Exploring Feed Efficiency in Beef Cattle: From Data Collection to Genetic and Nutritional Modeling
<p>Example of equipment used to monitor and record feed intake in cattle. (<b>A</b>) The feeding lane is equipped with multiple electronic scales for individual feed intake monitoring—adapted from Biocontrol (<a href="https://biocontrol.no/products-2/controlling-and-recording-feed-intake/" target="_blank">https://biocontrol.no/products-2/controlling-and-recording-feed-intake/</a>, accessed on 6 November 2024). (<b>B</b>) Close-up of a feed intake system with individual animal identification—copyrights sourced from Biocontrol (<a href="https://biocontrol.no/products-2/controlling-and-recording-feed-intake/" target="_blank">https://biocontrol.no/products-2/controlling-and-recording-feed-intake/</a>, accessed on 6 November 2024). (<b>C</b>) Visual monitoring of feeding behavior using color-coded overlays on each animal to track feeding status and health parameters in real-time—copyrights sourced from Miguel Ángel Cabrera Miñagorri/Pipeless (<a href="https://www.pipeless.ai/industries/cattle-raising" target="_blank">https://www.pipeless.ai/industries/cattle-raising</a>, accessed on 6 November 2024).</p> "> Figure 2
<p>Summary of the energy flow in cattle.</p> ">
1. Introduction
2. Measures of Feed Efficiency
2.1. Feed Conversion Ratio/Feed Conversion Efficiency (FCR)
2.2. Residual Feed Intake (RFI)
2.3. Residual Average Daily Gain (RADG)
2.4. Maintenance Efficiency
2.5. Partial Efficiency of Growth
2.6. Cow/Calf Efficiency
3. Data Collection Technologies
4. Genetic Selection
4.1. Genetic Relationships Between Feed Efficiency and Growth and Carcass Traits
4.2. Genetic Relationships Between Feed Efficiency and Maintenance Requirements
4.2.1. Physiological Basis for Variation in Feed Efficiency
4.2.2. Distribution of Nutrient Demands
4.2.3. Body Composition
4.2.4. Physical Activity
4.2.5. Extra-Physiological Considerations
4.2.6. Visceral Organs
4.2.7. Intestinal Absorption and Cell Morphology
5. Nutritional Models
5.1. Descriptors of International Nutritional Models on Determination of Energy Requirements for Beef Cattle
5.2. Metabolizable and Net Energy Requirements for Maintenance for Growing Beef Cattle from Recent Studies Published Around the World
5.3. Energy Requirement for Maintenance During the Finishing Period
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA; USDA Foreign Agricultural Service (FAS). Beef; United States Department of Agriculture (USDA): Washington, DC, USA, 2024.
- USDA; USDA National Agricultural Statistics Service (NASS); Agricultural Statistics Board. Cattle; United States Department of Agriculture (USDA): Washington, DC, USA, 2024.
- UN. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100 | United Nations. 2017. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 6 November 2024).
- Revell, B. Meat and Milk Consumption 2050: The Potential for Demand-Side Solutions to Greenhouse Gas Emissions Reduction. EuroChoices 2015, 14, 4–11. [Google Scholar] [CrossRef]
- FAO. Global Meat Consumption, World, 1961 to 2050; FAO: Quebec City, QC, Canada, 2024. [Google Scholar]
- Xie, Y.; Hunter, M.; Sorensen, A.; Nogeire-McRae, T.; Murphy, R.; Suraci, J.P.; Lischka, S.; Lark, T.J. U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040. Land 2023, 12, 574. [Google Scholar] [CrossRef]
- Abu Hatab, A.; Cavinato, M.E.R.; Lindemer, A.; Lagerkvist, C.J. Urban Sprawl, Food Security and Agricultural Systems in Developing Countries: A Systematic Review of the Literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Committee on a Framework for Assessing the Health, Environmental, and Social Effects of the Food System; Food and Nutrition Board; Board on Agriculture and Natural Resources; Institute of Medicine; National Research Council. A Framework for Assessing Effects of the Food System; Nesheim, M.C., Oria, M., Yih, P.T., Eds.; National Academies Press (US): Washington, DC, USA, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305179/ (accessed on 6 November 2024).
- Hill, R.A. Feed Efficiency in the Beef Industry; Wiley-Blackwell: Hoboken, NJ, USA, 2012; ISBN 9780470959527. [Google Scholar]
- Baker, S.D.; Szasz, J.I.; Klein, T.A.; Kuber, P.S.; Hunt, C.W.; Glaze, J.B.; Falk, D.; Richard, R.; Miller, J.C.; Battaglia, R.A.; et al. Residual Feed Intake of Purebred Angus Steers: Effects on Meat Quality and Palatability. J. Anim. Sci. 2006, 84, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of Feedlot Feed Efficiency, Performance, and Feeding Behavior with Metabolic Rate, Methane Production, and Energy Partitioning in Beef Cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Gibb, D.J.; Mcallister, T.A. The Impact of Feed Intake and Feeding Behaviour of Cattle on Feedlot and Feedbunk Management. In Proceedings of the 20th Western Nutrition Conference on Marketing to the 21st Century, Calgary, AB, Canada, 15–17 September 1999; pp. 101–116. [Google Scholar]
- Basarab, J.A.; Price, M.A.; Okine, E.K. Commercialization of Net Feed Efficiency; Government of Alberta: Edmonton, AB, Canada, 2002. [Google Scholar]
- Fox, D.G.; Tedeschi, L.O.; Guiroy, P.J. Determining Feed Intake and Feed of Individual Cattle Fed in Groups. In Proceedings of the 2001 Beef Improvement Federation Meeting, San Antonio, TX, USA, 11–15 July 2001. [Google Scholar]
- Montaño-Bermude, M.; Nielsen, M.K.; Deutsches, G.H. Energy Requirements for Maintenance of Crossbred Beef Caltle with Different Genetic Potential for Milk. J. Anim. Sci. 1990, 68, 2279–2288. [Google Scholar] [CrossRef] [PubMed]
- Klosterman, E.W.; Parker, C.F.; Wooster, S. Effect of Size, Breed, and Sex Upon Feed Efficiency in Beef Cattle; Ohio Agricultural Research and Development Center: Wooster, OH, USA, 1976. [Google Scholar]
- Cabezas-Garcia, E.H.; Lowe, D.; Lively, F. Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance. Animals 2021, 11, 1642. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.P.F.; Herd, R.M. Residual Feed Intake in Beef Cattle. Rev. Bras. Zootec. 2008, 37, 269–279. [Google Scholar] [CrossRef]
- Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating Improvement of Livestock with Genomic Selection. Annu. Rev. Anim. Biosci. 2013, 1, 221–237. [Google Scholar] [CrossRef]
- Miar, Y.; Plastow, G.; Wang, Z. Genomic Selection, a New Era for Pork Quality Improvement. Springer Sci. Rev. 2015, 3, 27–37. [Google Scholar] [CrossRef]
- Brito, L.F.; Oliveira, H.R.; Houlahan, K.; Fonseca, P.A.S.; Lam, S.; Butty, A.M.; Seymour, D.J.; Vargas, G.; Chud, T.C.S.; Silva, F.F.; et al. Genetic Mechanisms Underlying Feed Utilization and Implementation of Genomic Selection for Improved Feed Efficiency in Dairy Cattle. Can. J. Anim. Sci. 2020, 100, 587–604. [Google Scholar] [CrossRef]
- de Haas, Y.; Calus, M.P.L.; Veerkamp, R.F.; Wall, E.; Coffey, M.P.; Daetwyler, H.D.; Hayes, B.J.; Pryce, J.E. Improved Accuracy of Genomic Prediction for Dry Matter Intake of Dairy Cattle from Combined European and Australian Data Sets. J. Dairy Sci. 2012, 95, 6103–6112. [Google Scholar] [CrossRef] [PubMed]
- Bolormaa, S.; Pryce, J.E.; Kemper, K.; Savin, K.; Hayes, B.J.; Barendse, W.; Zhang, Y.; Reich, C.M.; Mason, B.A.; Bunch, R.J.; et al. Accuracy of Prediction of Genomic Breeding Values for Residual Feed Intake and Carcass and Meat Quality Traits in Bos Taurus, Bos Indicus, and Composite Beef Cattle. J. Anim. Sci. 2013, 91, 3088–3104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, F.; Chen, L.; Vinsky, M.; Crowley, J.; Plastow, G.; Basarab, J.; Stothard, P.; Li, C.; Canada, A.-F.; et al. 287 Genomic Prediction for Residual Feed Intake and Its Component Traits Based on 50K and Imputed 7.8. J. Anim. Sci. 2018, 96, 107. [Google Scholar] [CrossRef]
- Verbyla, K.L.; Calus, M.P.L.; Mulder, H.A.; de Haas, Y.; Veerkamp, R.F. Predicting Energy Balance for Dairy Cows Using High-Density Single Nucleotide Polymorphism Information. J. Dairy Sci. 2010, 93, 2757–2764. [Google Scholar] [CrossRef]
- Pryce, J.E.; Arias, J.; Bowman, P.J.; Davis, S.R.; Macdonald, K.A.; Waghorn, G.C.; Wales, W.J.; Williams, Y.J.; Spelman, R.J.; Hayes, B.J. Accuracy of Genomic Predictions of Residual Feed Intake and 250-Day Body Weight in Growing Heifers Using 625,000 Single Nucleotide Polymorphism Markers. J. Dairy Sci. 2012, 95, 2108–2119. [Google Scholar] [CrossRef] [PubMed]
