U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040
<p>Framework of our modeling methods. (<b>1</b>) Projecting urban demands, (<b>2</b>) calculating development suitability, (<b>3</b>) creating urban development probability, and (<b>4</b>) generating binary UHD and LDR projections. UHD: urban and highly developed; LDR: low-density residential. Datasets used across modeling steps are highlighted under dotted frames.</p> "> Figure 2
<p>State-level relationship between population growth and urban area increases from 2001 to 2016 ((<b>a</b>) urban and highly developed; (<b>b</b>) low-density residential).</p> "> Figure 3
<p>Overview of urban and highly developed (UHD) suitability.</p> "> Figure 4
<p>Residential forestlands northeast of Atlanta (highlighted in black rectangle, primarily classified as LDR in FUT layers) that maintain a stable classification of LDR over time, resisting conversion to UHD, as reflected by comparison between FUT 2001 (<b>a</b>) and 2016 (<b>c</b>). (<b>b</b>) A very high-resolution image for the year 2020 showing residential vegetation remains intact from urbanization. (<b>d</b>) NLCD for the area, with OS: developed, open space; LI: developed, low intensity; MI: developed, medium intensity; HI: developed, high intensity; DF: deciduous forest; EF: evergreen forest; MF: mixed forest.</p> "> Figure 5
<p>Distribution of 10 selected cities/metropolitans for accuracy assessment.</p> "> Figure 6
<p>Comparison of projected and actual growth of urban and highly developed (UHD) and low-density residential (LDR) land use between 2001 and 2016 for 10 select cities/metropolises.</p> "> Figure 7
<p>Projected urban and highly developed (UHD) and low-density residential (LDR) growth by 2040 under the business-as-usual scenario. The highlighted areas are (<b>a</b>) Dallas–Houston–Austin–San Antonio, TX, (<b>b</b>) the South Atlantic region, and (<b>c</b>) the greater Chicago region.</p> "> Figure 8
<p>Projected per-state urban and highly developed (UHD) (<b>a</b>) and low-density residential (LDR) (<b>b</b>) growth by 2040 under the business-as-usual scenario.</p> "> Figure 9
<p>Per-state area and percent of agricultural lands conversion to urban and highly developed (UHD) and low-density residential (LDR) land uses by 2040. (<b>a</b>) area of agricultural land conversion to UHD, (<b>b</b>) area of agricultural land conversion to LDR, (<b>c</b>) percentage of agricultural land conversion to UHD, and (<b>d</b>) percentage of agricultural land conversion to LDR.</p> "> Figure 10
<p>Per-county area and percent of agricultural lands converted to urban and highly developed (UHD) and low-density residential (LDR) land uses by 2040. (<b>a</b>) area of agricultural land conversion to UHD, (<b>b</b>) area of agricultural land conversion to LDR, (<b>c</b>) percentage of agricultural land conversion to UHD, and (<b>d</b>) percentage of agricultural land conversion to LDR.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Projecting Urban Land Demands
2.2. Creating Development Suitability Layers
Variable Name | Spatial Resolution | Year of Data | Data Sources |
---|---|---|---|
Nighttime light intensity | 500 m | 2016 | NOAA NPP/VIIRS |
Land value | 480 m | 2010 | [48] |
Elevation | 30 m | 2000 | NASS Shuttle Radar Topography Mission |
Slope | 30 m | 2000 | |
Distance to existing urban boundary | 30 m | 2016 | FUT2016 and NLCD2016 |
Distance to primary roads | 30 m | 2016 | TIGER: US Census Roads |
Distance to secondary roads | 30 m | 2016 | |
Distance to water bodies | 30 m | 2016 | NLCD2016 |
Size of the closest urban cluster | 30 m | 2016 | FUT2016 |
Urban fraction within a 1 km ∗ 1 km buffer | 1 km | 2016 | NLCD2016 |
Distance to forest | 30 m | 2016 | NLCD2016 |
Distance to protected ag land | 30 m | 2016 | AFT PALD |
Distance to protected areas | 30 m | 2019 | PAD-US |
2.3. Development Restriction Layers
2.4. Creating Development Probability Layers
2.5. UHD and LDR Projections
2.5.1. Allocation of UHD Development
2.5.2. Allocation of LDR Development
