Improved Chimp Optimization Algorithm for Matching Combinations of Machine Tool Supply and Demand in Cloud Manufacturing
<p>Schematic diagram of chimpanzee group foraging.</p> "> Figure 2
<p>Comparison of curves of different strategies.</p> "> Figure 3
<p>Algorithm operation flow chart.</p> "> Figure 4
<p>The convergence curves of SDChOA with other comparative algorithms.</p> "> Figure 4 Cont.
<p>The convergence curves of SDChOA with other comparative algorithms.</p> "> Figure 5
<p>Solution for 8 × 8 instances (CM = 15, WM = 12, WT = 75).</p> "> Figure 6
<p>Solution for the 10 × 10 example (CM = 7, WM = 5 WT = 43).</p> "> Figure 7
<p>Solution for 15 × 10 instances (CM = 12, WM = 11, WT = 91).</p> "> Figure 8
<p>Comparison of convergence of the 8 × 8 example CM.</p> ">
Abstract
:1. Introduction
- An improved Chimp optimization algorithm is proposed, which uses an adaptive position update and dynamic weight strategy to enhance the solution speed and solution quality of the improved algorithm.
- The SDChOA algorithm was experimentally compared with five well-known algorithms on 13 benchmark functions. The results show that SDChOA is better than all comparison algorithms in terms of comprehensive performance.
- An SDChOA algorithm was developed and applied to the job shop scheduling problem for the first time and achieved good results.
2. Chimp Optimization Algorithm
2.1. Origins: Social Status and Hunting Behavior of Chimpanzees
2.2. Mathematical Model: Chimp Optimization
Algorithm 1: ChOA |
) Initialize f, m, a and c Calculate the position of each chimp Divide chimps randomly into independent groups Until stopping condition is satisfied Calculate the fitness of each chimp = the best search agent = the second-best search agent = the third best search agent = the fourth best search agent while (t < maximum number of iterations) for each chimp: Extract the chimp’s group Use its group strategy to update f, m, and c Use f, m, and c to calculate a and then d end for for each search chimp if (u < 0.5) if (|a| < 1) Update the position of the current search agent with Equation (2) Else if (|a| > 1) Select a random search agent end if else if (u > 0.5) Update the position of the current search with Equation (9) end if |
end for Update f, m, a, and c , and t = t + 1 end while return |
3. Improved Chimp Optimization Algorithm
3.1. Nonlinear Adjustment of Convergence Factor Based on a Logarithmic Function
3.2. Adaptive Location Update Strategy
3.3. Revised Dynamic Weighting Strategy
3.4. SDChOA Implementation Steps
4. Simulation Experiment and Result Analysis
4.1. Experimental Design and Test Functions
4.2. Analysis of the Influence of Different Improvement Strategies on Algorithm Performance
4.3. SDChOA Convergence Analysis
4.4. Comparison of SDChOA, Swarm Intelligence Algorithms, and Improved Algorithms
5. Flexible Job Shop Scheduling Problem
5.1. Problem Description and Model Building
- (1)
- Only one workpiece can be machined on the same machine at the same time.
- (2)
- The same process of the same workpiece can be processed by only one machine at the same time.
- (3)
- Each process of each workpiece cannot be interrupted once it has started.
- (4)
- Different workpieces have the same priority as each other.
- (5)
- There are no sequential constraints between processes of different workpieces and sequential constraints between processes of the same workpiece.
- (6)
- All workpieces can be machined at zero time.