- Pryce, J.E.; Wales, W.J.; De Haas, Y.; Veerkamp, R.F.; Hayes, B.J. Genomic Selection for Feed Efficiency in Dairy Cattle. Animal 2014, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mujibi, F.D.N.; Nkrumah, J.D.; Durunna, O.N.; Stothard, P.; Mah, J.; Wang, Z.; Basarab, J.; Plastow, G.; Crews, D.H.; Moore, S.S. Accuracy of Genomic Breeding Values for Residual Feed Intake in Crossbred Beef Cattle. J. Anim. Sci. 2011, 89, 3353–3361. [Google Scholar] [CrossRef]
- de Haas, Y.; Pryce, J.E.; Calus, M.P.L.; Wall, E.; Berry, D.P.; Løvendahl, P.; Krattenmacher, N.; Miglior, F.; Weigel, K.; Spurlock, D.; et al. Genomic Prediction of Dry Matter Intake in Dairy Cattle from an International Data Set Consisting of Research Herds in Europe, North America, and Australasia. J. Dairy Sci. 2015, 98, 6522–6534. [Google Scholar] [CrossRef]
- Bolormaa, S.; MacLeod, I.M.; Khansefid, M.; Marett, L.C.; Wales, W.J.; Miglior, F.; Baes, C.F.; Schenkel, F.S.; Connor, E.E.; Manzanilla-Pech, C.I.V.; et al. Sharing of Either Phenotypes or Genetic Variants Can Increase the Accuracy of Genomic Prediction of Feed Efficiency. Genet. Sel. Evol. 2022, 54, 60. [Google Scholar] [CrossRef]
- Nielsen, M.K.; MacNeil, M.D.; Dekkers, J.C.M.; Crews, D.H.; Rathje, T.A.; Enns, R.M.; Weaber, R.L. Review: Life-Cycle, Total-Industry Genetic Improvement of Feed Efficiency in Beef Cattle: Blueprint for the Beef Improvement Federation. Prof. Anim. Sci. 2013, 29, 559–565. [Google Scholar] [CrossRef]
- Berry, D.P.; Crowley, J.J. CELL BIOLOGY SYMPOSIUM: Genetics of Feed Efficiency in Dairy and Beef Cattle. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef] [PubMed]
- Korver, S. Genetic Aspects of Feed Intake and Feed Efficiency in Dairy Cattle: A Review. Livest. Prod. Sci. 1988, 20, 1–13. [Google Scholar] [CrossRef]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of Feed Use in Beef Cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Keith Salmon, R.; Bailey, D.R.C.; Weingardt, R.; aNoBBnc, R. Growth Efficiency in Mice Selected for Increased Body Weight. Can. J. Anim. Sci. 1990, 70, 371–381. [Google Scholar] [CrossRef]
- Honig, A.C.; Inhuber, V.; Spiekers, H.; Windisch, W.; Götz, K.-U.; Schuster, M.; Ettle, T. NC-ND License Body Composition and Composition of Gain of Growing Beef Bulls Fed Rations with Varying Energy Concentrations. Meat Sci. 2022, 184, 309–1740. [Google Scholar] [CrossRef]
- Hersom, M.J.; Horn, G.W.; Krehbiel, C.R.; Phillips, W.A. Effect of Live Weight Gain of Steers during Winter Grazing: I. Feedlot Performance, Carcass Characteristics, and Body Composition of Beef Steers. J. Anim. Sci. 2004, 82, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.A.; Richardson, E.C.; Herd, R.M.; Arthur, P.F. Potential for Selection to Improve Efficiency of Feed Use in Beef Cattle: A Review. Aust. J. Agric. Res. 1999, 50, 147–162. [Google Scholar] [CrossRef]
- Svendsen, M.; Skipenes, P.; Mao, I.L. Genetic Parameters in the Feed Conversion Complex of Primiparous Cows in the First Two Trimesters. J. Anim. Sci. 1993, 71, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Veerkamp, R.F.; Emmans, G.C.; Cromie, A.R.; Simm, G. Variance Components for Residual Feed Intake in Dairy Cows. Livest. Prod. Sci. 1995, 41, 111–120. [Google Scholar] [CrossRef]
- Torres-Vázquez, J.A.; van der Werf, J.H.J.; Clark, S.A. Genetic and Phenotypic Associations of Feed Efficiency with Growth and Carcass Traits in Australian Angus Cattle. J. Anim. Sci. 2018, 96, 4521–4531. [Google Scholar] [CrossRef] [PubMed]
- Novo, L.C.; Gondo, A.; Gomes, R.C.; Fernandes Junior, J.A.; Ribas, M.N.; Brito, L.F.; Laureano, M.M.M.; Araújo, C.V.; Menezes, G.R.O. Genetic Parameters for Performance, Feed Efficiency, and Carcass Traits in Senepol Heifers. Animal 2021, 15, 100160. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.N.; Davis, M.E.; Loerch, S.C. Residual Feed Intake of Angus Beef Cattle Divergently Selected for Feed Conversion Ratio. Livest. Sci. 2010, 132, 41–47. [Google Scholar] [CrossRef]
- Santana, M.H.A.; Oliveira, G.A.; Gomes, R.C.; Silva, S.L.; Leme, P.R.; Stella, T.R.; Mattos, E.C.; Rossi, P.; Baldi, F.S.; Eler, J.P.; et al. Genetic Parameter Estimates for Feed Efficiency and Dry Matter Intake and Their Association with Growth and Carcass Traits in Nellore Cattle. Livest. Sci. 2014, 167, 80–85. [Google Scholar] [CrossRef]
- Mrode, R.A.; Smith, C.; Thompson, R. Selection for Rate and Efficiency of Lean Gain in Hereford Cattle 1. Selection Pressure Applied and Direct Responses. Anim. Prod. 1990, 51, 23–34. [Google Scholar] [CrossRef]
- Akdemir, D.; Beavis, W.; Fritsche-Neto, R.; Singh, A.K.; Isidro-Sánchez, J. Multi-Objective Optimized Genomic Breeding Strategies for Sustainable Food Improvement. Heredity 2019, 122, 672–683. [Google Scholar] [CrossRef]
- Covarrubias-Pazaran, G.; Gebeyehu, Z.; Gemenet, D.; Werner, C.; Labroo, M.; Sirak, S.; Coaldrake, P.; Rabbi, I.; Kayondo, S.I.; Parkes, E.; et al. Breeding Schemes: What Are They, How to Formalize Them, and How to Improve Them? Front. Plant Sci. 2022, 12, 791859. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, G.E. Animal Size and Efficiency: Basic Concepts. Anim. Prod. 1978, 27, 367–379. [Google Scholar] [CrossRef]
- Andersen, B.B. Animal Size and Efficiency, with Special Reference to Growth and Feed Conversion in Cattle. Anim. Prod. 1978, 27, 381–391. [Google Scholar] [CrossRef]
- Fitzhugh, H.A. Animal Size and Efficiency, with Special Reference to the Breeding Female. Anim. Prod. 1978, 27, 393–401. [Google Scholar] [CrossRef]
- Holmes, W. Size of Animal in Relation to Productivity Nutritional Aspects. Proc. Br. Soc. Anim. Prod. 1973, 2, 27–34. [Google Scholar] [CrossRef]
- Arthur, P.F.; Renand, G.; Krauss, G. Genetic and Phenotypic Relationships among Different Measures of Growth and Feed Efficiency in Young Charolais Bulls. Livest. Prod. Sci. 2001, 68, 131–139. [Google Scholar] [CrossRef]
- Arthur, P.F.; Archer, J.A.; Johnston, D.J.; Herd, R.M.; Richardson, E.C.; Parnell, P.F. Genetic and Phenotypic Variance and Covariance Components for Feed Intake, Feed Efficiency, and Other Postweaning Traits in Angus Cattle. J. Anim. Sci. 2001, 79, 2805–2811. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.A.; Arthur, P. Genetic Variation in Feed Intake and Efficiency of Mature Beef Cows and Relationships with Post-Weaning Measurements. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpelier, France, 19–23 August 2002; pp. 221–225. [Google Scholar]
- Herd, R.M.; Archer, J.A.; Arthur, P.F. Reducing the Cost of Beef Production through Genetic Improvement in Residual Feed Intake: Opportunity and Challenges to Application. J. Anim. Sci. 2003, 81, E9–E17. [Google Scholar]
- Herd, R.M.; Bishop, S.C. Genetic Variation in Residual Feed Intake and Its Association with Other Production Traits in British Hereford Cattle. Livest. Prod. Sci. 2000, 63, 111–119. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Basarab, J.A.; Wang, Z.; Li, C.; Price, M.A.; Okine, E.K.; Crews, D.H.; Moore, S.S. Genetic and Phenotypic Relationships of Feed Intake and Measures of Efficiency with Growth and Carcass Merit of Beef Cattle. J. Anim. Sci. 2007, 85, 2711–2720. [Google Scholar] [CrossRef] [PubMed]
- Ceacero, T.M.; Mercadante, M.E.Z.; Cyrillo, J.N.D.S.G.; Canesin, R.C.; Bonilha, S.F.M.; De Albuquerque, L.G. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight. PLoS ONE 2016, 11, e0161366. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.L.; Oddy, V.H. Genetic Parameters for Feed Efficiency, Fatness, Muscle Area and Feeding Behaviour of Feedlot Finished Beef Cattle. Livest. Prod. Sci. 2004, 90, 255–270. [Google Scholar] [CrossRef]
- Sainz, R.D.; Baldi, F.; Temp, L.B.; Ribeiro, L.B. Estimation of Genetic Parameters for Maintenance Energy Requirements and Residual Feed Intake in Nellore Cattle. J. Anim. Breed. Genet. 2024, 141, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Brunes, L.C.; de Faria, C.U.; Magnabosco, C.U.; Lobo, R.B.; Peripolli, E.; Aguilar, I.; Baldi, F. Genomic Prediction Ability and Genetic Parameters for Residual Feed Intake Calculated Using Different Approaches and Their Associations with Growth, Reproductive, and Carcass Traits in Nellore Cattle. J. Appl. Genet. 2023, 64, 159–167. [Google Scholar] [CrossRef]
- De Moraes, G.F.; Abreu, L.R.A.; Ferreira, I.C.; Pereira, I.G. Genetic Analysis of Residual Feed Intake Adjusted for Fat and Carcass and Performance Traits in a Nellore Herd. Ciência Rural 2016, 47, 20151505. [Google Scholar] [CrossRef]
- Northcutt, S.; Bowman, B. American Angus Association to Release Selection Tool for Feed Efficiency. Available online: https://www.angus.org/pub/newsroom/releases/090210_radgrelease.html (accessed on 3 November 2024).
