A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution for Improving the Performance of Ridesharing Systems with a Discount Guarantee
<p>A flowchart of the proposed algorithm.</p> "> Figure 2
<p>Average fitness function values for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = 0.1 with POP = 30.</p> "> Figure 3
<p>Average number of generations for Case 1 through Case 10 with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 and POP = 30.</p> "> Figure 4
<p>Average number of generations for Case 11 through Case 14 with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 and POP = 30.</p> "> Figure 5
<p>Convergence curves for a run of Case 5 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 30.</p> "> Figure 6
<p>Convergence curves for a run of Case 11 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 30.</p> "> Figure 7
<p>Convergence curves for a run of Case 12 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 30.</p> "> Figure 8
<p>Convergence curves for a run of Case 13 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 30.</p> "> Figure 9
<p>Convergence curves for a run of Case 14 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 30.</p> "> Figure 10
<p>Average fitness function values for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 50.</p> "> Figure 11
<p>Average number of generations for Case 1 through Case 10 with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 and POP = 50.</p> "> Figure 12
<p>Average number of generations for Case 11 through Case 14 with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 and POP = 50.</p> "> Figure 13
<p>Convergence curves for a run of Case 5 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 50.</p> "> Figure 14
<p>Convergence curves for a run of Case 11 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 50.</p> "> Figure 15
<p>Convergence curves for a run of Case 12 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 50.</p> "> Figure 16
<p>Convergence curves for a run of Case 13 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 50.</p> "> Figure 17
<p>Convergence curves for a run of Case 14 for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>D</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>P</mi> </msub> </mrow> </semantics></math> = <math display="inline"><semantics> <mi>r</mi> </semantics></math> = 0.1 with POP = 50.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. The Formulation of the DGRP
3.1. An Auction Model for Ridesharing Systems
3.2. A Formulation of the DGRP Based on Combinatorial Double Auctions
4. A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution
4.1. The Conversion of Decision Variables and Fitness Function
4.2. The Proposed Success Rate-Based Self-Adaptive Metaheuristic Algorithm
Algorithm 1: Discrete Self-Adaptive Metaheuristic Algorithm based on Success Rate and Differential Evolution |
Step 1: Initialize the parameters and population of individuals |
Step 1-1: Initial the parameters |
= 0.5 |
Step 1-2: Generate a population with individuals randomly |
Step 2: Evolve solutions |
For |
For |
Step 2-1: Generate a uniform random number from uniform distribution ranging from 0 to 1 |
Step 2-2: Generate a uniform random number from uniform distribution ranging from 0 to 1 |
Calculate the mutant vector as follows. |
For 1, 2, …, |
End For |
Step 2-3: Generate a trial vector |
Generate a Gaussian random number with distribution |
For 1, 2, …, |
Generate a uniform random number from uniform distribution ranging from 0 to 1 |
End For |
Step 2-4: Update the individual and success/failure counters |
If |
= |
Else |
End If |
End For |
Step 2-5: Update the parameters as needed |
If |
End If |
End For |
5. Results
6. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruglieri, M.; Ciccarelli, D.; Colorni, A.; Luè, A. PoliUniPool: A carpooling system for universities. Procedia-Soc. Behav. Sci. 2011, 20, 558–567. [Google Scholar] [CrossRef]
- Hwang, K.; Giuliano, G. The Determinants of Ridesharing: Literature Review. Working Paper UCTC No. 38, The University of California Transportation Center. 1990. Available online: https://escholarship.org/uc/item/3r91r3r4 (accessed on 29 November 2023).
- Uber. Available online: https://www.uber.com (accessed on 29 November 2023).
- Lyft. Available online: https://www.lyft.com (accessed on 29 November 2023).
- BlaBlaCar. Available online: https://www.blablacar.com (accessed on 29 November 2023).