- (1)
- Maximum completion time
- (2)
- Maximum load machine load
- (3)
- Total load of all machines
5.2. Computational Results and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhry, I.A.; Khan, A.A. A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 2016, 23, 551–591. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, X.V.; Xu, X.; Zhang, L. Scheduling in cloud manufacturing: State-of-the-art and research challenges. Int. J. Prod. Res. 2019, 57, 4854–4879. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, F.; Zhang, L.; Lui, Y.; Wang, Z. Scheduling of manufacturers based on chaos optimization algorithm in cloud manufacturing. Robot. Comput.-Integr. Manuf. 2019, 58, 13–20. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, N. Flexible flow shop scheduling with interval grey processing time. Grey Syst.-Theory Appl. 2021, 11, 779–795. [Google Scholar] [CrossRef]
- Sawik, T. Batch versus cyclic scheduling of flexible flow shops by mixed-integer programming. Int. J. Prod. Res. 2012, 50, 5017–5034. [Google Scholar] [CrossRef]
- Shyalika, C.; Silva, T.; Karunananda, A. Reinforcement Learning in Dynamic Task Scheduling: A Review. SN Comput. Sci. 2020, 1, 306. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, C.; Liu, Q.; Shen, W.; Gao, L. An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules. J. Manuf. Syst. 2022, 62, 650–667. [Google Scholar] [CrossRef]
- Johnson, D.; Chen, G.; Lu, Y. Multi-Agent Reinforcement Learning for Real-Time Dynamic Production Scheduling in a Robot Assembly Cell. IEEE Robot. Autom. Lett. 2022, 7, 7684–7691. [Google Scholar] [CrossRef]
- Sun, K.; Zheng, D.; Song, H.; Cheng, Z.; Lang, X.; Yuan, W.; Wang, J. Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system. Expert Syst. Appl. 2023, 215, 119359. [Google Scholar] [CrossRef]
- Türkyılmaz, A.; Senvar, O.; Ünal, İ.; Bulkan, S. A hybrid genetic algorithm based on a two-level hypervolume contribution measure selection strategy for bi-objective flexible job shop problem. Comput. Oper. Res. 2022, 141, 105694. [Google Scholar] [CrossRef]
- Zhou, B.-H.; Zhang, J.-H. An improved bi-objective salp swarm algorithm based on decomposition for green scheduling in flexible manufacturing cellular environments with multiple automated guided vehicles. Soft Comput. 2023, 27, 16717–16740. [Google Scholar] [CrossRef]
- Alzaqebah, M.; Jawarneh, S.; Alwohaibi, M.; Alsmadi, M.K.; Almarashdeh, I.; Mustafa, A.; Mohammad, R. Hybrid Brain Storm Optimization algorithm and Late Acceptance Hill Climbing to solve the Flexible Job-Shop Scheduling Problem. J. King Saud Univ. —Comput. Inf. Sci. 2022, 34, 2926–2937. [Google Scholar] [CrossRef]
- Wei, Z.; Liao, W.; Zhang, L. Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds. Expert Syst. Appl. 2022, 197, 116785. [Google Scholar] [CrossRef]