- Faulkner, D.B. The Relationship of RFI and Voluntary Forage Intake and Cow Survival under Range Conditions Measuring Feed Efficiency Residual Average Daily Gain (RADG); The University of Arizona Cooperative Extension: Tucson, AZ, USA, 2016. [Google Scholar]
- Freetly, H.C.; Kuehn, L.A.; Thallman, R.M.; Snelling, W.M. Heritability and Genetic Correlations of Feed Intake, Body Weight Gain, Residual Gain, and Residual Feed Intake of Beef Cattle as Heifers and Cows. J. Anim. Sci. 2020, 98, skz394. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.Q.; Wilton, J.W.; Colucci, P.E. Genetic Parameters for Feed Intake and Efficiency in Lactating Beef Cows. Can. J. Anim. Sci. 1996, 76, 81–87. [Google Scholar] [CrossRef]
- Grion, A.L.; Mercadante, M.E.Z.; Cyrillo, J.N.S.G.; Bonilha, S.F.M.; Magnani, E.; Branco, R.H. Selection for Feed Efficiency Traits and Correlated Genetic Responses in Feed Intake and Weight Gain of Nellore Cattle. J. Anim. Sci. 2014, 92, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.Q.; Bailey, D.R.; Shannon, N.H. Genetic Parameter Estimation of Postweaning Gain, Feed Intake, and Feed Efficiency for Hereford and Angus Bulls Fed Two Different Diets. J. Anim. Sci. 1995, 73, 365–372. [Google Scholar] [CrossRef]
- Shuey, S.A.; Birkelo, C.P.; Marshall, D.M. The Relationship of the Maintenance Energy Requirement to Heifer Production Efficiency. J. Anim. Sci. 1993, 71, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.G.; Ferrell, C.L. Productivity through Weaning of Nine Breeds of Cattle under Varying Feed Availabilities: I. Initial Evaluation. J. Anim. Sci. 1994, 72, 2787–2797. [Google Scholar] [CrossRef]
- Halachmi, I.; Edan, Y.; Maltz, E.; Peiper, U.M.; Moallem, U.; Brukental, I. A Real-Time Control System for Individual Dairy Cow Food Intake. Comput. Electron. Agric. 1998, 20, 131–144. [Google Scholar] [CrossRef]
- DeVries, T.J.; Von Keyserlingk, M.A.G.; Weary, D.M.; Beauchemin, K.A. Technical Note: Validation of a System for Monitoring Feeding Behavior of Dairy Cows. J. Dairy Sci. 2003, 86, 3571–3574. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Iglesias, C.; Busto, I. Technical Note: A Computerized System for Monitoring Feeding Behavior and Individual Feed Intake of Dairy Cattle. J. Dairy Sci. 2004, 87, 4207–4209. [Google Scholar] [CrossRef]
- Ferris, C.P.; Keady, T.W.J.; Gordon, F.J.; Kilpatrick, D.J. Comparison of a Calan Gate and a Conventional Feed Barrier System for Dairy Cows: Feed Intake and Cow Behaviour. Ir. J. Agric. Food Res. 2006, 45, 149–156. [Google Scholar]
- Wang, Z.; Nkrumah, J.D.; Li, C.; Basarab, J.A.; Goonewardene, L.A.; Okine, E.K.; Crews, D.H.; Moore, S.S. Test Duration for Growth, Feed Intake, and Feed Efficiency in Beef Cattle Using the GrowSafe System. J. Anim. Sci. 2006, 84, 2289–2298. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; Veira, D.M.; Weary, D.M.; Von Keyserlingk, M.A.G. Technical Note: Validation of a System for Monitoring Individual Feeding and Drinking Behavior and Intake in Group-Housed Cattle. J. Dairy Sci. 2007, 90, 5732–5736. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.M. New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems; BoD–Books on Demand; Intechopen: London, UK, 2010; ISBN 953307213X. [Google Scholar]
- Chizzotti, M.L.; Machado, F.S.; Valente, E.E.L.; Pereira, L.G.R.; Campos, M.M.; Tomich, T.R.; Coelho, S.G.; Ribas, M.N. Technical Note: Validation of a System for Monitoring Individual Feeding Behavior and Individual Feed Intake in Dairy Cattle. J. Dairy Sci. 2015, 98, 3438–3442. [Google Scholar] [CrossRef] [PubMed]
- Lassen, J.; Thomasen, J.R.; Hansen, R.H.; Nielsen, G.G.B.; Olsen, E.V.; Stentebjerg, P.R.B.; Hansen, N.W.; Borchersen, S. Individual Measure of Feed Intake on In-House Commercial Dairy Cattle Using 3D Camera System. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Shelley, A.N. Monitoring Dairy Cow Feed Intake Using Machine Vision. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2013. [Google Scholar]
- Saar, M.; Edan, Y.; Godo, A.; Lepar, J.; Parmet, Y.; Halachmi, I. A Machine Vision System to Predict Individual Cow Feed Intake of Different Feeds in a Cowshed. Animal 2022, 16, 100432. [Google Scholar] [CrossRef] [PubMed]
- Bloch, V.; Levit, H.; Halachmi, I. Assessing the Potential of Photogrammetry to Monitor Feed Intake of Dairy Cows. J. Dairy Res. 2019, 86, 34–39. [Google Scholar] [CrossRef]
- Spencer, B.F., Jr.; Hoskere, V.; Narazaki, Y. Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. Engineering 2019, 5, 199–222. [Google Scholar] [CrossRef]
- Shelley, A.N.; Lau, D.L.; Stone, A.E.; Bewley, J.M. Short Communication: Measuring Feed Volume and Weight by Machine Vision. J. Dairy Sci. 2016, 99, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer Vision System for Measuring Individual Cow Feed Intake Using RGB-D Camera and Deep Learning Algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M. Editorial: Precision Livestock Farming: A ‘per Animal’ Approach Using Advanced Monitoring Technologies. Animal 2016, 10, 1482–1483. [Google Scholar] [CrossRef]
- Brito, L.F.; Oliveira, H.R.; McConn, B.R.; Schinckel, A.P.; Arrazola, A.; Marchant-Forde, J.N.; Johnson, J.S. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding. Front. Genet. 2020, 11, 552352. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Phenotyping in Livestock Farming. Animals 2021, 11, 2009. [Google Scholar] [CrossRef] [PubMed]
- Lassen, J.; Thomasen, J.R.; Borchersen, S. Repeatabilities of Individual Measures of Feed Intake and Body Weight on In-House Commercial Dairy Cattle Using a 3-Dimensional Camera System. J. Dairy Sci. 2023, 106, 9105–9114. [Google Scholar] [CrossRef]
- Viking Genetics Innovators in Cattle Breeding. Available online: https://www.vikinggenetics.com/about-us/innovative-breeding/innovators (accessed on 25 December 2023).
