Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Identifying nascent wetland forest conversion in the Democratic Republic of the Congo

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Wetlands cover large areas in the Democratic Republic of the Congo. However, their extent and distribution have not been accurately mapped. While wetland forests remain largely undisturbed, increasing threats by anthropogenic activities have been observed in areas with high population density per arable or exploitable land. The scarcity of terra firma forests in some territories of the Democratic Republic of the Congo has forced local communities to develop cropping methods that allow for cultivation in periodically flooded areas. Assessing wetlands extent and status is critical for long term conservation of these highly vulnerable ecosystems. In this study, we use multi-source and multi-resolution optical and radar remotely sensed data and elevation derived indices to map the wetlands of the Democratic Republic of the Congo. Results showed that wetlands are a significant part of the landscape in the country, covering an estimated 440,000 km2 or 19.2 % of the total country area. By combining the wetlands map with a previously produced land cover depiction of the Democratic Republic of the Congo, a map including forested wetlands as a thematic class was derived. We investigated whether high terra firma population density and low percent remaining terra firma forest are related at the lowest administrative level (Sector); specifically, we tested these two variables as predictors of wetland forest cover loss. A polynomial regression relating population and primary terra firma forest to wetland forest cover loss yielded an r 2 of 0.76, illustrating a nascent and significant land cover change dynamic. Areas most at risk for future wetland forest loss lie in the western Cuvette, and include (north–south) the Sud-Ubangi, Mongala, Equateur and Mai-Ndombe Districts. By quantifying available upland forest resources and overlaying with population density, it was possible to identify stressed areas inside of the forest domain (traditionally known for having generically high levels of forest resources). Results illustrate the need for addressing issues of wetland forest management and protection in the Democratic Republic of the Congo, especially where increasing populations are exhausting primary terra firma forest resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barbier EB (1997) The economic determinants of land degradation in developing countries. Philos Trans Royal Soc Ser B 352(1356):891–899

    Article  Google Scholar 

  • Breiman L, Olshen JH, Stone CJ (1984) Classification and regression trees. Chapman and Hall, New York

    Google Scholar 

  • Bwangoy J-RB, Hansen MC, Roy DP, De Grandi G, Justice CO (2010) Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114:73–86

    Article  Google Scholar 

  • Center for International Earth Science Information Network (CIESIN), Centro Internacional de Agricultura Tropical (CIAT) (2005) Africa population density [map]. From: Gridded Population of the World (GPW), Version 3. CIESIN, Palisades. Online linkage: http://sedac.ciesin.columbia.edu/gpw/index.jsp

  • Chander C, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903

    Article  Google Scholar 

  • Cohen J (1968) Weighted Kappa: nominal scale agreement with provision for scale disagreement or partial credit. Psychol Bull 70(1968):213–220

    Article  PubMed  CAS  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1991):35–46

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deep water habitat of the United States. US Department of the Interior, Fish and Wildlife Service, Biological Services, Washington FWS/OBS-79/31

    Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetlands plants: biology and ecology. CRC Press, Boca Raton, p 439

    Book  Google Scholar 

  • Daly MC, Lawrence SR, Diemu-Tshiband K, Matouana B (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J Geol Soc 149:539–546

    Article  Google Scholar 

  • De Grandi GF, Mayaux P, Rauste Y, Rosenqvist A, Simard M, Saatchi S (2000) The global rain forest mapping project JERS-1 radar mosaic of tropical Africa: development and product characterization aspects. IEEE T Geosci Remote 38:2218–2233

    Google Scholar 

  • De Grandi F, Mayaux P, Rosenqvist A, Rauste Y, Saatchi S, Simard M et al (1998) Flooded forest mapping at regional scale in the Central Africa Congo River Basin: first thematic results derived by ERS-1 and JERS-1 radar mosaics. Retrieval of Bio and geo-physical parameters from SAR data for Land Applications Workshop, 21–23 October 1998, Noordwijk

  • Dechamps R, Lanfranchi R, Le Cocq A, Schwartz D (1988) Reconstitution d’environnements quaternaires par l’étude de macrorestes végrtaux (Pays Bateke, R.P. du Congo). Palaeogeogr Palaeoclimatol Palaeoecol 66:33–44

    Article  Google Scholar 

  • Dirzo R, Garcia MC (1992) Rates of deforestation in Los Tuxtlas, a neotropical area in Southeast Mexico. Conserv Biol 6(1):84–90

    Article  Google Scholar 

  • Elenga H, Schwartz D, Vincens A (1994) Pollen evidence of late quaternary vegetation and inferred climate changes in Congo. Palaeogeogr Palaeoclimatol Palaeoecol 109:345–356

    Article  Google Scholar 

  • FACET [Forét d’Afrique Centrale Evaluées par Télédetection], (2010). Etendue et perte du couvert forestier en Republique Democratique du Congo de 2000 à 2010. Observatoire Satellital des Forêts d’Afrique Centrale, South Dakota State University, University of Marylland (eds) p 64

  • Hamilton SK, Kellndorfer J, Lehner B, Tobler M (2007) Remote sensing of floodplain as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology 89:23–38

    Article  Google Scholar 

  • Hamphrey J, Newton A, Latham J, Gray H, Kirby K, Poulsom E, Quine C (2003) The restoration of wooded landscapes. Forestry Commission, Edinburgh, p 158

    Google Scholar 

  • Hansen M, Dubayah R, DeFries R (1996) Classification trees: an alternative to traditional land cover classifiers. Int J Remote Sens 17:1075–1081

    Article  Google Scholar 

  • Hansen MC, Roy D, Lindquist E, Justice CO, Altstaat A (2008) A method for integrating MODIS and landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens Environ 112:2495–2513