- Bezoui, M.; Olteanu, A.-L.; Sevaux, M. Integrating preferences within multiobjective flexible job shop scheduling. Eur. J. Oper. Res. 2023, 305, 1079–1086. [Google Scholar] [CrossRef]
- He, L.; Chiong, R.; Li, W.; Budhi, G.S.; Zhang, Y. A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles. Knowl.-Based Syst. 2022, 243, 108315. [Google Scholar] [CrossRef]
- Barshandeh, S.; Dana, R.; Eskandarian, P. A learning automata-based hybrid MPA and JS algorithm for numerical optimization problems and its application on data clustering. Knowl.-Based Syst. 2022, 236, 107682. [Google Scholar] [CrossRef]
- Chen, X.; Tianfield, H.; Du, W. Bee-foraging learning particle swarm optimization. Appl. Soft Comput. 2021, 102, 107134. [Google Scholar] [CrossRef]
- De Giovanni, L.; Pezzella, F. An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem. Eur. J. Oper. Res. 2010, 200, 395–408. [Google Scholar] [CrossRef]
- Gen, M.; Gao, J.; Lin, L. Multistage-Based Genetic Algorithm for Flexible Job-Shop Scheduling Problem. In Intelligent and Evolutionary Systems; Gen, M., Green, D., Katai, O., McKay, B., Namatame, A., Sarker, R.A., Zhang, B.-T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 187, pp. 183–196. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Song, Y.; Chen, M.; Chu, Y. Application of Quantum Particle Swarm Optimization for task scheduling in Device-Edge-Cloud Cooperative Computing. Eng. Appl. Artif. Intell. 2023, 126, 107020. [Google Scholar] [CrossRef]
- Yang, D.; Wu, M.; Li, D.; Xu, Y.; Zhou, X.; Yang, Z. Dynamic opposite learning enhanced dragonfly algorithm for solving large-scale flexible job shop scheduling problem. Knowl. -Based Syst. 2022, 238, 107815. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, R.; Singh, N.; Dhiman, G. SChoA: A newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Eng. Comput. 2021, 38, 975–1003. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization: An overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Jia, H.; Sun, K.; Zhang, W.; Leng, X. An enhanced chimp optimization algorithm for continuous optimization domains. Complex Intell. Syst. 2022, 8, 65–82. [Google Scholar] [CrossRef]
- Chen, R.; Yang, B.; Li, S.; Wang, S. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem. Comput. Ind. Eng. 2020, 149, 106778. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Z.; Wang, J. A Review of Reinforcement Learning Based Intelligent Optimization for Manufacturing Scheduling. Complex Syst. Model. Simul. 2021, 1, 257–270. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, B.; Wang, S.; Jin, T.; Li, S. An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing. Appl. Soft Comput. 2020, 87, 106003. [Google Scholar] [CrossRef]
- Muhamad, A.S.; Deris, S. An artificial immune system for solving production scheduling problems: A review. Artif. Intell. Rev. 2013, 39, 97–108. [Google Scholar] [CrossRef]
- Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the Flexible Job-shop Scheduling Problem. Comput. Oper. Res. 2008, 35, 3202–3212. [Google Scholar] [CrossRef]
- Xia, W.; Wu, Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind. Eng. 2005, 48, 409–425. [Google Scholar] [CrossRef]
- Xing, L.-N.; Chen, Y.-W.; Yang, K.-W. An efficient search method for multi-objective flexible job shop scheduling problems. J. Intell. Manuf. 2009, 20, 283–293. [Google Scholar] [CrossRef]
Algorithm | Parameters |
---|---|
PSO | |
GWO | |
SSA | — |
ChOA | |
IChOA | |
SDChOA |
ID | Function | Type | |||
---|---|---|---|---|---|
F1 | 30/50/100 | [−100, 100] | 0 | Unimodal | |
F2 | 30/50/100 | [−10, 10] | 0 | Unimodal | |
F3 | 30/50/100 | [−100, 100] | 0 | Unimodal | |
F4 | 30/50/100 | [−100, 100] | 0 | Unimodal | |
F5 | 30/50/100 | [−30, 30] | 0 | Unimodal | |
F6 | 30/50/100 | [−100, 100] | 0 | Unimodal | |
F7 | 30/50/100 | [−1.28, 1.28] | 0 | Unimodal | |
F8 | 30/50/100 | [−500, 500] | −418.9829 × d | Multimodal | |
F9 | 30/50/100 | [−5.12, 5.12] | 0 | Multimodal | |
F10 | 30/50/100 | [−32, 32] | 0 | Multimodal | |
F11 | 30/50/100 | [−600, 600] | 0 | Multimodal | |
F12 | 30/50/100 | [−50, 50] | 0 | Multimodal | |
F13 | 30/50/1200 | [−50, 50] | 0 | Multimodal |
Function | Algorithm | 30 dim | 50 dim | 100 dim | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Best | Mean | Std | Best | Mean | Std | Best | Mean | Std | ||
F1 | SSA | 9.1421 × 10−8 | −3.005 × 10−6 | 4.3087 × 10−5 | 7.3587 × 10−8 | 6.5734 × 10−6 | 3.818 × 10−5 | 5.5981 × 10−8 | 4.1605 × 10−6 | 3.3538 × 10−5 |
GWO | 1.5466 × 10−43 | −1.313 × 10−23 | 5.4590 × 10−23 | 1.5098 × 10−43 | 1.3611 × 10−24 | 5.5493 × 10−23 | 6.4721 × 10−44 | 8.9142 × 10−24 | 3.5231 × 10−23 | |
PSO | 4.2621 × 10−14 | 6.0340 × 10−11 | 1.1311 × 10−1 | 2.1022 × 10−4 | 4.5313 × 10−3 | 4.1124 × 10−3 | 3.6998 × 10−4 | 2.3901 × 10−2 | 9.3198 × 10−2 | |
F2 | ChOA | 1.4268 × 10−1 | 1.0546 × 10−6 | 1.3332 × 10−6 | 6.4084 × 10−14 | 1.7854 × 10−8 | 3.1346 × 10−8 | 2.7554 × 10−12 | 1.3215 × 10−7 | 1.9599 × 10−7 |
IChOA | 1.2961 × 10−33 | 2.9527 × 10−18 | 4.1897 × 10−18 | 5.8119 × 10−35 | 6.7475 × 10−19 | 8.4943 × 10−19 | 2.8247 × 10−38 | 1.4105 × 10−2 | 1.9325 × 10−2 | |
SDChOA | 1.7075 × 10−84 | 1.3506 × 10−43 | 1.2741 × 10−43 | 2.7221 × 10−84 | 1.7507 × 10−43 | 1.5582 × 10−43 | 3.2364 × 10−84 | 1.7661 × 10−43 | 1.8499 × 10−43 | |
SSA | 3.7017 × 10−2 | 8.7012 × 10−2 | 2.4717 × 10−2 | 1.7355 × 10−3 | 1.4546 × 10−2 | 1.3296 × 10−2 | 4.3765 × 10−3 | 9.5751 × 10−2 | 2.5382 × 10−1 | |
GWO | 2.7808 × 10−3 | 2.6752 × 10−29 | 5.6921 × 10−28 | 1.7637 × 10−26 | 9.1872 × 10−29 | 3.4931 × 10−28 | 5.9162 × 10−27 | 4.9111 × 10−25 | 1.2176 × 10−25 | |
PSO | 1.5940 × 10−7 | 2.2003 × 10−5 | 9.4840 × 10−5 | 1.0396 × 10−1 | 2.9181 × 10−8 | 3.8751 × 10−8 | 3.6032 × 10−7 | 2.3931 × 10−5 | 1.3810 × 10−5 | |
ChOA | 9.5106 × 10−1 | 1.9003 × 10−11 | 3.5603 × 10−11 | 1.1199 × 10−16 | 2.2371 × 10−11 | 4.1212 × 10−11 | 6.811 × 10−13 | 1.3604 × 10−12 | 3.2561 × 10−12 | |