- Borchersen, S.; Hansen, N.W.; Borggaard, C. System for Determining Feed Consumption of at Least One Animal. U.S. Patent Application No. US20180249683A1, 6 September 2018. [Google Scholar]
- Borchersen, S.; Borggaard, C.; Hansen, N.W. System and Method for Identification of Individual Animals Based on Images of the Back. U.S. Patent Application No. US20240206427A1, 24 October 2023. [Google Scholar]
- Lassen, J.; Borchersen, S. Weight Determination of an Animal Based on 3d Imaging. U.S. Patent Application No. US20220221325A1, 14 July 2022. [Google Scholar]
- Manzanilla-Pech, C.I.V.; Stephansen, R.B.; Lassen, J. Genetic Parameters for Feed Intake and Body Weight in Dairy Cattle Using High-Throughput 3-Dimensional Cameras in Danish Commercial Farms. J. Dairy Sci. 2023, 106, 9006–9015. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.Q.; Wilton, L.E.; Colucci, J.W.; Fan, P.E. Genetic Parameters for Feed Intake and Efficiency in Dry Pregnant Beef Cows. Can. J. Anim. Sci. 1996, 76, 1. [Google Scholar] [CrossRef]
- Carstens, G.E.; Tedeschi, L.O. Defining Feed Efficiency in Beef Cattle. In Proceedings of the Beef Improvement Federation, 38th Annual Meeting, Choctaw, MI, USA, 18–21 April 2006. [Google Scholar]
- Taylor, C.S.; Turner, H.G.; Young, G.B. Genetic Control of Equilibrium Maintenance Efficiency in Cattle. Anim. Prod. 1981, 33, 179–194. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Basarab, J.A.; Price, M.A.; Okine, E.K.; Ammoura, A.; Guercio, S.; Hansen, C.; Li, C.; Benkel, B.; Murdoch, B.; et al. Different Measures of Energetic Efficiency and Their Phenotypic Relationships with Growth, Feed Intake, and Ultrasound and Carcass Merit in Hybrid Cattle. J. Anim. Sci. 2004, 82, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Thomasen, J.R.; Lassen, J.; Nielsen, G.G.B.; Borggard, C.; Stentebjerg, P.R.B.; Hansen, R.H.; Hansen, N.W.; Borchersen, S. Individual Cow Identification in a Commercial Herd Using 3D Camera Technology. In Proceedings of the ICAR Conference and World Congress on Genetics Applied to Livestock Production 2018, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Takeda, M.; Uemoto, Y.; Inoue, K.; Ogino, A.; Nozaki, T.; Kurogi, K.; Yasumori, T.; Satoh, M. Evaluation of Feed Efficiency Traits for Genetic Improvement in Japanese Black Cattle. J. Anim. Sci. 2018, 96, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.A.; Hosono, M.; Oikawa, T.; Suzuki, K. Genetic Parameters for Measures of Energetic Efficiency of Bulls and Their Relationships with Carcass Traits of Field Progeny in Japanese Black Cattle. J. Anim. Sci. 2009, 87, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Retallick, K. Evaluation of Feedlot Feed Efficiency Relationships as Well as Genetic and Phenotypic Performance, Carcass, and Economic Outcomes. Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL, USA, 2013; p. 102. [Google Scholar]
- Elolimy, A.A.; Abdelmegeid, M.K.; McCann, J.C.; Shike, D.W.; Loor, J.J. Residual Feed Intake in Beef Cattle and Its Association with Carcass Traits, Ruminal Solid-Fraction Bacteria, and Epithelium Gene Expression. J. Anim. Sci. Biotechnol. 2018, 9, 67. [Google Scholar] [CrossRef]
- Inoue, K.; Kobayashi, M.; Shoji, N.; Kato, K. Genetic Parameters for Fatty Acid Composition and Feed Efficiency Traits in Japanese Black Cattle. Animal 2011, 5, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.R.; Meiske, J.C.; Goodrich, R.D.; Rust, J.R.; Byers, F.M. Influence of Body Composition on Energy Requirements of Beef Cows during Winter. J. Anim. Sci. 1983, 56, 1241–1252. [Google Scholar] [CrossRef]
- Bottje, W.G.; Carstens, G.E. Variation in Metabolism: Biological Efficiency. In Feed Efficiency in the Beef Industry; Wiley: Hoboken, NJ, USA, 2012; pp. 251–273. [Google Scholar] [CrossRef]
- Kolath, W.H.; Kerley, M.S.; Golden, J.W.; Keisler, D.H. The Relationship between Mitochondrial Function and Residual Feed Intake in Angus Steers. J. Anim. Sci. 2006, 84, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, C.; Kenny, D.A.; McGee, M. Visceral Organ Weights, Digestion and Carcass Characteristics of Beef Bulls Differing in Residual Feed Intake Offered a High Concentrate Diet. Animal 2014, 8, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, P.A.; Carstens, G.E.; Michal, J.J.; Brennan, K.M.; Johnson, K.A.; Davis, M.E. Relationships between Residual Feed Intake and Hepatic Mitochondrial Function in Growing Beef Cattle. J. Anim. Sci. 2014, 92, 3134–3141. [Google Scholar] [CrossRef] [PubMed]
- Acetoze, G.; Weber, K.L.; Ramsey, J.J.; Rossow, H.A. Relationship between Liver Mitochondrial Respiration and Proton Leak in Low and High RFI Steers from Two Lineages of RFI Angus Bulls. Int. Sch. Res. Not. 2015, 2015, 194014. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.H.; Kerley, M.S. Mitochondrial Complex I Protein Differs among Residual Feed Intake Phenotype in Beef Cattle. J. Anim. Sci. 2013, 91, 3299–3304. [Google Scholar] [CrossRef]
- Kelly, A.K.; Waters, S.M.; McGee, M.; Fonseca, R.G.; Carberry, C.; Kenny, D.A. MRNA Expression of Genes Regulating Oxidative Phosphorylation in the Muscle of Beef Cattle Divergently Ranked on Residual Feed Intake. Physiol. Genom. 2011, 43, 12–23. [Google Scholar] [CrossRef]
- Fonseca, L.F.S.; Gimenez, D.F.J.; Mercadante, M.E.Z.; Bonilha, S.F.M.; Ferro, J.A.; Baldi, F.; de Souza, F.R.P.; de Albuquerque, L.G. Expression of Genes Related to Mitochondrial Function in Nellore Cattle Divergently Ranked on Residual Feed Intake. Mol. Biol. Rep. 2015, 42, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Kenny, D.A.; Fitzsimons, C.; Waters, S.M.; McGee, M. Invited Review: Improving Feed Efficiency of Beef Cattle—The Current State of the Art and Future Challenges. Animal 2018, 12, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.K.; Lawrence, P.; Earley, B.; Kenny, D.A.; McGee, M. Stress and Immunological Response of Heifers Divergently Ranked for Residual Feed Intake Following an Adrenocorticotropic Hormone Challenge. J. Anim. Sci. Biotechnol. 2017, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.K.; Earley, B.; McGee, M.; Fahey, A.G.; Kenny, D.A. Endocrine and Hematological Responses of Beef Heifers Divergently Ranked for Residual Feed Intake Following a Bovine Corticotropin-Releasing Hormone Challenge. J. Anim. Sci. 2016, 94, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Munro, J.C.; Schenkel, F.S.; Physick-Sheard, P.W.; Fontoura, A.B.P.; Miller, S.P.; Tennessen, T.; Montanholi, Y.R. Associations of Acute Stress and Overnight Heart Rate with Feed Efficiency in Beef Heifers. Animal 2017, 11, 452–460. [Google Scholar] [CrossRef]
- Mcdonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G.; Greenhalgh, M.E.; Wilkinson, M.S. AnimAl Nutrition, 7th ed.; Oliver & Boyd: Edinburgh, UK, 1988. [Google Scholar]
- Owens, F.N.; Gill, D.R.; Secrist, D.S.; Coleman, S.W. Review of Some Aspects of Growth and Development of Feedlot Cattle. J. Anim. Sci. 1995, 73, 3152–3172. [Google Scholar] [CrossRef]