    Article  Google Scholar 

  • Hennig TA, Kretsch JL, Pessagno CJ, Salamonowicz PH, Stein WL (2001) The shuttle radar topography mission in. Proceedings of first international symposium, DEM, Lectures notes in computer science, Digital Earth Moving, September 5–7 2001, Manno, pp 65–77

  • Hess LL, Melack JM, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens 33:896–904

    Article  Google Scholar 

  • Irish RI (2000) Landsat7 automatic cloud cover assessment: algorithms for multispectral, hyperspectral, and ultraspectral imagery. Proc SPIE 4049:348–355

    Article  Google Scholar 

  • Journal Officiel de la Republique Democratique du Congo (2002) Loi portant code forestier, numero special 31/08/2002. Presidence de la Republique, Kinshasa

    Google Scholar 

  • Kadima E, Delvaux D, Sebagenzi N, Tack L, Kabeya SM (2011) Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res 23(5):499–527

    Article  Google Scholar 

  • Kindermann GE, Obersteiner M, Rametsteiner E, McCallum I (2006) Predicting the deforestation-trend under different carbon prices. Carbon Balance Manag 1(15):1–17

    Google Scholar 

  • MacMillan RA, Pettapiece WW, Nolan SC, Goddard TW (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets Syst 113:81–109

    Article  Google Scholar 

  • Matthews E, Payne R, Rohweder M, Murray S (2000) Pilot analysis of global ecosystems. Forest ecosystems. World Resources Institute, Washington

    Google Scholar 

  • Mayaux P, De Grandi G, Malingreau JP (2000) Central African forest cover revisited: a multisatellite analysis. Remote Sens Environ 71:183–196

    Article  Google Scholar 

  • Michaelson J, Schimel DS, Friedl MA, Davis FW, Dubayah RO (1994) Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. J Veg Sci 5:673–696

    Article  Google Scholar 

  • Middleton BA (1999) Flood pulsing in restoration: a feasible alternative for India? J Ecol Soc 12:10–14

    Google Scholar 

  • Miettinen J, Shi C, Liew SC (2011) Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob Change Biol 17(7):2261–2270

    Article  Google Scholar 

  • Minnemeyer S (2002) An Analysis of access to Central Africa’s rainforest. Holmes K (ed) Global forest watch, World Resource Institute, Washington, p 20

  • Mustard J, DeFries R, Fisher T, Moran E (2004) Land use and land cover change pathways and impacts. In: Gutman G, Janetos A, Justice C, Moran E, Mustard J, Rindfuss R, Skole D, Turner BL, Cochrane M (eds) Land change science: observing monitoring and understanding trajectories of change on the earth’s surface. Kluwer Academic, Dordrecht, pp 411–430

    Google Scholar 

  • O’Callagan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28:328–344

    Google Scholar 

  • Olago D (2001) Vegetation change over paleo-time scales in Africa. Clim Res 17:105–121

    Article  Google Scholar 

  • Ouaidrari H, Vermote EF (1999) Operational atmospheric correction of Landsat TM data. Remote Sens Environ 70:4–15

    Article  Google Scholar 

  • Potapov PV, Turubanova SA, Hansen MC, Adusei B, Altstatt A, Mane L, Justice CO (2012) Quantifying forest cover loss in the Democratic Republic of the Congo, 2000–2010. Remote Sens Environ (in press)

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission- a new class of digital elevation models acquired by spaceborne radar. Photogramm Eng Remote Sens 57:241–262

    Article  Google Scholar 

  • Rosenqvist A, Birkket CM (2002) Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo River Basin. Int J Remote Sens 23(7):1283–1302

    Article  Google Scholar 

  • Rosenqvist A, De Grandi F (2009) The ALOS PALSAR mosaic over the African continent—a reference baseline dataset for forest- and land cover change monitoring. Proceedings of IGARSS’09, 12–17 July, Cape Town, pp V: 115–117

  • Simard M, Saatchi S, De Grandi GF (2000) The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE Trans Geosci Remote Sens 38(5):2310–2321

    Article  Google Scholar 

  • Simard M, De Grandi JF, Saatchi S, Mayaux P (2002) Mapping tropical coastal vegetation using JERS-1 radar data with a decision tree classifier. Int J Remote Sens 23(7):1461–1474

    Article  Google Scholar 

  • Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nat Lett 440:520–523

    Article  CAS  Google Scholar 

  • Verbyla DL (1987) Classification trees: a new discrimination tool. Can J For Res 17(1150):1152

    Google Scholar 

  • White F (1983) The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO Nat Resour Res 20:1–356

    CAS  Google Scholar 

  • Wood J (1996) The geomorphological characterization of digital elevation models. Leicester, PhD Thesis, University of Leicester, Department of Geography

  • Wright JS (2005) Tropical forests in a changing environment. Trends Ecol Evol 20(10):553–560

    Article  PubMed  Google Scholar 

  • Yamba PTK (2009) Congo Basin, DRC: case study on the Ngiri-Tumba-Maindombe wetlands landscape. Environment security assessment. In: Van de Giessen E, Hyde-Hecker J, Balakrishnan R (eds) Programme on environment security for poverty alleviation. IES, The Hague, p 108

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the following organization that have contributed to funding this research: The National Aeronautic and Space Administration (NASA); The University of Maryland at College Park; The South Dakota State University and The US Agency for International Development (USAID)-CARPE (Central Africa Regional Program for the Environment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Robert B. Bwangoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bwangoy, JR.B., Hansen, M.C., Potapov, P. et al. Identifying nascent wetland forest conversion in the Democratic Republic of the Congo. Wetlands Ecol Manage 21, 29–43 (2013). https://doi.org/10.1007/s11273-012-9277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-012-9277-z

Keywords

Navigation