F3 | IChOA | 2.0463 × 10−24 | 4.0925 × 10−23 | 6.8694 × 10−23 | 1.1423 × 10−26 | 2.2225 × 10−24 | 3.4947 × 10−24 | 5.6336 × 10−24 | 1.1217 × 10−21 | 1.9387 × 10−21 |
SDChOA | 3.5334 × 10−47 | 7.0668 × 10−49 | 7.7394 × 10−49 | 5.1552 × 10−5 | 1.031 × 10−48 | 9.8854 × 10−49 | 1.6527 × 10−53 | 3.3054 × 10−49 | 2.9279 × 10−49 | |
SSA | 4.5981 × 103 | 5.3291 × 103 | 3.6552 × 102 | 2.7256 × 103 | 4.5526 × 103 | 1.2148 × 102 | 3.9081 × 102 | 1.5011 × 102 | 1.2905 × 101 | |
GWO | 1.1005 × 10−1 | 3.4324 × 10−8 | 2.0524 × 10−6 | 1.7311 × 10−8 | 1.8933 × 10−7 | 3.1957 × 10−5 | 4.5572 × 10−8 | 5.8381 × 10−7 | 4.3366 × 10−5 | |
PSO | 2.1130 | 3.6781 | 4.2234 | 5.7381 × 102 | 3.1312 × 102 | 8.9761 × 101 | 3.9081 × 102 | 4.3094 × 102 | 9.8371 × 102 | |
ChOA | 2.2215 × 10−3 | 8.4123 × 10−3 | 1.5941 × 10−1 | 4.0205 × 101 | 7.4268 × 102 | 7.6071 × 102 | 1.1590 × 10−5 | 6.2109 × 10−3 | 4.9211 × 10−3 | |
F4 | IChOA | 7.3289 × 10−2 | 1.4715 × 10−1 | 3.1918 × 10−2 | 2.7551 × 101 | 4.8522 × 102 | 5.2611 × 102 | 1.6051 × 102 | 3.5816 × 101 | 1.3924 × 101 |
SDChOA | 9.8578 × 10−39 | 1.1842 × 10−21 | 8.8719 × 10−21 | 2.0991 × 10−48 | 1.4957 × 10−26 | 1.5657 × 10−25 | 1.4992 × 10−54 | 1.0296 × 10−29 | 7.7713 × 10−29 | |
SSA | 1.5245 | 4.0233 | 2.5733 | 1.5442 × 101 | 3.6823 × 102 | 1.1988 × 101 | 1.9237 | 7.2392 | 1.1239 | |
GWO | 6.7580 × 10−12 | 5.3937 × 10−11 | 6.1497 × 10−1 | 1.6612 × 10−12 | 3.6931 × 10−1 | 1.5181 × 10−9 | 3.5314 × 10−12 | 9.7243 × 10−11 | 3.2447 × 10−9 | |
PSO | 1.9582 | 2.1231 | 1.1413 × 101 | 1.9939 | 3.2910 × 102 | 1.2319 × 101 | 2.2321 | 9.3091 | 4.1292 | |
ChOA | 1.6521 × 10−3 | 5.2166 × 10−2 | 7.6681 × 10−2 | 3.9418 × 10−1 | 1.2481 × 10−1 | 1.5319 × 10−1 | 1.3672 × 10−1 | 3.8851 × 10−1 | 3.3092 × 10−1 | |
IChOA | 4.8536 × 10−2 | 1.2130 × 101 | 2.2931 × 101 | 5.0151 × 10−2 | 8.3918 | 1.3142 × 10−1 | 7.8977 | 8.3918 | 9.8390 × 10−1 | |
F5 | SDChOA | 6.5083 × 10−31 | 5.0899 × 10−27 | 6.1499 × 10−27 | 4.8153 × 10−34 | 1.7075 × 10−34 | 1.8815 × 10−34 | 2.3464 × 10−29 | 6.6837 × 10−26 | 8.7751 × 10−26 |
SSA | 1.0817 × 102 | 4.1738 × 102 | 2.0261 × 102 | 2.0619 × 102 | 1.9304 × 102 | 4.5221 × 102 | 1.3912 × 102 | 2.1159 × 102 | 2.8044 × 102 | |
GWO | 3.7099 × 101 | 4.5387 × 101 | 2.6333 × 101 | 4.7061 × 101 | 5.9464 × 101 | 1.1675 × 101 | 4.7364 × 101 | 6.8091 × 101 | 4.1707 × 101 | |
PSO | 1.0818 × 101 | 3.0124 × 101 | 9.8322 × 101 | 1.7206 × 102 | 8.7611 × 102 | 7.1289 × 101 | 1.7127 × 101 | 8.1938 | 9.8131 | |
ChOA | 4.8895 × 101 | 2.9394 × 102 | 5.4152 × 102 | 4.8922 × 101 | 1.8778 × 102 | 4.2324 × 102 | 4.8902 × 101 | 66.626 × 101 | 5.0596 × 101 | |
IChOA | 4.6830 | 4.1903 × 101 | 2.2998 × 101 | 4.0024 × 101 | 4.0169 × 101 | 1.2945 × 101 | 4.6844 × 101 | 4.7107 × 101 | 1.5229 × 101 | |
F6 | SDChOA | 4.8970 × 101 | 7.3407 × 101 | 3.8833 × 101 | 4.8970 × 101 | 5.9406 × 101 | 2.3752 × 101 | 4.8656 × 101 | 7.5244 × 101 | 2.4219 × 101 |