- Solis, J.C.; Byers, F.M.; Schelling, G.T.; Long, C.R.; Greene, L.W. Maintenance Requirements and Energetic Efficiency of Cows of Different Breed Types. J. Anim. Sci. 1988, 66, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.S.; Thiessen, R.B.; Murray, J. Inter-Breed Relationship of Maintenance Efficiency to Milk Yield in Cattle. Anim. Sci. 1986, 43, 37–61. [Google Scholar] [CrossRef]
- Luiting, P.; Urff, E.M.; Verstegen, M.W.A. Between-Animal Variation in Biological Efficiency as Related to Residual Feed Consumption. Neth. J. Agric. Sci. 1994, 42, 59–67. [Google Scholar] [CrossRef]
- Katle, J.; Kolstad, N. Selection for Efficiency of Food Utilisation in Laying Hens: Direct Response in Residual Food Consumption and Correlated Responses in Weight Gain, Egg Production and Body Weight. Br. Poult. Sci. 2007, 32, 939–953. [Google Scholar] [CrossRef]
- Herd, R.M.; Arthur, P.F. Physiological Basis for Residual Feed Intake. J. Anim. Sci. 2009, 87, E64–E71. [Google Scholar] [CrossRef] [PubMed]
- Herd, R.M.; Oddy, V.H.; Richardson, E.C. Biological Basis for Variation in Residual Feed Intake in Beef Cattle. 1. Review of Potential Mechanisms. Aust. J. Exp. Agric. 2004, 44, 423. [Google Scholar] [CrossRef]
- Richardson, E.C.; Kilgour, R.J.; Archer, J.A.; Herd, R.M. Richardson Pedometers Measure Differences in Activity in Bulls Selected for High or Low Net Feed Efficiency. Aust. Soc. Anim. Behav. 1999, 26, 16. [Google Scholar]
- Susenbeth, A.; Mayer, R.; Koehler, B.; Neumann, O. Energy Requirement for Eating in Cattle. J. Anim. Sci. 1998, 76, 2701–2705. [Google Scholar] [CrossRef] [PubMed]
- Llonch, P.; Somarriba, M.; Duthie, C.A.; Troy, S.; Roehe, R.; Rooke, J.; Haskell, M.J.; Turner, S.P. Temperament and Dominance Relate to Feeding Behaviour and Activity in Beef Cattle: Implications for Performance and Methane Emissions. Animal 2018, 12, 2639–2648. [Google Scholar] [CrossRef]
- Richardson, E.C.; Arthur, P.; Oddy, H. Possible Physiological Indicators for Net Feed Conversion Efficiency in Beef Cattle. Proc. Aust. Soc. Anim. Prod. 1996, 21, 103–106. [Google Scholar]
- Herd, R.M.; Oddy, V.H.; Lee, G.J. Effect of Divergent Selection for Weaning Weight on Liveweight and Wool Growth Responses to Feed Intake in Merino Ewes. Aust. J. Exp. Agric. 1993, 33, 699–705. [Google Scholar] [CrossRef]
- Smith, N.E.; Baldwin, R.L. Effects of Breed, Pregnancy, and Lactation on Weight of Organs and Tissues in Dairy Cattle. J. Dairy Sci. 1974, 57, 1055–1060. [Google Scholar] [CrossRef]
- Early, R.J.; McBride, B.W.; Ball, R.O. Growth and Metabolism in Somatotropin-Treated Steers: III. Protein Synthesis and Tissue Energy Expenditures. J. Anim. Sci. 1990, 68, 4153–4166. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Ferrell, C.L.; Cundiff, L.V. Relationship of Components of the Body among Mature Cows as Related to Size, Lactation Potential and Possible Effects on Productivity. Anim. Sci. 1986, 43, 245–254. [Google Scholar] [CrossRef]
- Ling Jung Koong; Nienaber, J.A.; Pekas, J.C.; Yen, J.T. Effects of Plane of Nutrition on Organ Size and Fasting Heat Production in Pigs. J. Nutr. 1982, 112, 1638–1642. [Google Scholar] [CrossRef]
- Burrin, D.G.; Ferrell, C.L.; Britton, R.A.; Bauer, M. Level of Nutrition and Visceral Organ Size and Metabolic Activity in Sheep. Br. J. Nutr. 1990, 64, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Seebeck, R.M. The Effect of Body-Weight Loss on the Composition of Brahman Cross and Africander Cross Steers: 1. Empty Body Weight, Dressed Carcass Weight and Offal Components. J. Agric. Sci. 1973, 80, 201–210. [Google Scholar] [CrossRef]
- Ledger, H.P.; Sayers, A.R. The Utilization of Dietary Energy by Steers during Periods of Restricted Food Intake and Subsequent Realimentaion: 1. The Effect of Time on the Maintenance Requirements of Steers Held at Constant Live Weights. J. Agric. Sci. 1977, 88, 11–26. [Google Scholar] [CrossRef]
- Meyer, A.M.; Hess, B.W.; Paisley, S.I.; Du, M.; Caton, J.S. Small Intestinal Growth Measures Are Correlated with Feed Efficiency in Market Weight Cattle, despite Minimal Effects of Maternal Nutrition during Early to Midgestation. J. Anim. Sci. 2014, 92, 3855–3867. [Google Scholar] [CrossRef]
- Montanholi, Y.; Fontoura, A.; Swanson, K.; Coomber, B.; Yamashiro, S.; Miller, S. Small Intestine Histomorphometry of Beef Cattle with Divergent Feed Efficiency. Acta Vet. Scand. 2013, 55, 9. [Google Scholar] [CrossRef] [PubMed]
- Serão, N.V.L.; González-Peña, D.; Beever, J.E.; Faulkner, D.B.; Southey, B.R.; Rodriguez-Zas, S.L. Single Nucleotide Polymorphisms and Haplotypes Associated with Feed Efficiency in Beef Cattle. BMC Genet. 2013, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Malekpour, S. Unlocking and Accelerating Transformations to the SDGs: A Review of Existing Knowledge. Sustain. Sci. 2023, 18, 1939–1960. [Google Scholar] [CrossRef] [PubMed]
- Lovendahll, P.; Difford, G.F.; Li, B.; Chagunda, M.G.G.; Huhtanen, P.; Lidauer, M.H.; Lassen, J.; Lund, P. Review: Selecting for Improved Feed Efficiency and Reduced Methane Emissions in Dairy Cattle. Animal 2018, 12, s336–s349. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla-Pech, C.I.V.; Stephansen, R.B.; Difford, G.F.; Løvendahl, P.; Lassen, J. Selecting for Feed Efficient Cows Will Help to Reduce Methane Gas Emissions. Front. Genet. 2022, 13, 885932. [Google Scholar] [CrossRef]
- Wall, E.; Simm, G.; Moran, D. Developing Breeding Schemes to Assist Mitigation of Greenhouse Gas Emissions. Animal 2010, 4, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Quebec City, QC, Canada, 2013; Volume 115. [Google Scholar]
- Capper, J.L. The Environmental Impact of Beef Production in the United States: 1977 Compared with 2007. J. Anim. Sci. 2011, 89, 4249–4261. [Google Scholar] [CrossRef] [PubMed]
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant Enteric Methane Mitigation: A Review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Oldham, J.D. Book Review: The Ruminant Nutrition System: An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants, Eds L. O. TEDESCHI & D. G. FOX. 578 pp. Ann Arbor, MI: XanEdu (2016). US $104.69 (Hardback). ISBN 978-1-58390-236-3. J. Agric. Sci. 2017, 155, 1188–1189. [Google Scholar] [CrossRef]
- BR-Corte. Nutrient Requirements of Zebu and Crossbred Cattle, 3rd ed.; De Campos, S., Filho, V., Fernando Costa, L., Mateus, S., Gionbelli, P., Pizzi, P., Marcos, R., Marcondes, I., Luiz, M., Laura, C., et al., Eds.; Suprema Gráfica: São Carlos, Brazil, 2016. [Google Scholar]
- CSIRO. Nutrient Requirements of Domesticated Ruminants; CSIRO, Ed.; CSIRO Publishing: Melbourne, Australia, 2007; ISBN 9780643092624. [Google Scholar]
- INRA. INRA Feeding System for Ruminants, 2nd ed.; Nozière, P., Sauvant, D., Delaby, L., Eds.; Institut National de la Recherche Agronomique: Paris, France, 2018. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Smith, J.A.B. The Nutrient Requirements of Farm Livestock. No. 2, Ruminants: Summaries of Estimated Requirements; Agricultural Research Council: London, UK, 1965. [Google Scholar]
- MAFF. MAFF Technical Bulletin 33: Energy Allowances and Feeding Systems for Ruminants; The Stationery Office: London, UK, 1975; Volume 80. [Google Scholar]