- Agatz, N.; Erera, A.; Savelsbergh, M.; Wang, X. Optimization for dynamic ride-sharing: A review. Eur. J. Oper. Res. 2012, 223, 295–303. [Google Scholar] [CrossRef]
- Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-art and future direc-tions. Transp. Res. Part B Methodol. 2013, 57, 28–46. [Google Scholar] [CrossRef]
- Mourad, A.; Puchinger, J.; Chu, C. A survey of models and algorithms for optimizing shared mobility. Transp. Res. Part B Methodol. 2019, 123, 323–346. [Google Scholar] [CrossRef]
- Martins, L.C.; Torre, R.; Corlu, C.G.; Juan, A.A.; Masmoudi, M.A. Optimizing ride-sharing operations in smart sustainable cities: Challenges and the need for agile algorithms. Comput. Ind. Eng. 2021, 153, 107080. [Google Scholar] [CrossRef]
- Ting, K.H.; Lee, L.S.; Pickl, S.; Seow, H.-V. Shared Mobility Problems: A Systematic Review on Types, Variants, Characteristics, and Solution Approaches. Appl. Sci. 2021, 11, 7996. [Google Scholar] [CrossRef]
- Hsieh, F.S.; Zhan, F.; Guo, Y. A solution methodology for carpooling systems based on double auctions and cooperative coevolutionary particle swarms. Appl. Intell. 2019, 49, 741–763. [Google Scholar] [CrossRef]
- Hsieh, F.S. A Comparative Study of Several Metaheuristic Algorithms to Optimize Monetary Incentive in Ridesharing Systems. ISPRS Int. J. Geo-Inf. 2020, 9, 590. [Google Scholar] [CrossRef]
- Hsieh, F.-S. Development and Comparison of Ten Differential-Evolution and Particle Swarm-Optimization Based Algorithms for Discount-Guaranteed Ridesharing Systems. Appl. Sci. 2022, 12, 9544. [Google Scholar] [CrossRef]
- Hsieh, F.S. Trust-Based Recommendation for Shared Mobility Systems Based on a Discrete Self-Adaptive Neighborhood Search Differential Evolution Algorithm. Electronics 2022, 11, 776. [Google Scholar] [CrossRef]
- Hsieh, F.-S. A Comparison of Three Ridesharing Cost Savings Allocation Schemes Based on the Number of Acceptable Shared Rides. Energies 2021, 14, 6931. [Google Scholar] [CrossRef]
- Hsieh, F.-S. Improving Acceptability of Cost Savings Allocation in Ridesharing Systems Based on Analysis of Proportional Methods. Systems 2023, 11, 187. [Google Scholar] [CrossRef]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Hyland, M.; Mahmassani, H.S. Operational benefits and challenges of shared-ride automated mobility-on-demand services. Transp. Res. Part A Policy Pract. 2020, 134, 251–270. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: New York, NY, USA, 1992. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Yang, X.S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications. SAGA 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792, pp. 169–178. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Li, B.; Zeng, Z. A survey on firefly algorithms. Neurocomputing 2022, 500, 662–678. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution: A recent review based on state-of-the-art works. Alex. Eng. J. 2022, 61, 3831–3872. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Comparison between genetic algorithms and particle swarm optimization. In Evolutionary Programming VII, Proceedings of the 7th International Conference, ep98, San Diego, CA, USA, 25–27 March 1998; Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1447, pp. 611–616. [Google Scholar]
- Hassan, R.; Cohanim, B.; Weck, O.D. A comparison of particle swarm optimization and the genetic algorithm. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Collocated Conferences, Austin, TX, USA, 18–21 April 2005. [Google Scholar] [CrossRef]
- Tušar, T.; Filipič, B. Differential Evolution versus Genetic Algorithms in Multiobjective Optimization. In Evolutionary Multi-Criterion Optimization; Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4403, pp. 257–271. [Google Scholar]
- Qin, A.K.; Suganthan, P.N. Self-adaptive Differential Evolution Algorithm for Numerical Optimization. Proc. IEEE Congr. Evol. Comput. 2005, 2, 1784–1791. [Google Scholar]
- Omran, M.G.H.; Salman, A.; Engelbrecht, A.P. Self-adaptive differential evolution. Proc. Comput. Intell. Secur. Lect. Notes Artif. Intell. 2005, 3801, 192–199. [Google Scholar]
- Huang, V.L.; Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 324–331. [Google Scholar]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Islam, S.M.; Das, S.; Ghosh, S.; Roy, S.; Suganthan, P.N. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 42, 482–500. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, A.K. Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Generation Comput. Syst. 2021, 81, 41–52. [Google Scholar] [CrossRef]
- Rosic’, M.B.; Simic´, M.I.; Pejovic´, P.V. An improved adaptive hybrid firefly differential evolution algorithm for passive target localization. Soft. Comput. 2021, 25, 5559–5585. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, K.; Yao, X. Self-adaptive differential evolution with neighborhood search. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 1110–1116. [Google Scholar]
- Yang, Z.; He, J.; Yao, X. Making a difference to differential evolution. In Advances in Metaheuristics for Hard Optimization; Michalewicz, Z., Siarry, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 415–432. [Google Scholar]
- Xia, M.; Stallaert, J.; Whinston, A.B. Solving the combinatorial double auction problem. Eur. J. Oper. Res. 2005, 164, 239–251. [Google Scholar] [CrossRef]
- Data of Test Cases 1–10. Available online: https://drive.google.com/drive/folders/19Zj69lRsQP8z0uuiJOqfkHBegCvZE2Pe?usp=sharing (accessed on 11 August 2022).