SSA | 4.4727 × 10−1 | 5.0001 × 10−4 | 3.9001 × 10−5 | 8.4195 × 10−8 | 5.3141 × 10−5 | 4.1131 × 10−5 | 7.2298 × 10−8 | 5.9831 × 10−5 | 3.8412 × 10−5 | |
GWO | 9.9157 × 10−1 | 4.2843 × 104 | 3.6238 × 103 | 2.5112 × 101 | 4/0008 × 101 | 2.0263 × 101 | 3.6111 | 5.3524 | 2.2685 | |
PSO | 4.0808 × 10−9 | 5.4493 × 10−7 | 2.6933 × 10−5 | 1.6921 × 10−8 | 3.1293 × 10−5 | 9.3193 × 10−4 | 1.8383 × 10−5 | 8.1938 × 10−3 | 9.8471 × 10−3 | |
ChOA | 8.3511 | 4.2119 | 1.8553 × 10−1 | 7.4971 | 1.8148 | 2.2243 | 6.7683 | 9.0032 | 2.1560 | |
IChOA | 2.2992 | 3.9445 × 10−1 | 2.4884 × 10−1 | 4.4019 | 7.8545 | 2.0704 | 3.3711 | 4.8321 | 2.3426 | |
F7 | SDChOA | 2.7994 × 10−1 | 2.3981 | 2.1311 | 5.8675 | 9.0538 | 1.7656 | 5.4412 | 9.3205 | 1.9437 |
SSA | 5.5097 × 10−2 | 4.8749 × 10−3 | 1.3062 × 10−3 | 2.3115 × 10−2 | 7.2317 × 10−1 | 1.1639 × 10−1 | 2.6984 × 10−2 | 1.1865 × 10−1 | 1.2011 × 10−1 | |
GWO | 1.6327 × 10−2 | 4.3618 × 10−2 | 3.1059 × 10−2 | 1.0336 × 10−3 | 2.5274 × 10−3 | 2.5555 × 10−2 | 1.3616 × 10−3 | 1.8751 × 10−3 | 2.5205 × 10−2 | |
PSO | 2.6521 × 10−2 | 1.6013 × 10−2 | 1.5391 × 10−2 | 3.1921 × 10−1 | 6.9731 × 10−1 | 1.3874 × 10−1 | 3.2627 × 10−1 | 6.4021 × 10−1 | 2.3019 × 10−1 | |
ChOA | 1.9691 × 10−3 | 4.6498 × 10−2 | 2.4133 × 10−2 | 4.4695 × 10−3 | 3.6156 × 10−3 | 3.3152 × 10−3 | 2.0794 × 10−3 | 2.1954 × 10−2 | 2.0912 × 10−2 | |
IChOA | 5.7946 × 10−3 | 1.3528 × 10−2 | 4.7679 × 10−2 | 3.7255 × 10−2 | 1.4229 × 10−2 | 5.6435 × 10−2 | 3.6226 × 10−3 | 1.6594 × 10−2 | 4.6131 × 10−3 | |
F8 | SDChOA | 1.3653 × 10−5 | 4.1788 × 10−3 | 2.9092 × 10−3 | 1.0592 × 10−5 | 1.6312 × 10−3 | 4.3758 × 10−3 | 1.5669 × 10−4 | 1.6443 × 10−2 | 7.8203 × 10−2 |
SSA | −2.071 × 102 | −2.1622 × 102 | 3.6626 × 102 | −1.217 × 103 | −2.564 × 101 | −3.3691 × 101 | −1.217 × 103 | −3.783 × 102 | −3.6772 × 101 | |
GWO | −5.510 × 103 | −2.3174 × 102 | 1.9690 × 102 | −1.102 × 104 | −1.571 × 103 | 2.71251 × 10−2 | −8.024 × 103 | −3.419 × 102 | −2.278 × 102 | |
PSO | −9.281 × 103 | −6.1231 × 103 | 6.6785 × 102 | −9.852 × 102 | −2.311 × 101 | −3.3111 × 101 | −4.233 × 103 | −7.310 × 102 | −9/123 × 102 | |
ChOA | −5.653 × 103 | −4.9221 × 102 | 3.8515 × 101 | −9.1943 × 103 | −4.894 × 102 | −4.2336 × 101 | −9.301 × 103 | −4.601 × 102 | −1.104 × 102 | |
IChOA | −5.748 × 103 | −3.8410 × 102 | 2.1347 × 102 | −8.0467 × 103 | −3.697 × 102 | −2.5479 × 102 | −8.611 × 103 | −4.071 × 102 | −1.892 × 102 | |
F9 | SDChOA | −2.996 × 103 | −2.4842 × 102 | 1.8739 × 102 | −4.9604 × 103 | −2.540 × 102 | −193572 × 102 | −5.680 × 103 | −9.765 × 102 | −2.580 × 102 |
SSA | 3.3828 × 101 | 1.79092 × 101 | 1.6292 | 5.7171 × 101 | 1.5919 × 102 | 1.0514 × 101 | 1.0646 × 102 | 6.1687 × 102 | 1.3317 × 102 | |
GWO | 5.6843 × 10−14 | −7.4994 × 10−1 | 5.3493 × 10−9 | 0.0000 | 0.0000 | 0.0000 | 5.6843 × 10−14 | 2.4307 × 10−1 | 5.6961 × 10−9 | |