- AFRC. AFRC. AFRC Technical Committee on Responses to Nutrients, Report Number 5, Nutritive Requirements of Ruminant Animals: Energy. In Nutrition Abstracts and Reviews (Series B: Livestock Feeds and Feeding); AFRC: London, UK, 1990; Volume 60. [Google Scholar]
- Alderman, G.; Cottrill, B.R. Energy and Protein Requirements of Ruminants; Acribia, S.A.: Zaragoza, Spain, 1996; ISBN 8420008028. [Google Scholar]
- Agnew, R.E.; Yan, T. Calorimetry. In Quantitative Aspects of Ruminant Digestion and Metabolism; CABI Publishing: Oxfordshire, UK, 2005; pp. 421–442. [Google Scholar]
- Graham, N.M. Energy Metabolism of Farm Animals: Proceedings of the 9th Symposium Held at Lillehammer, Norway, September 1982/Edited by A. Ekern and F. Sundstol; Symposium on Energy Metabolism (Lillehammer, N., Sundstøl, F., Ekern, A., European Association for Animal Production (1982)); Department of Animal Nutrition, Agricultural University of Norway: Aas-NLH, Norway, 1982; ISBN 8257590061. [Google Scholar]
- Blaxter, K.L.; Wainman, F.W. The Utilization of Food by Sheep and Cattle. J. Agric. Sci. 1961, 57, 419–425. [Google Scholar] [CrossRef]
- McLean, J.A.; Tobin, G. Animal and Human Calorimetry; Cambridge University Press (CUP): Cambridge, UK, 1987; Volume 338. [Google Scholar]
- Thomas, C. Feed into Milk: A New Applied Feeding System for Dairy Cows: An Advisory Manual; Nottingham University Press: Nottingham, UK, 2004. [Google Scholar]
- Lofgreen, G.P.; Garrett, W.N. A System for Expressing Net Energy Requirements and Feed Values for Growing and Finishing Beef Cattle. J. Anim. Sci. 1968, 27, 793–806. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Cow Type and the Nutritional Environment: Nutritional Aspects. J. Anim. Sci. 1985, 61, 725–741. [Google Scholar] [CrossRef]
- Dawson, L.E.R.; Steen, R.W.J. Estimation of Maintenance Energy Requirements of Beef Cattle and Sheep. J. Agric. Sci. 1998, 131, 477–485. [Google Scholar] [CrossRef]
- Marcondes, M.; Chizzotti, M.; Gionbelli, M.P. Energy Requirements of Zebu Beef Cattle; Federal University of Vicosa: Vicosa, Brazil, 2010. [Google Scholar]
- Gordon, F.J.; Dawson, L.E.R.; Ferris, C.P.; Steen, R.W.J.; Kilpatrick, D.J. The Influence of Wilting and Forage Additive Type on the Energy Utilisation of Grass Silage by Growing Cattle. Anim. Feed. Sci. Technol. 1999, 79, 15–27. [Google Scholar] [CrossRef]
- Jiao, H.P.; Yan, T.; McDowell, D.A.; Carson, A.F.; Ferris, C.P.; Easson, D.L.; Wills, D. Enteric Methane Emissions and Efficiency of Use of Energy in Holstein Heifers and Steers at Age of Six Months. J. Anim. Sci. 2013, 91, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.M.D.; Albino, R.L.; Rodrigues, J.P.P.; Sguizzato, A.L.L.; Santos, M.M.F.; Rotta, P.P.; Caton, J.S.; Moraes, L.E.F.D.; Silva, F.F.; Marcondes, M.I. Energy and Protein Requirements of Holstein × Gyr Crossbred Heifers. Animal 2020, 14, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.L.; Borges, A.L.C.C.; Mourão, R.C.; Silva, R.R.; Duque, A.C.A.; Silva, J.S.; Souza, A.S.; Gonçalves, L.C.; Carvalho, P.H.A.; Ferreira, A.L.; et al. Energy Partition, Nutritional Energy Requirements and Methane Production in F1 Holstein × Gyr Bulls, Using the Respirometric Technique. Anim. Prod. Sci. 2018, 59, 1253–1260. [Google Scholar] [CrossRef]
- Silva, A.L.; Marcondes, M.I.; Detmann, E.; Campos, M.M.; Machado, F.S.; Filho, S.C.V.; Castro, M.M.D.; Dijkstra, J. Determination of Energy and Protein Requirements for Crossbred Holstein × Gyr Preweaned Dairy Calves. J. Dairy Sci. 2017, 100, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Oss, D.B.; Machado, F.S.; Tomich, T.R.; Pereira, L.G.R.; Campos, M.M.; Castro, M.M.D.; da Silva, T.E.; Marcondes, M.I. Energy and Protein Requirements of Crossbred (Holstein × Gyr) Growing Bulls. J. Dairy Sci. 2017, 100, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Posada-Ochoa, S.L.; Noguera, R.R.; Rodríguez, N.M.; Costa, A.L.; Reis, R. Indirect Calorimetry to Estimate Energy Requirements for Growing and Finishing Nellore Bulls. J. Integr. Agric. 2017, 16, 151–161. [Google Scholar] [CrossRef]
- Salah, N.; Sauvant, D.; Archimède, H. Nutritional Requirements of Sheep, Goats and Cattle in Warm Climates: A Meta-Analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, M.I.; Tedeschi, L.O.; Valadares Filho, S.C.; Gionbelli, M.P. Predicting Efficiency of Use of Metabolizable Energy to Net Energy for Gain and Maintenance of Nellore Cattle. J. Anim. Sci. 2013, 91, 4887–4898. [Google Scholar] [CrossRef] [PubMed]
- Rotta, P.P.; Filho, S.C.V.; Detmann, E.; Costa, L.F.; Villadiego, F.A.C.; Burgos, E.M.G.; Silva, F.A.S. Nutrient Requirements of Energy and Protein for Holstein × Zebu Bulls FInished in Feedlot. Semin. Cienc. Agrar. 2013, 34, 2523–2534. [Google Scholar] [CrossRef]
- Sainz, R.; Magnabosco, C.U.; Da, R.; Gomes, C. Performance, Efficiency and Estimated Maintenance Energy Requirements of Bos Taurus and Bos Indicus Cattle. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; Oltjen, J.W., Kebreab, E., Lapierre, H., Eds.; EAAP Publication No. 134; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Valente, E.E.L.; Paulino, M.F.; Detmann, E.; Valadares Filho, S.d.C.; Cardenas, J.E.G.; Dias, I.F.T. Requirement of Energy and Protein of Beef Cattle on Tropical Pasture. Acta Sci. 2013, 35, 417–424. [Google Scholar] [CrossRef]
- Gomes, R.C.; Sainz, R.D.; Silva, S.L.; César, M.C.; Bonin, M.N.; Leme, P.R. Feedlot Performance, Feed Efficiency Reranking, Carcass Traits, Body Composition, Energy Requirements, Meat Quality and Calpain System Activity in Nellore Steers with Low and High Residual Feed Intake. Livest. Sci. 2012, 150, 265–273. [Google Scholar] [CrossRef]
- Porto, M.O.; Paulino, M.F.; de Campos Valadares Filho, S.; Detmann, E.; Cavali, J.; Sales, M.F.L.; Valente, É.E.L.; Couto, V.R.M. Nutritional Requirements of Energy, Protein and Macrominerals for Maintenance and Weight Gain of Young Crossbred Nellore × Holstein Bulls on Pasture. Rev. Bras. Zootec. 2012, 41, 734–745. [Google Scholar] [CrossRef]
- Cottrill, B.; Dawson, L.; Yan, T.; Xue, B. A Review of the Energy, Protein and Phosphorus Requirments of Beef Cattle and Sheep; Defra Project WQ; Department for Environment Food & Rural Affairs: London, UK, 2009; Volume 133. [Google Scholar]
- Lawrence, P.; Kenny, D.A.; Earley, B.; McGee, M. Grazed Grass Herbage Intake and Performance of Beef Heifers with Predetermined Phenotypic Residual Feed Intake Classification. Animal 2012, 6, 1648–1661. [Google Scholar] [CrossRef] [PubMed]
- Goulart, R.S.; Tedeschi, L.O.; Silva, S.L.; Leme, P.R.; De Alencar, M.M.; Lanna, D.P.D. The Energy Requirement for Maintenance of Nellore Crossbreds in Tropical Conditions during the Finishing Period. J. Anim. Sci. 2022, 100, skac125. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L.; Cole, N.A.; Tedeschi, L.O.; Branine, M.E. BOARD-INVITED REVIEW: Efficiency of Converting Digestible Energy to Metabolizable Energy and Reevaluation of the California Net Energy System Maintenance Requirements and Equations for Predicting Dietary Net Energy Values for Beef Cattle. J. Anim. Sci. 2016, 94, 1329–1341. [Google Scholar] [CrossRef]