- Data of Test Cases 11–14. Available online: https://drive.google.com/drive/folders/1FxECvDt_5ZuXCuL0zNQUXza2Bg82G2Ds?usp=sharing (accessed on 8 July 2023).
Variable | Meaning |
---|---|
Total passengers. | |
Total drivers. | |
Passenger index, where . | |
Driver index, where . | |
The number of location indices for all passengers, i.e., is equal to . | |
Location index, . | |
Total bids of driver . | |
The j-th bid index of driver with . | |
= : driver ’s j-th bid, where : the no. of seats allocated for passenger , : the original cost of driver if he/she travels alone, : the bid’s travel cost. | |
No. of seats allocated at the pick-up location of passenger , = . | |
No. of seats released at the drop-off location of passenger , = . | |
= : passenger ’s bid, where : the no. of seats requested by at location and : the original cost of without ridesharing. | |
No. of seats requested at passenger ’s pick-up location, . | |
No. of seats released at passenger ’s drop-off location, . | |
Decision variable for driver : = 1 if is a winning bid and = 0 otherwise. | |
Decision variable for passenger : = 1 if is a winning bid and = 0 otherwise. | |
Drivers’ minimal expected cost savings discount. | |
Passengers’ minimal expected cost savings discount. | |
The objective function, . | |
The set of passengers on the ride of the bid of driver . | |
Cost savings of the bid of driver . . | |
Travel cost for passenger on the ride of bid . |
Algorithm | Parameters for Case 1 through Case 10 | Parameters for Case 11 through Case 14 |
---|---|---|
SaNSDE-1-6 | POP = 30, Gen = 1000, LP = 1000 | POP = 50, Gen = 50,000, LP = 1000 |
DE-1 | POP = 30, Gen = 1000, = 0.5 : a value arbitrarily selected from uniform (0, 2) | POP = 50, Gen = 50,000, = 0.5 : a value arbitrarily selected from uniform (0, 2) |
DE-3 | POP = 30, Gen = 1000, = 0.5 : a value arbitrarily selected from uniform (0, 2) | POP = 50, Gen = 50,000, = 0.5 : a value arbitrarily selected from uniform (0, 2) |
NSDE | POP = 30, Gen = 1000, = 0.5, = , where is a random value with Gaussian distribution . | POP = 50, Gen = 50,000, = 0.5, = , where is a random value with Gaussian distribution . |
PSO | POP = 30, Gen = 1000, = 0.4, = 0.6, = 0.4 | POP = 50, Gen = 50,000, = 0.4, = 0.6, = 0.4 |
Case | D | P | SaNSDE-1-6 | DE-1 | DE-3 | NSDE | PSO |
---|---|---|---|---|---|---|---|
1 | 3 | 10 | 32.998 | 32.998 | 32.998 | 32.998 | 32.998 |
2 | 5 | 11 | 63.615 | 63.615 | 63.615 | 63.615 | 63.615 |
3 | 5 | 12 | 41.715 | 41.715 | 41.715 | 41.715 | 41.2892 |
4 | 6 | 12 | 51.11 | 51.11 | 51.11 | 51.11 | 50.9085 |
5 | 7 | 13 | 30.063 | 30.063 | 30.063 | 30.063 | 28.4254 |
6 | 8 | 14 | 72.328 | 72.328 | 72.328 | 72.328 | 70.2629 |
7 | 9 | 15 | 89.03 | 89.03 | 89.03 | 89.03 | 80.8106 |
8 | 10 | 16 | 54.02 | 54.02 | 54.02 | 54.02 | 44.0023 |
9 | 11 | 17 | 74.05 | 74.05 | 74.05 | 74.05 | 49.356 |
10 | 12 | 18 | 50.9 | 50.0623 | 50.9 | 50.9 | 32.8349 |