2.6. Model Validation
3. Results
3.1. Map and Model Evaluation for the Period 2001–2016
3.2. Spatial Patterns of Projected Urban Development by 2040
3.3. Farmland under Threat by Urbanization
4. Discussion
4.1. Impacts on Local to National Food Security
4.2. Policy Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Ramankutty, N. Hidden linkages between urbanization and food systems. Science 2016, 352, 943–945. [Google Scholar] [CrossRef]
- van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 2020, 15, 084037. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Li, L.; Huang, C.; Liu, R.; Chen, Z.; Wu, J. Urban Expansion and Agricultural Land Loss in China: A Multiscale Perspective. Sustainability 2016, 8, 790. [Google Scholar] [CrossRef] [Green Version]
- Pandey, B.; Seto, K.C. Urbanization and agricultural land loss in India: Comparing satellite estimates with census data. J. Environ. Manag. 2015, 148, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Martellozzo, F.; Ramankutty, N.; Hall, R.; Price, D.; Purdy, B.; Friedl, M. Urbanization and the loss of prime farmland: A case study in the Calgary-Edmonton corridor of Alberta. Reg. Environ. Chang. 2014, 15, 881–893. [Google Scholar] [CrossRef]
- Lasisi, M.; Popoola, A.; Adediji, A.; Adedeji, O.; Babalola, K. City expansion and agricultural land loss within the peri-urban area of Osun State, Nigeria. Ghana J. Geogr. 2017, 9, 132–163. [Google Scholar]
- Youssef, A.; Sewilam, H.; Khadr, Z. Impact of Urban Sprawl on Agriculture Lands in Greater Cairo. J. Urban Plan. Dev. 2020, 146, 05020027. [Google Scholar] [CrossRef]
- Gandharum, L.; Hartono, D.M.; Karsidi, A.; Ahmad, M. Monitoring Urban Expansion and Loss of Agriculture on the North Coast of West Java Province, Indonesia, Using Google Earth Engine and Intensity Analysis. Sci. World J. 2022, 2022, 3123788. [Google Scholar] [CrossRef]
- Andrade, J.F.; Cassman, K.G.; Rattalino Edreira, J.I.; Agus, F.; Bala, A.; Deng, N.; Grassini, P. Impact of urbanization trends on production of key staple crops. Ambio 2022, 51, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Bren D’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, H.; Chen, G.; Yan, Y.; Li, B.; Zeng, L.; Ou, J.; Liu, K.; Liu, X. Simulation of urban land expansion in China at 30 m resolution through 2050 under shared socioeconomic pathways. GIScience Remote Sens. 2022, 59, 1301–1320. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Earthscan: London, UK; FAO: Rome, Italy, 2011. [Google Scholar]
- Sorensen, A.; Freedgood, J.; Dempsey, J.; Theobald, D. Farms Under Threat: The State of America’s Farmland; American Farmland Trust: Washington, DC, USA, 2018. [Google Scholar]
- D’Odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding humanity through global food trade. Earth’s Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Lark, T.J.; Hendricks, N.P.; Smith, A.; Pates, N.; Spawn-Lee, S.A.; Bougie, M.; Booth, E.G.; Kucharik, C.J.; Gibbs, H.K. Environmental outcomes of the US Renewable Fuel Standard. Proc. Natl. Acad. Sci. USA 2022, 119, e2101084119. [Google Scholar] [CrossRef]
- Lark, T.J.; Salmon, J.M.; Gibbs, H.K. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 2015, 10, 044003. [Google Scholar] [CrossRef] [Green Version]
- Durán, A.P.; Duffy, J.; Gaston, K.J. Exclusion of agricultural lands in spatial conservation prioritization strategies: Consequences for biodiversity and ecosystem service representation. Proc. R. Soc. B Boil. Sci. 2014, 281, 20141529. [Google Scholar] [CrossRef]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedgood, J.; Hunter, M.; Dempsey, J.; Sorensen, A. Farms Under Threat: The State of the States; American Farmland Trust: Washington, DC, USA, 2020. [Google Scholar]
- Lund, S.; Madgavkar, A.; Manyika, J.; Smit, S.; Ellingrud, K.; Meaney, M.; Robinson, O. The Future of Work after COVID-19; McKinsey Global Institute: Washington, DC, USA, 2021; Volume 18, Available online: https://www.voced.edu.au/content/ngv:89731 (accessed on 15 March 2022).