- Seo, S.; Kang, K.; Jeon, S.; Lee, M.; Jeong, S. Development of a Model to Predict Dietary Metabolizable Energy from Digestible Energy in Beef Cattle. J. Anim. Sci. 2021, 99, skab182. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O.; Boin, C.; Fox, D.G.; Leme, P.R.; Alleoni, G.F.; Lanna, D.P.D. Energy Requirement for Maintenance and Growth of Nellore Bulls and Steers Fed High-Forage Diets. J. Anim. Sci. 2002, 80, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.G.; Black, J.R. A System for Predicting Body Composition and Performance of Growing Cattle. J. Anim. Sci. 1984, 58, 725–739. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Tedeschi, L.O.; Valadares Filho, S.C. A Meta-Analysis of Energy and Protein Requirements for Maintenance and Growth of Nellore Cattle. J. Anim. Sci. 2008, 86, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.; Fox, D. The Ruminant Nutrition System: An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants; XanEdu: Acton, MA, USA, 2020. [Google Scholar]
- Frisch, J.E.; Vercoe, J.E. Food Intake, Eating Rate, Weight Gains, Metabolic Rate and Efficiency of Feed Utilization in Bos Taurus and Bos Indicus Crossbred Cattle. Anim. Sci. 1977, 25, 343–358. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Body Composition and Energy Utilization by Steers of Diverse Genotypes Fed a High-Concentrate Diet during the Finishing Period: II. Angus, Boran, Brahman, Hereford, and Tuli Sires. J. Anim. Sci. 1998, 76, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Moraes, L.E.; Kebreab, E.; Strathe, A.B.; Dijkstra, J.; France, J.; Casper, D.P.; Fadel, J.G. Multivariate and Univariate Analysis of Energy Balance Data from Lactating Dairy Cows. J. Dairy Sci. 2015, 98, 4012–4029. [Google Scholar] [CrossRef] [PubMed]
- Chizzotti, M.L.; Valadares Filho, S.C.; Tedeschi, L.O.; Chizzotti, F.H.M.; Carstens, G.E. Energy and Protein Requirements for Growth and Maintenance of F1 Nellore x Red Angus Bulls, Steers, and Heifers. J. Anim. Sci. 2007, 85, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Old, C.A.; Garrett, W.N. Effects of Energy Intake on Energetic Efficiency and Body Composition of Beef Steers Differing in Size at Maturity. J. Anim. Sci. 1987, 65, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Lofgreen, G.P.; Kiesling, H.E. Effects of Receiving and Growing Diets on Compensatory Gains of Stressed Calves. J. Anim. Sci. 1985, 61, 320–328. [Google Scholar] [CrossRef]
ADG | BW | FI | RFI | FCR | Breeds 2 | Country | Animals 3 | Reference |
---|---|---|---|---|---|---|---|---|
0.65 (0.13) | - | 0.64 (0.12) | 0.28 (0.11) | - | AN, HE, SH | United States | 1324 | [34] |
0.36 (0.11) | - | - | - | 0.14 (0.07) | AN | United States | 393 | [66] |
0.33(0.11) | - | - | - | 0.13 (0.08) | HE | United States | 340 | [66] |
- | - | - | - | 0.33 (0.10) | HE | United Kingdom | 452 | [44] |
0.48 (0.21) | 0.39 (0.19) | 0.37 (0.19) | - | 0.19 (0.16) | Bonsmara | South Africa | 298 | [67] |
0.48 (0.21) | - | 0.06 (0.12) | - | 0.46 (0.20) | FRXHE | United Kingdom | 327 | [68] |
0.43 (0.24) | 0.45 (0.22) | 0.27 (0.15) | 0.23 (0.12) | 0.35 (0.22) | AN | Canada | 263 | [69] |
0.16 (0.15) | 0.43 (0.22) | 0.18 (0.10) | 0.07 (0.13) | 0.08 (0.09) | HE | Canada | 271 | [69] |
0.55 (na) | 0.51 (na) | 0.58 (na) | - | 0.16 (na) | BB | France | 1442 | [70] |
0.25 (na) | - | 0.24 (na) | - | 0.14 (na) | HE | United States | 486 | [71] |
0.35 (0.11) | - | 0.62 (0.12) | 0.62 (0.14) | 0.42 (0.13) | AN, HE, Polled HE, SH | Australia | 760 | [72] |
0.41 (0.08) | 0.68 (0.08) | 0.59 (0.07) | 0.44 (0.07) | 0.31 (0.09) | AN, HE, SH | Australia | 966 | [72] |
0.38 (0.10) | 0.42 (0.10) | 0.31 (0.08) | 0.16 (0.08) | 0.17 (0.09) | HE | United Kingdom | 540 | [62] |
0.28 (0.04) | 0.40 (0.02) | 0.39 (0.03) | 0.39 (0.03) | 0.29 (0.04) | AN | Australia | 1180 | [5] |
0.34 (0.04) | 0.37 (0.04) | 0.48 (0.04) | 0.39 (0.04) | 0.46 (0.04) | CH | France | 792 | [57] |
0.41 (0.06) | 0.46 (0.05) | 0.48 (0.06) | 0.43 (0.04) | 0.31 (0.06) | CH | France | 397 | [57] |
- | - | - | 0.30 (0.06) | - | CH-sired steers | Canada | 281 | [73] |
- | - | - | 0.26 (0.07) | - | CH-sired steers | Canada | 274 | [73] |
0.23 (0.06) | 0.41 (0.07) | 0.27 (0.06) | 0.18 (0.06) | 0.06 (0.04) | Tropically adapted, temperate | Australia | 1481 | [63] |
0.35 (0.03) | 0.35 (0.02) | 0.44 (0.06) | 0.38 (0.07) | 0.37 (0.06) | CH, LI, AN, SI, HE, BA | Canada | 2284 | [74] |
0.37 (na) | - | - | 0.31 (na) | 0.34 (na) | Bonsmara | South Africa | 6738 | [75] |
0.20 (0.10) | 0.47 (0.10) | 0.34 (0.11) | 0.24 (0.11) | 0.15 (0.04) | Japanese Black (Wagyu) | Japan | 740 | [76] |
0.59 (0.17) | 0.32 (0.14) | 0.54 (0.15) | 0.21 (0.12) | 0.41 (0.15) | AN, CH, composite | Canada | 464 | [77] |
0.26 (na) | 0.39 (na) | 0.33 (na) | 0.29 (na) | 0.14 (na) | Wagyu | Japan | 1304 | [78] |
- | - | 0.36 (0.09) | 0.49 (0.09) | 0.38 (0.07) | Wagyu | Japan | 514 | [79] |
0.34 (0.12) | 0.47 (0.16) | 0.49 (0.15) | 0.24 (0.11) | - | Brahman | Australia | 1007 | [80] |
0.20 (0.10) | 0.39 (0.13) | 0.51 (0.14) | 0.38 (0.12) | - | Tropical Composite | Australia | 1209 | [80] |
0.21 (0.12) | 0.35 (0.15) | 0.48 (0.14) | 0.47 (0.13) | 0.29 (0.12) | Brangus | United States | 468 | [81] |
- | - | - | 0.18 (0.14) | - | AN, CH, composite | Canada | 387 | [82] |
0.09 (na) | 0.14 (na) | 0.14 (na) | - | AN | United States | 698 | [83] | |
- | 0.57 (0.10) | 0.30 (0.08) | 0.26 (0.10) | 0.30 (0.12) | BA | France | 678 | [84] |
- | 0.30 (0.08) | 0.48 (0.14) | 0.45 (0.18) | 0.23 (0.15) | LI | France | 708 | [84] |
0.30 (0.06) | 0.69 (0.07) | 0.49 (0.07) | 0.45 (0.07) | 0.30 (0.06) | AN, CH, HE, SI, LI | Ireland | 2605 | [28] |
- | - | 0.21 (0.07) | 0.14 (0.06) | 0.18 (0.07) | AN, BR, BA | United States | 1129 | [85] |
0.06 (0.08) | - | 0.30 (0.15) | 0.19 (0.12) | 0.07 (0.09) | ANX, CHX | Canada | 402 | [86] |
0.17 (0.28) | - | 0.43 (0.14) | 0.36 (0.13) | 0.26 (0.12) | ANX, CHX | Canada | 419 | [86] |
- | - | 0.70 (0.11) | 0.22 (0.07) | 0.11 (0.05) | Wagyu | Japan | 863 | [87] |
0.26 (0.04) | 0.33 (0.03) | 0.36 (0.05) | - | - | AN | United States | 4215 to 18,169 | [88] |
0.28 (0.11) | - | 0.41 (0.12) | 0.29 (0.12) | - | AN, CH, composite | Canada | 721 | [25] |
0.26 (0.10) | 0.35 (0.12) | 0.40 (0.02) | 0.52 (0.14) | 0.27 (0.10) | Multibreed | United States | 1141 | [89] |
0.30 (0.06) | 0.69 (0.07) | - | - | 0.30 (0.06) | AN, CH, HE, LI, SI | Ireland | 3531 | [90] |
0.38 (0.18) | - | - | 0.27 (0.12) | - | - | France | 2023 | [91] |
0.38 (0.12) | - | - | 0.47 (0.12) | 0.21 (0.08) | AN, CH | Canada | 968 | [92] |
- | - | - | 0.40 (0.10) | - | AN, ANXSI, SI | United States | 1321 | [93] |
0.35 (0.15) | - | - | 0.38 (0.16) | 0.31 (11) | NE | Brazil | 1038 | [50] |
0.20 (0.03) | - | - | - | - | AN, HE, MARC III, SI, LI, CH, RA | United States | 6331 | [94] |
0.33 (0.07) | - | 0.55 (0.08) | 0.40 (0.07) | 0.20 (0.06) | AN | Australia | 6371 | [47] |
0.53 (0.12) | - | - | 0.25 (0.11) | - | AN, HE, MARC III, SI, LI, CH, RA | United States | 687 | [65] |
BW | FI | RFI | FCR | Breeds 2 | Country | Animals | Reference |
---|---|---|---|---|---|---|---|
