Metaheuristic Algorithms in Optimal Design of Engineering Problems
1. Introduction
2. Special Issue Contribution
3. Final Remarks
List of Contributions
- Seck-Tuoh-Mora, J. C.; Hernandez-Hurtado, U.; Medina-Marín, J.; Hernández-Romero, N.; Lizárraga-Mendiola, L. Multi-Objective Majority–Minority Cellular Automata Algorithm for Global and Engineering Design Optimization. Algorithms 2024, 17, 433. https://doi.org/10.3390/a17100433.
- Shafeek, Y.A.; Ali, H.I. Application of Particle Swarm Optimization to a Hybrid H∞/Sliding Mode Controller Design for the Triple Inverted Pendulum System. Algorithms 2024, 17, 427. https://doi.org/10.3390/a17100427.
- Munciño, D.M.; Damian-Ramírez, E.A.; Cruz-Fernández, M.; Montoya-Santiyanes, L.A.; Rodríguez-Reséndiz, J. Metaheuristic and Heuristic Algorithms-Based Identification Parameters of a Direct Current Motor. Algorithms 2024, 17, 209. https://doi.org/10.3390/a17050209.
- Kannan, S.K.; Diwekar, U. An Enhanced Particle Swarm Optimization (PSO) Algorithm Employing Quasi-Random Numbers. Algorithms 2024, 17, 195. https://doi.org/10.3390/a17050195.
- Saleem, S.; Hussain, F.; Baloch, N.K. IWO-IGA—A Hybrid Whale Optimization Algorithm Featuring Improved Genetic Characteristics for Mapping Real-Time Applications onto 2D Network on Chip. Algorithms 2024, 17, 115. https://doi.org/10.3390/a17030115.
- Hsieh, F.-S. A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution for Improving the Performance of Ridesharing Systems with a Discount Guarantee. Algorithms 2024, 17, 9. https://doi.org/10.3390/a17010009.
- Amiri, F.; Eskandari, M.; Moradi, M.H. Improved Load Frequency Control in Power Systems Hosting Wind Turbines by an Augmented Fractional Order PID Controller Optimized by the Powerful Owl Search Algorithm. Algorithms 2023, 16, 539. https://doi.org/10.3390/a16120539.
- Nagadurga, T.; Devarapalli, R.; Knypiński, Ł. Comparison of Meta-Heuristic Optimization Algorithms for Global Maximum Power Point Tracking of Partially Shaded Solar Photovoltaic Systems. Algorithms 2023, 16, 376. https://doi.org/10.3390/a16080376.
- Aroniadi, C.; Beligiannis, G.N. Applying Particle Swarm Optimization Variations to Solve the Transportation Problem Effectively. Algorithms 2023, 16, 372. https://doi.org/10.3390/a16080372.
Author Contributions
Funding
Conflicts of Interest
References
- Tomar, V.; Bansal, M.; Singh, P. Metaheuristic Algorithms for Optimization: A Brief Review. Eng. Proc. 2023, 59, 238. [Google Scholar] [CrossRef]
- Cui, E.H.; Zhang, Z.; Chen, C.J.; Wong, W.K. Applications of nature-inspired metaheuristic algorithms for tackling optimization problems across disciplines. Sci. Rep. 2024, 14, 9403. [Google Scholar] [CrossRef] [PubMed]
- Knypiński, Ł. Performance analysis of selected metaheuristic optimization algorithms applied in the solution of an unconstrained task. COMPEL 2022, 41, 1272–1284. [Google Scholar] [CrossRef]
- Granados, J.; Uturbey, W.; Valadão, R.L.; Vasconcelos, J.A. Many-objective optimization of real and reactive power dispatch problems. Int. J. Electr. Power Energy Syst. 2023, 146, 108725. [Google Scholar] [CrossRef]
- Saha, A.; Chiranjeevi, T.; Devarapalli, R.; Ram Babu, N.; Dash, P.; Garcìa Màrquez, F.P. Analysis of multiple-area renewable integrated hydro-thermal system considering artificial rabbit optimized PI (FOPD) cascade controller and redox flow battery. Arch. Control. Sci. 2023, 33, 861–884. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, W. Maximum power point tracking controller for photovoltaic system based on chaos quantum particle swarm optimization–moth-flame optimization hybrid model. Arch. Electr. Eng. 2024, 73, 3–663. [Google Scholar] [CrossRef]
- Kommadath, R.; Maharana, D.; Kotecha, P. A metaheuristic-based efficient strategy for multi-unit production planning with unique process constraints. Appl. Soft Comput. 2023, 134, 109871. [Google Scholar] [CrossRef]