- Parker, K.; Horowitz, J.M.; Minkin, R. Americans Are Less Likely than before COVID-19 to Want to Live in Cities, More Likely to Prefer Suburbs. 2021. Available online: https://policycommons.net/artifacts/2047074/americans-are-less-likely-than-before-covid-19-to-want-to-live-in-cities-more-likely-to-prefer-suburbs/2799982/ (accessed on 20 October 2022).
- Wadduwage, S. Peri-urban agricultural land vulnerability due to urban sprawl—A multi-criteria spatially-explicit scenario analysis. J. Land Use Sci. 2018, 13, 358–374. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.d.; Gleriani, J.; Castejon, E.F.; Soares-Filho, B.S. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int. J. Geogr. Inf. Sci. 2008, 22, 943–963. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- White, R.; Engelen, G.; Uljee, I. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environ. Plan. B Plan. Des. 1997, 24, 323–343. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Sohl, T.L.; Sayler, K.; Drummond, M.A.; Loveland, T.R. The FORE-SCE model: A practical approach for projecting land cover change using scenario-based modeling. J. Land Use Sci. 2007, 2, 103–126. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Bierwagen, B.G.; Theobald, D.M.; Pyke, C.R.; Choate, A.; Groth, P.; Thomas, J.V.; Morefield, P. National housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. USA 2010, 107, 20887–20892. [Google Scholar] [CrossRef] [Green Version]
- Radeloff, V.C.; Nelson, E.; Plantinga, A.J.; Lewis, D.J.; Helmers, D.; Lawler, J.; Withey, J.; Beaudry, F.; Martinuzzi, S.; Butsic, V. Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol. Appl. 2012, 22, 1036–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohl, T.L.; Sayler, K.L.; Bouchard, M.A.; Reker, R.R.; Friesz, A.M.; Bennett, S.L.; Sleeter, B.M.; Sleeter, R.R.; Wilson, T.; Soulard, C.; et al. Spatially explicit modeling of 1992–2100 land cover and forest stand age for the conterminous United States. Ecol. Appl. 2014, 24, 1015–1036. [Google Scholar] [CrossRef] [PubMed]
- Theobald, D.M. Landscape Patterns of Exurban Growth in the USA from 1980 to 2020. Ecol. Soc. 2005, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- West, T.O.; Le Page, Y.; Huang, M.; Wolf, J.; Thomson, A.M. Downscaling global land cover projections from an integrated assessment model for use in regional analyses: Results and evaluation for the US from 2005 to 2095. Environ. Res. Lett. 2014, 9, 064004. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strengers, B.; Leemans, R.; Eickhout, B.; de Vries, B.; Bouwman, L. The land-use projections and resulting emissions in the IPCC SRES scenarios scenarios as simulated by the IMAGE 2.2 model. Geojournal 2004, 61, 381–393. [Google Scholar] [CrossRef]
- Zhou, Y.; Varquez, A.C.G.; Kanda, M. High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Sci. Data 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Sohl, T.L.; Wimberly, M.C.; Radeloff, V.C.; Theobald, D.M.; Sleeter, B.M. Divergent projections of future land use in the United States arising from different models and scenarios. Ecol. Model. 2016, 337, 281–297. [Google Scholar] [CrossRef] [Green Version]
- CSP. Description of the Approach, Data, and Analytical Methods Used for the Farms Under Threat: State of the States Project; Version 2.0; American Farmland Trust: Truckee, CA, USA, 2020. [Google Scholar]
- USCB. USCB: State Intercensal Tables, 2000–2010. 2021. Available online: https://www.census.gov/data/datasets/time-series/demo/popest/intercensal-2000-2010-state.html (accessed on 15 March 2022).