PSO | 1.2323 × 102 | 3.2211 × 102 | 7.0898 × 101 | 1.0869 × 102 | 1.4191 × 103 | 2.3910 × 102 | 1.2642 × 102 | 8.9282 × 103 | 8.3918 × 103 | |
ChOA | 5.2953 | 6.3455 × 10−1 | 9.4836 × 10−2 | 2.8246 | 3.6123 | 3.6411 | 7.3962 × 10−4 | 1.7444 × 10−3 | 2.1221 × 10−3 | |
IChOA | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.5829×10−12 | 5.5478×10−12 | |
F10 | SDChOA | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 9.5455×10−15 | 1.2212×10−14 |
SSA | 8.8522 × 10−16 | 1.7189 × 10−15 | 8.5152 × 10−15 | 2.7720 × 10−1 | 1.7925 × 10−2 | 7.3652 × 10−3 | 3.4391 | 5.1611 × 10− | 1.2905 × 101 | |
GWO | 8.6153 × 10−14 | 1.7189 × 10−12 | 8.5152 × 10−12 | 3.2863 × 10−16 | 1.4571 × 10−15 | 8.5302 × 10−15 | 2.2721 × 10−2 | 4.0391 × 10−1 | 3.9310 × 10−1 | |
PSO | 2.4461 × 10−7 | 1.2391 × 10−6 | 1.0012 × 10−6 | 1.1175 × 10−6 | 3.9812 × 10−4 | 9.3871 × 10−4 | 2.9312 × 10−14 | 3.0285 × 10−16 | 7.5579 × 10−15 | |
ChOA | 1.9648 × 10−4 | 3.1341 × 10−2 | 2.7935 × 10−2 | 1.9964 × 10−1 | 3.1299 | 4.9502 | 1.9964 × 101 | 3.1381 × 1011 | 4.3828 | |
IChOA | 4.4388 × 10−7 | 6.4165 × 10−6 | 9.1436 × 10−6 | 2.1033 × 10−5 | 1.9196 × 10−3 | 3.3647 × 10−2 | 7.4157 × 10−11 | 1.0952 × 10−11 | 1.5112 × 10−11 | |
F11 | SDChOA | 4.4409 × 10−17 | 5.9777 × 10−16 | 1.2452 × 10−15 | 4.4409 × 10−17 | 5.5904 × 10−16 | 1.2181 × 10−15 | 4.4409 × 10−17 | 2.4452 × 10−16 | 1.3471 × 10−15 |
SSA | 1.4266 × 10−5 | 1.4195 × 10−3 | 8.8952 × 10−3 | 1.7822 × 10−3 | 4.0812 × 10−2 | 5.1994 × 10−2 | 2..4327 × 10−3 | 2.2466 × 10−2 | 1.3232 × 10−2 | |
GWO | 2.7578 × 10−12 | 8.0196 × 10−7 | 1.4373 × 10−6 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | |
PSO | 4.5859 × 10−6 | 1.3112 × 10−2 | 2.1123 × 10−3 | 2.2053 × 10−5 | 8.1931 × 10−4 | 9.3893 × 10−4 | 5.8666 × 10−5 | 7.9831 × 10−3 | 8.8918 × 10−3 | |
ChOA | 2.7578 × 10−12 | 8.0196 × 10−7 | 1.4373 × 10−6 | 1.197 × 10−11 | 1.8889 × 10−6 | 2.9242 × 10−6 | 4.2002 × 10−12 | 1.0536 × 10−6 | 1.7802 × 10−6 | |
IChOA | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.5548×10−1 | 0.0000 | 0.0000 | 1.2245 | 0.0000 | |
F12 | SDChOA | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
SSA | 1.6744 × 10−11 | 5.1334 × 10−8 | 7.1471 × 10−7 | 1.3040 × 10−9 | 6.8916 × 10−6 | 7.0481 × 10−6 | 5.7663 × 10−1 | 1.3542 × 10−8 | 5.3169 × 10−8 | |
GWO | 2.6549 × 10−2 | 1.7567 × 10−1 | 4.2256 × 10−1 | 7.0587 × 10−2 | 7.2706 × 10−1 | 4.3912 × 10−1 | 6.1556 × 10−2 | 6.8485 × 10−1 | 4.6742 × 10−1 | |
PSO | 4.5444 × 10−6 | 9.3221 × 10−4 | 4.4422 × 10−4 | 9.7429 × 10−6 | 8.0981 × 10−4 | 9.8419 × 10−3 | 3.1036 × 10−5 | 2.1931 × 10−3 | 3.0912 × 10−2 | |
ChOA | 1.3261 × 10−3 | 3.5095 × 10−2 | 4.2457 × 10−2 | 7.9894 × 10−2 | 3.5004 × 10−1 | 4.9141 × 10−1 | 4.5609 × 10−2 | 3.0108 × 10−1 | 3.4785 × 10−1 | |
IChOA | 5.3791 × 10−2 | 6.4244 × 10−2 | 5.8355 × 10−2 | 2.3259 × 10−2 | 6.3954 × 10−1 | 6.8171 × 10−1 | 1.9274 × 10−1 | 5.8969 × 10−1 | 6.8137 × 10−1 | |