11 | 20 | 20 | 112.906 | 112.906 | 112.906 | 112.906 | 97.7979 |
12 | 30 | 30 | 202.15 | 196.9089 | 200.1078 | 200.7964 | 141.6005 |
13 | 40 | 40 | 201.8256 | 190.1664 | 179.4244 | 186.6996 | −1.5081 |
14 | 50 | 50 | 190.9436 | 137.1625 | 171.1756 | 161.3107 | −3.9598 |
Case | D | P | SaNSDE-1-6 | DE-1 | DE-3 | NSDE | PSO |
---|---|---|---|---|---|---|---|
1 | 3 | 10 | 9.6 | 16.6 | 19.8 | 15.6 | 64.6 |
2 | 5 | 11 | 19.2 | 32.2 | 36.9 | 29.1 | 299.6 |
3 | 5 | 12 | 29.4 | 39.7 | 47.6 | 43.3 | 394.5 |
4 | 6 | 12 | 19.6 | 43.8 | 50.3 | 44.1 | 320.9 |
5 | 7 | 13 | 16.7 | 31.8 | 44.1 | 37.3 | 304.1 |
6 | 8 | 14 | 20 | 48.3 | 67.8 | 39.6 | 375.6 |
7 | 9 | 15 | 60.8 | 101.4 | 135 | 70.7 | 553.6 |
8 | 10 | 16 | 48.2 | 61.3 | 78.6 | 59.5 | 447.5 |
9 | 11 | 17 | 53.9 | 59.7 | 65 | 64.2 | 580.7 |
10 | 12 | 18 | 106.4 | 136.8 | 146.3 | 94.3 | 489.3 |
11 | 20 | 20 | 191 | 436.5 | 817.1 | 542.5 | 21,314.5 |
12 | 30 | 30 | 1392.5 | 5691.5 | 16,065.1 | 14,417.2 | 21,742.3 |
13 | 40 | 40 | 18,439.777 | 15,185.8 | 27,574.4 | 27,260.1 | 22,734.2 |
14 | 50 | 50 | 19,390.5 | 17,131.7 | 22,745.3 | 36,742.7 | 25,822.2 |
Case | D | P | SaNSDE-1-6 | DE-1 | DE-3 | NSDE | PSO |
---|---|---|---|---|---|---|---|
1 | 3 | 10 | 11.494 | 5.8907 | 6.7182 | 7.3339 | 15.1677 |
2 | 5 | 11 | 31.0079 | 21.2555 | 18.0998 | 19.4591 | 118.2929 |
3 | 5 | 12 | 45.7525 | 22.0871 | 25.3382 | 26.1856 | 130.6768 |
4 | 6 | 12 | 42.0781 | 25.937 | 25.8155 | 29.1062 | 113.5842 |
5 | 7 | 13 | 28.2401 | 18.4303 | 22.264 | 16.7606 | 100.2475 |
6 | 8 | 14 | 48.7842 | 25.7381 | 34.9751 | 28.5755 | 132.6016 |
7 | 9 | 15 | 139.7892 | 73.5523 | 87.1861 | 55.5141 | 264.7854 |
8 | 10 | 16 | 111.0234 | 45.3785 | 54.5258 | 51.003 | 200.8072 |
9 | 11 | 17 | 152.6207 | 50.241 | 50.4531 | 64.2084 | 286.7221 |
10 | 12 | 18 | 236.4897 | 108.65 | 106.4809 | 87.0697 | 199.9287 |
11 | 20 | 20 | 798.39717 | 1134.249 | 2142.048 | 1496.592 | 45,171.44 |
12 | 30 | 30 | 21,158.007 | 17,419.87 | 49,393.98 | 48,106.86 | 51,932.66 |
13 | 40 | 40 | 2,116,465.2 | 60,483.27 | 113,286.7 | 119,378.3 | 66,539.42 |
14 | 50 | 50 | 3,198,096.1 | 90,395.02 | 118,089.5 | 144,559.9 | 87,874.68 |
Case | D | P | SaNSDE-1-6 | DE-1 | DE-3 | NSDE | PSO |
---|---|---|---|---|---|---|---|
1 | 3 | 10 | 32.998 | 32.998 | 32.998 | 32.998 | 32.998 |
2 | 5 | 11 | 63.615 | 63.615 | 63.615 | 63.615 | 63.615 |
3 | 5 | 12 | 41.715 | 41.715 | 41.715 | 41.715 | 41.2892 |
4 | 6 | 12 | 51.11 | 51.11 | 51.11 | 51.11 | 51.11 |
5 | 7 | 13 | 30.063 | 30.063 | 30.063 | 30.063 | 30.063 |
6 | 8 | 14 | 72.328 | 72.328 | 72.328 | 72.328 | 69.9483 |
7 | 9 | 15 | 89.03 | 89.03 | 89.03 | 89.03 | 80.5986 |
8 | 10 | 16 | 54.02 | 54.02 | 54.02 | 54.02 | 46.8013 |
9 | 11 | 17 | 74.05 | 74.05 | 74.05 | 74.05 | 55.9356 |
10 | 12 | 18 | 50.9 | 50.9 | 50.9 | 50.9 | 31.1131 |
11 | 20 | 20 | 112.906 | 112.906 | 112.906 | 112.906 | 104.4808 |
12 | 30 | 30 | 202.15 | 201.8116 | 200.6549 | 201.8116 | 145.0514 |