- USCB. USCB: State Population Totals and Components of Change, 2010–2019. 2021. Available online: https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html (accessed on 15 March 2022).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C. High-resolution land value maps reveal underestimation of conservation costs in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 29577–29583. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS) Gap Analysis Project (GAP). Protected Areas Database of the United States (PAD-US) 2.1: U.S. Geological Survey Data Release. 2020. Available online: https://www.sciencebase.gov/catalog/item/5f186a2082cef313ed843257 (accessed on 15 March 2022).
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Silvennoinen, H.; Kolehmainen, O. Ecological and aesthetic values in urban forest management. Urban For. Urban Green. 2003, 1, 135–149. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Xie, Y.; Weng, Q.; Fu, P. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sens. Environ. 2019, 225, 160–174. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Lark, T.J.; Spawn, S.A.; Bougie, M.; Gibbs, H.K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 2020, 11, 4295. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Lark, T.J. Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States. Remote Sens. Environ. 2021, 260, 112445. [Google Scholar] [CrossRef]
- Plattner, K.; Perez, A.; Thornsbury, S. Evolving US Fruit Markets and Seasonal Grower Price Patterns; USDA Economic Research Service: Washington, DC, USA, 2014.
- White, R.R.; Hall, M.B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, E10301–E10308. [Google Scholar] [CrossRef] [PubMed]
- Daniels, T. When City and Country Collide: Managing Growth in the Metropolitan Fringe; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Hunter, M.; Sorensen, A.; Nogeire-McRae, T.; Beck, S.; Shutts, S.; Murphy, R. Farms under Threat 2040: Choosing an Abundant Future; American Farmland Trust: Washington, DC, USA, 2022. [Google Scholar]
Cities/Metropolitan Areas | UHD | LDR | ||
---|---|---|---|---|
OA (%) | F1 Score | OA (%) | F1 Score | |
Madison–Milwaukee Corridor, WI | 66.6 | 0.51 | 56.8 | 0.25 |
Raleigh–Durham–Cary, NC | 68.5 | 0.55 | 65.3 | 0.50 |
Austin–Round Rock, TX | 70.3 | 0.59 | 58.4 | 0.34 |
Fresno, CA | 67.3 | 0.52 | 52.9 | 0.12 |
Boise City–Nampa, ID | 76.0 | 0.68 | 59.3 | 0.32 |
Pittsfield, MA | 56.2 | 0.22 | 61.9 | 0.40 |
Chicago–Naperville–Elgin, IL–IN–WI | 70.1 | 0.59 | 57.7 | 0.30 |
Atlanta–Sandy Springs–Alpharetta, GA | 66.0 | 0.52 | 67.5 | 0.57 |
Buffalo–Cheektowaga, NY | 57.0 | 0.26 | 63.4 | 0.45 |
Washington–Arlington–Alexandria, DC–VA–MD–WV | 72.6 | 0.63 | 62.0 | 0.43 |
Average | 67.1 | 0.51 | 60.5 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Hunter, M.; Sorensen, A.; Nogeire-McRae, T.; Murphy, R.; Suraci, J.P.; Lischka, S.; Lark, T.J. U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040. Land 2023, 12, 574. https://doi.org/10.3390/land12030574
Xie Y, Hunter M, Sorensen A, Nogeire-McRae T, Murphy R, Suraci JP, Lischka S, Lark TJ. U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040. Land. 2023; 12(3):574. https://doi.org/10.3390/land12030574
Chicago/Turabian StyleXie, Yanhua, Mitch Hunter, Ann Sorensen, Theresa Nogeire-McRae, Ryan Murphy, Justin P. Suraci, Stacy Lischka, and Tyler J. Lark. 2023. "U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040" Land 12, no. 3: 574. https://doi.org/10.3390/land12030574
APA StyleXie, Y., Hunter, M., Sorensen, A., Nogeire-McRae, T., Murphy, R., Suraci, J. P., Lischka, S., & Lark, T. J. (2023). U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040. Land, 12(3), 574. https://doi.org/10.3390/land12030574