- Furio, C.; Lamberti, L.; Pruncu, C.I. An Efficient and Fast Hybrid GWO-JAYA Algorithm for Design Optimization. Appl. Sci. 2024, 14, 9610. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mohammad Mirjalili, S.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Velasco, L.; Guerrero, H.; Hospitaler, A. A Literature Review and Critical Analysis of Metaheuristics Recently Developed. Arch. Computat. Methods Eng. 2024, 31, 125–146. [Google Scholar] [CrossRef]
- Thirunavukkarasu, N.; Lala, H.; Sawle, Y. Reliability index based optimal sizing and statistical performance analysis of stand-alone hybrid renewable energy system using metaheuristic algorithms. Alex. Eng. J. 2023, 74, 387–413. [Google Scholar] [CrossRef]
- Nassef, A.M.; Abdelkareem, M.A.; Maghrabie, H.M.; Baroutaji, A. Review of Metaheuristic Optimization Algorithms for Power Systems Problems. Sustainability 2023, 15, 9434. [Google Scholar] [CrossRef]
- Tang, K.; Meng, C. Particle Swarm Optimization Algorithm Using Velocity Pausing and Adaptive Strategy. Symmetry 2024, 16, 661. [Google Scholar] [CrossRef]
- Knypiński, Ł. Constrained optimization of line-start PM motor based on the gray wolf optimizer. Eksploat. I Niezawodn.–Maint. Reliab. 2021, 23, 1–10. [Google Scholar] [CrossRef]
- Pu, R.; Li, S.; Zhou, P.; Yang, G. Improved Chimp Optimization Algorithm for Matching Combinations of Machine Tool Supply and Demand in Cloud Manufacturing. Appl. Sci. 2023, 13, 12106. [Google Scholar] [CrossRef]
- Shehadeh, H.A. A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization. Neural Comput. Appl. 2021, 33, 11739–11752. [Google Scholar] [CrossRef]
- Ezzeldin, R.; Zelenakova, M.; Abd-Elhamid, H.F.; Pietrucha-Urbanik, K.; Elabd, S. Hybrid Optimization Algorithms of Firefly with GA and PSO for the Optimal Design of Water Distribution Networks. Water 2023, 15, 1906. [Google Scholar] [CrossRef]
- Knypiński, Ł. A novel hybrid cuckoo search algorithm for optimization of a line-start PM synchronous motor. Bull. Pol. Acad. Sci. Tech. Sci. 2023, 71, 1–8. [Google Scholar] [CrossRef]
- Geetha, M.; Chandra Guru Sekar, R.; Marichelvam, M.K.; Tosun, Ö. A Sequential Hybrid Optimization Algorithm (SHOA) to Solve the Hybrid Flow Shop Scheduling Problems to Minimize Carbon Footprint. Processes 2024, 12, 143. [Google Scholar] [CrossRef]
- Kelner, V.; Capitanescu, F.; Léonard, O.; Wehenkel, L. A hybrid optimization technique coupling an evolutionary and a local search algorithm. J. Comput. Appl. Math. 2008, 215, 448–456. [Google Scholar] [CrossRef]
- Tekerek, A.; Dortreler, M. The Adaptation Gray Wolf Optimizer to Data Clustering. J. Polytech. 2022, 25, 1761–1767. [Google Scholar] [CrossRef]
- Henrichs, E.; Lesch, V.; Straesser, M.; Kounev, S.; Krupitzer, C. A literature review on optimization techniques for adaptation planning in adaptive systems: State of the art and research directions. Inf. Softw. Technol. 2024, 49, 106940. [Google Scholar] [CrossRef]
- Marchetti, A.G.; François, G.; Faulwasser, T.; Bonvin, D. Modifier Adaptation for Real-Time Optimization—Methods and Applications. Processes 2016, 4, 55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knypiński, Ł.; Devarapalli, R.; Kamiński, M. Metaheuristic Algorithms in Optimal Design of Engineering Problems. Algorithms 2024, 17, 522. https://doi.org/10.3390/a17110522
Knypiński Ł, Devarapalli R, Kamiński M. Metaheuristic Algorithms in Optimal Design of Engineering Problems. Algorithms. 2024; 17(11):522. https://doi.org/10.3390/a17110522
Chicago/Turabian StyleKnypiński, Łukasz, Ramesh Devarapalli, and Marcin Kamiński. 2024. "Metaheuristic Algorithms in Optimal Design of Engineering Problems" Algorithms 17, no. 11: 522. https://doi.org/10.3390/a17110522
APA StyleKnypiński, Ł., Devarapalli, R., & Kamiński, M. (2024). Metaheuristic Algorithms in Optimal Design of Engineering Problems. Algorithms, 17(11), 522. https://doi.org/10.3390/a17110522