0.65 (0.01) | - | 0.04 (0.05) | - | Norwegian | Norway | 353 | [39] |
0.29 (0.09) | 0.02 (0.02) | 0.23 (0.11) | 0.18 (0.15) | HE | Canada | 295 | [66] |
0.40 (0.04) | 0.11 (0.02) | 0.03 (0.01) | 0.11 (0.06) | HE, multibreed | Canada | 1174 | [66] |
0.20 (0.12) | 0.03 (0.01) | 0.03 (0.02) | 0.11 (0.10) | HE | Canada | 206 | [95] |
0.44 (0.17) | 0.16 (0.02) | 0.22 (0.04) | 0.05 (0.01) | HE, multibreed | Canada | 729 | [95] |
0.71 (na 1) | 0.28 (na) | 0.23 (na) | 0.26 (na) | AN, HE, Polled HE, SH | Australia | 751 | [54] |
- | - | 0.16 (0.10) | - | AN, HE, MARC III, SI, LI, CH, RA | United States | 622 | [65] |
Country | Organization | Date | Breed | Maintenance Requirement/Units | Observations |
---|---|---|---|---|---|
UK | Agriculture and Food Research Council, AFRC, formerly Agriculture Research Council (ARC) | 1993 | Continental and British breeds | Calorimetry/ ME | Continues to offer a crucial theoretical foundation for the majority of energy systems worldwide. Forage-based diets. |
Australia | Australia Commonwealth Scientific and Industrial Research Organization (CSIRO) | 2007 | Bos t. taurus, Bos t. indicus, and crossbreds. | Calorimetry/ ME | The CSIRO guidelines align with the AFRC approach, utilizing MEm to measure maintenance requirements. The feed tables also incorporate low-quality forages. |
France | Institut National de la Recherche Agronomique (INRA) | 2018 | Beef and dairy origin genotypes | Calorimetry/ NE | NE is quantified using the barley feed unit (FU), where 1 FU corresponds to 1760 kcal for 1 kg of fresh standard barley. |
USA and Canada | National Academies of Sciences, Engineering, and Medicine (NASEM). Update on National Research Council (NRC) guidelines | 2016 | Bos t. taurus, Bos t. indicus, and crossbreds | Comparative slaughter/ NE | North American diets for feeding beef cattle are known for their high concentrate levels, distinguishing them from diets in other countries. The NASEM (2016) guidelines offer solutions from empirical to mechanistic approaches. |
USA and Canada | Ruminant Nutrition System (RNS) Project | 2018 | Bos t. taurus, Bos t. indicus, and crossbreds | Comparative slaughter/ NE | The RNS (Ruminant Nutrition System) is an advancement of the Cornell Net Carbohydrate and Protein System, which was introduced in the 2000s. The RNS incorporates three levels of solutions (L0, L1, and L2), ranging from empirical to more mechanistic approaches. |
Brazil | Universidade Federal de Viçosa (UFV) (BR-Corte) | 2016 | Bos t. indicus and crossbreds | Comparative slaughter/ NE | The predominant breed of Zebu cattle is Nellore, and energy equations have been developed for feedlot and pasture conditions. Calorimetry has been recently introduced as a method to estimate energy requirements. |
Systems | Equations |
---|---|
AFRC (1993) | |
CSIRO (2007) | |
INRA (2018) | |
NASEM (2016) | |
BR-Corte (2016) |
Ref. | Country | Technique | N | Type | Breed | LW (Kg) | MEm (MJ/KG LW0.75) | NEm (MJ/KG LW0.75) |
---|---|---|---|---|---|---|---|---|
AFBI Studies (1990–2020) | ||||||||
[169] | UK | Calorimetry | 20 | Steers, heifers | Holstein | 176 | 0.781 | 0.570 |
[168] | UK | Calorimetry | 12 | Steers | Angus × Friesian | 416 | 0.620 | - |
[166] | UK | Calorimetry | 75 | Steers | Beef Cross | 450–628 | 0.614 | - |
International Studies (2009–2020) | ||||||||
[170] | Brazil | Comp. Slaughter | 22 | Heifers | Holstein × Gyr | 98–172 | 0.545 | 0.352 |
[171] | Brazil | Calorimetry | 15 | Bulls | Holstein × Gyr | 302 | 0.523 | 0.312 |
[172] | Brazil | Comp. Slaughter | 39 | Bulls | Holstein × Gyr | 43–93 | - | 0.298 |
[173] | Brazil | Comp. slaughter | 24 | Bulls | Holstein × Gyr | 182–388 | - | 0.313 |
[174] | Brazil | Calorimetry | 5 | Bulls | Nellore | 219 | 0.691 | 0.418 |
Brazil | Calorimetry | 5 | Bulls | Nellore | 328 | 0.567 | 0.332 | |
Brazil | Calorimetry | 5 | Bulls | Nellore | 394 | 0.512 | 0.331 | |
Brazil | Calorimetry | 5 | Bulls | Nellore | 473 | 0.468 | 0.303 | |
[175] | France | Feeding Studies | 1855 | Growing | Temperate and tropical | - | 0.631 | - |
[176] | Brazil | Comp. Slaughter | 752 | Growing | Nellore, Nellore × Bos taurus | 258–426 | - | 0.386 |
[177] | Brazil | Comp. Slaughter | 44 | Bulls | Holstein × Zebu | 338 | 0.555 | 0.382 |
[178] | USA | Comp. Slaughter | 127 | Steers | Angus, Hereford, and cross | - | - | 0.314 |
Brazil | Comp. Slaughter | 711 | Bulls | Bos indicus | - | - | 0.292 | |
[179] | Brazil | Comp. Slaughter | 46 | Bulls | Nellore | 138 | 0.603 | 0.325 |
[180] | Brazil | Comp. Slaughter | 8 | Steers | Nellore, High RFI | 340–348 | 0.778 | - |
Brazil | Comp. Slaughter | 9 | Steers | Nellore, Low RFI | 334–441 | 0.637 | - | |
[181] | Brazil | Comp. Slaughter | 10 | Bulls | Nellore × Holstein | 199–317 | 0.607 | 0.352 |
Summaries | ||||||||
AFBI studies (1990–2020) | 0.672 ± 0.0947 | |||||||
Literature (2009–2020) | 0.593 ± 0.0846 | |||||||
Cottrill et al. (1989–2009) | 0.524 ± 0.0776 |
Systems | Equations |
---|---|
AFRC (1993) | |
CSIRO (2007) | |
INRA (2018) | |
NASEM (2016) | |
BR-Corte (2016) |
System | Equation | * | |
---|---|---|---|
0.50 | 0.65 | ||
AFRC (1993); CSIRO (2007) | 068 | 0.73 | |
0.40 | 0.51 | ||
0.60 | 0.65 | ||
INRA (2018) | 0.70 | 0.74 | |
0.40 | 0.51 | ||
- | - | ||
- | - | ||
0.62 | 0.65 | ||
NASEM (2016) | 0.61 | 0.67 | |
0.35 | 0.45 | ||
BR-Corte (2016) | - | - | |
- | - |
GG 2 | Intercept 2 | N | r 2 | RMSE | NEm | MEm | km(CI) | kg(CI) | |
---|---|---|---|---|---|---|---|---|---|
AN | 16 | 0.94 | 0.015 | 90.76 | 142.44 | 63.7 (56.3,69.3) | 28.4% (14.6, 42.2) | ||
CN | 16 | 0.98 | 0.009 | 82.28 | 130.98 | 62.8 (60.7, 66.2) | 22.1% (8.4, 35.9) | ||
NL | 16 | 0.93 | 0.016 | 85.53 | 137.12 | 62.4 (62.8, 69.1) | 24.6% (10.4, 38.8) | ||
SN | 14 | 0.85 | 0.024 | 88.80 | 139.11 | 63.8 (46.6, 73.3) | 29.5% (29.5, 29.5) | ||
All | 62 | 0.93 | 0.016 | 86.86 | 137.53 | 63.2 (59.3, 66.5) | 26.0% (23.3, 28.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojo, A.O.; Mulim, H.A.; Campos, G.S.; Junqueira, V.S.; Lemenager, R.P.; Schoonmaker, J.P.; Oliveira, H.R. Exploring Feed Efficiency in Beef Cattle: From Data Collection to Genetic and Nutritional Modeling. Animals 2024, 14, 3633. https://doi.org/10.3390/ani14243633
Ojo AO, Mulim HA, Campos GS, Junqueira VS, Lemenager RP, Schoonmaker JP, Oliveira HR. Exploring Feed Efficiency in Beef Cattle: From Data Collection to Genetic and Nutritional Modeling. Animals. 2024; 14(24):3633. https://doi.org/10.3390/ani14243633
Chicago/Turabian StyleOjo, Ayooluwa O., Henrique A. Mulim, Gabriel S. Campos, Vinícius Silva Junqueira, Ronald P. Lemenager, Jon Patrick Schoonmaker, and Hinayah Rojas Oliveira. 2024. "Exploring Feed Efficiency in Beef Cattle: From Data Collection to Genetic and Nutritional Modeling" Animals 14, no. 24: 3633. https://doi.org/10.3390/ani14243633
APA StyleOjo, A. O., Mulim, H. A., Campos, G. S., Junqueira, V. S., Lemenager, R. P., Schoonmaker, J. P., & Oliveira, H. R. (2024). Exploring Feed Efficiency in Beef Cattle: From Data Collection to Genetic and Nutritional Modeling. Animals, 14(24), 3633. https://doi.org/10.3390/ani14243633