13 | 40 | 40 | 202.4952 | 194.0284 | 190.4004 | 185.9914 | −1.2835 |
14 | 50 | 50 | 192.343 | 190.4874 | 157.1781 | 162.1984 | −3.6674 |
Case | D | P | SaNSDE-1-6 | DE-1 | DE-3 | NSDE | PSO |
---|---|---|---|---|---|---|---|
1 | 3 | 10 | 10.1 | 17.6 | 19.2 | 12.9 | 51.5 |
2 | 5 | 11 | 18.7 | 30.2 | 33 | 26.4 | 127.3 |
3 | 5 | 12 | 22.3 | 28.7 | 43.3 | 32.9 | 437.2 |
4 | 6 | 12 | 22.5 | 35.4 | 37.4 | 33.2 | 468.6 |
5 | 7 | 13 | 17.7 | 29.3 | 32.2 | 24.8 | 247.1 |
6 | 8 | 14 | 30 | 38 | 47.1 | 41.9 | 416.4 |
7 | 9 | 15 | 37.5 | 78.9 | 75.4 | 61.3 | 366.4 |
8 | 10 | 16 | 35.3 | 51.5 | 66.3 | 48.6 | 609.5 |
9 | 11 | 17 | 65.6 | 68.7 | 78.4 | 67 | 611.5 |
10 | 12 | 18 | 79.4 | 83.6 | 197.9 | 63.1 | 521.5 |
11 | 20 | 20 | 98.6 | 469.5 | 829.5 | 565.5 | 22,275.7 |
12 | 30 | 30 | 2216.7 | 8847.1 | 6494.7 | 26,379.5 | 20,738.9 |
13 | 40 | 40 | 15,231.4 | 14,944.6 | 18,551.7 | 21,166.5 | 30,168.9 |
14 | 50 | 50 | 16,730.2 | 28,597.9 | 32,025.9 | 25,665.8 | 33,480.8 |
Case | D | P | SaNSDE-1-6 | DE-1 | DE-3 | NSDE | PSO |
---|---|---|---|---|---|---|---|
1 | 3 | 10 | 10.2156 | 10.1452 | 10.1662 | 8.4324 | 18.3854 |
2 | 5 | 11 | 31.0283 | 24.8503 | 24.4498 | 23.7312 | 57.3819 |
3 | 5 | 12 | 42.8796 | 23.849 | 32.7592 | 31.2488 | 212.022 |
4 | 6 | 12 | 33.3958 | 31.4915 | 29.161 | 33.3068 | 205.7338 |
5 | 7 | 13 | 33.6951 | 25.0836 | 25.8515 | 25.2025 | 105.7623 |
6 | 8 | 14 | 57.5261 | 32.3747 | 37.1701 | 42.8416 | 213.5017 |
7 | 9 | 15 | 117.5981 | 83.4787 | 78.1544 | 75.29 | 205.419 |
8 | 10 | 16 | 84.5311 | 65.2448 | 71.6938 | 71.265 | 385.2561 |
9 | 11 | 17 | 105.9706 | 87.5031 | 93.5826 | 86.378 | 413.8388 |
10 | 12 | 18 | 148.0639 | 101.1059 | 232.0098 | 96.711 | 400.4348 |
11 | 20 | 20 | 679.74567 | 1395.58 | 2805.873 | 1912.745 | 51,907.85 |
12 | 30 | 30 | 14,772.423 | 35,531.47 | 25,760.51 | 118,419.7 | 57,773.8 |
13 | 40 | 40 | 2,016,957.3 | 83,749.26 | 104,356 | 131,989.4 | 108,469.1 |
14 | 50 | 50 | 2,890,556.2 | 171,886.2 | 233,575.7 | 201,288.2 | 145,752.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, F.-S. A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution for Improving the Performance of Ridesharing Systems with a Discount Guarantee. Algorithms 2024, 17, 9. https://doi.org/10.3390/a17010009
Hsieh F-S. A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution for Improving the Performance of Ridesharing Systems with a Discount Guarantee. Algorithms. 2024; 17(1):9. https://doi.org/10.3390/a17010009
Chicago/Turabian StyleHsieh, Fu-Shiung. 2024. "A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution for Improving the Performance of Ridesharing Systems with a Discount Guarantee" Algorithms 17, no. 1: 9. https://doi.org/10.3390/a17010009
APA StyleHsieh, F. -S. (2024). A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution for Improving the Performance of Ridesharing Systems with a Discount Guarantee. Algorithms, 17(1), 9. https://doi.org/10.3390/a17010009