251 | 38.4 | 3,657,041 | 33.1 | 3,306,148 | 29.9 |
El Salvador | 647,669 | 30.8 | 682,058 | 32.4 | 629,858 | 30.0 |
Honduras | 5,002,575 | 44.1 | 4,919,343 | 43.3 | 4,412,016 | 38.9 |
Nicaragua | 4,532,602 | 34.8 | 4,071,153 | 31.2 | 3,667,438 | 28.1 |
Costa Rica | 2,814,824 | 55.6 | 2,824,883 | 55.8 | 2,694,207 | 53.2 |
Panamá | 4,225,595 | 57.1 | 4,171,767 | 56.3 | 4,030,640 | 54.4 |
Central America | 22,882,219 | 43.8 | 21,671,085 | 41.5 | 20,009,871 | 38.3 |
Country | Deforestation by Period (ha/Year) | Deforestation 2018 (ha) | ||
---|---|---|---|---|
2000–2012 | 2012–2017 | 2000–2017 | ||
Belize | 7748 | 15,055 | 11,402 | 7260 |
Guatemala | 65,854 | 70,179 | 68,016 | 29,583 |
El Salvador | 3887 | 10,440 | 7163 | 2161 |
Honduras | 32,981 | 101,465 | 67,223 | 50,339 |
Nicaragua | 57,216 | 80,743 | 68,980 | 53,494 |
Costa Rica | 13,611 | 26,135 | 19,873 | 6702 |
Panamá | 16,146 | 28,226 | 22,186 | 18,436 |
Central America | 197,443 | 332,243 | 264,843 | 167,976 |
2000 | 2012 | 2017 | |
---|---|---|---|
Forest area (ha) | 138,161,799 | 134,401,097 | 129,351,418 |
% of the national territory | 59 | 57.4 | 52.2 |
Forest Change 2000–2017 | Ha | % |
---|---|---|
Stable forest | 126,998,598 | 54.22 |
Without tree vegetation | 88,430,193 | 37.76 |
Exchange areas | 5,228,664 | 2.23 |
Other tree vegetation | 33,781 | 0.01 |
Forest gain | 2,352,820 | 1.00 |
Forest loss | 11,163,201 | 4.77 |
Total | 234,207,257 | 100 |
2000 | 2012 | 2017 | |
---|---|---|---|
Forest area (ha) | 101,869,009 | 98,021,479 | 94,344,978 |
% of the national territory | 81.3 | 78.2 | 75.3 |
Forest Change 2000–2017 | Ha | % |
---|---|---|
Stable forest | 92,490,608 | 73.78 |
Without tree vegetation | 16,323,787 | 13.02 |
Exchange areas | 5,308,008 | 4.23 |
Other tree vegetation | 12,162 | 0.01 |
Forest gain | 1,854,369 | 1.48 |
Forest loss | 9,378,400 | 7.48 |
Total | 125,367,334 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, A.; Hernández, A.J.; Rodríguez-Espinosa, V.M. Integration of Geospatial Tools and Multi-source Geospatial Data to Evaluate the Tropical Forest Cover Change in Central America and Its Methodological Replicability in Brazil and the DRC. Remote Sens. 2020, 12, 2705. https://doi.org/10.3390/rs12172705
Jiménez A, Hernández AJ, Rodríguez-Espinosa VM. Integration of Geospatial Tools and Multi-source Geospatial Data to Evaluate the Tropical Forest Cover Change in Central America and Its Methodological Replicability in Brazil and the DRC. Remote Sensing. 2020; 12(17):2705. https://doi.org/10.3390/rs12172705
Chicago/Turabian StyleJiménez, Abner, Alexander J. Hernández, and Víctor M Rodríguez-Espinosa. 2020. "Integration of Geospatial Tools and Multi-source Geospatial Data to Evaluate the Tropical Forest Cover Change in Central America and Its Methodological Replicability in Brazil and the DRC" Remote Sensing 12, no. 17: 2705. https://doi.org/10.3390/rs12172705
APA StyleJiménez, A., Hernández, A. J., & Rodríguez-Espinosa, V. M. (2020). Integration of Geospatial Tools and Multi-source Geospatial Data to Evaluate the Tropical Forest Cover Change in Central America and Its Methodological Replicability in Brazil and the DRC. Remote Sensing, 12(17), 2705. https://doi.org/10.3390/rs12172705