F13 | SDChOA | 7.1331 × 10−2 | 4.9039 × 10−2 | 3.8346 × 10−2 | 2.9466 × 10−2 | 4.1402 × 10−1 | 3.4397 × 10−1 | 3.0341 × 10−2 | 4.8625 × 10−1 | 4.9012 × 10−1 |
SSA | 3.8180 × 10−1 | 9.5551 | 3.1473 | 1.1482 × 101 | 2.4736 × 101 | 2.6426 × 10−1 | 5.1226 × 10−1 | 9.4799 × 10−1 | 3.0955 × 10−1 | |
GWO | 1.6315 × 10−1 | 2.9555 × 10−1 | 3.1473 × 10−1 | 1.3412 × 10−2 | 6.7918 × 10−1 | 4.0911 × 10−1 | 1.4153 × 10−2 | 6.7989 × 10−1 | 4.2659 × 10−1 | |
PSO | 1.1289 × 10−4 | 3.6831 × 10−3 | 9.1975 × 10−3 | 4.4597 × 10−2 | 9.3901 × 10−1 | 9.8734 × 10−2 | 4.5558 × 10−5 | 9.6471 × 10−4 | 8.7361 × 10−4 | |
ChOA | 2.7111 | 6.2852 × 101 | 3.1859 × 101 | 4.6371 | 1.0278 × 10−1 | 3.4465 × 10−1 | 4.7994 × 10−3 | 4.1353 × 10−2 | 1.9851 × 10−2 | |
IChOA | 2.9575 × 10−2 | 8.2463 × 10−1 | 6.1701 × 10−1 | 2.6111 × 10−4 | 6.5508 × 10−1 | 5.2053 × 10−1 | 2.8211 × 10−6 | 8.1001 × 10−2 | 6.2418 × 10−2 | |
SDChOA | 2.9866 × 10−7 | 1.3423 × 10−3 | 4.0581 × 10−1 | 4.9966 × 10−6 | 6.7420 × 10−3 | 2.6941 × 10−3 | 4.9872 × 10−5 | 4.9312 × 10−3 | 7.7304 × 10−3 |
Workpiece | Process | Optional Processing Machines | ||||
---|---|---|---|---|---|---|
2 | 6 | 5 | 3 | 4 | ||
— | 8 | — | 4 | 1 | ||
4 | — | 3 | 6 | 2 | ||
3 | — | 6 | — | 5 | ||
4 | 6 | 5 | — | 6 | ||
— | 7 | 11 | 5 | 8 |
Example Problem (n × m) | Objective Function | Methods Such as KACEM | Methods Such as XIA | Zhang Chaoyong | SDChOA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Best | Population | Average Time t/s | Best | Computing Time | ||||||
8 × 8 | 15 | 16 | 15 | 16 | 14 | 200 | 16.5 | 14 | 1.4 | |
N/A | N/A | 12 | 13 | 11 | 11.2 | 12 | ||||
79 | 75 | 75 | 73 | N/A | N/A | 75 | ||||
10 × 10 | 7 | 7 | 7 | 200 | 14.5 | 7 | 3.2 | |||
5 | 6 | 5 | 9.0 | 5 | ||||||
45 | 44 | N/A | N/A | 44 | ||||||
15 × 10 | 24 | 12 | N/A | N/A | 0 | 12 | 10.3 | |||
11 | 11 | 0 | 11 | |||||||
91 | 91 | 0.44 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, R.; Li, S.; Zhou, P.; Yang, G. Improved Chimp Optimization Algorithm for Matching Combinations of Machine Tool Supply and Demand in Cloud Manufacturing. Appl. Sci. 2023, 13, 12106. https://doi.org/10.3390/app132212106
Pu R, Li S, Zhou P, Yang G. Improved Chimp Optimization Algorithm for Matching Combinations of Machine Tool Supply and Demand in Cloud Manufacturing. Applied Sciences. 2023; 13(22):12106. https://doi.org/10.3390/app132212106
Chicago/Turabian StylePu, Ruiqiang, Shaobo Li, Peng Zhou, and Guilin Yang. 2023. "Improved Chimp Optimization Algorithm for Matching Combinations of Machine Tool Supply and Demand in Cloud Manufacturing" Applied Sciences 13, no. 22: 12106. https://doi.org/10.3390/app132212106
APA StylePu, R., Li, S., Zhou, P., & Yang, G. (2023). Improved Chimp Optimization Algorithm for Matching Combinations of Machine Tool Supply and Demand in Cloud Manufacturing. Applied Sciences, 13(22), 12106. https://doi.org/10.3390/app132212106