Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in Combination with Ordinal Regression
"> Figure 1
<p>Post-event aerial image of the Yushu earthquake, Qinghai Province, China.</p> "> Figure 2
<p>Post-event aerial image of Ludian earthquake, Yunnan Province, China.</p> "> Figure 3
<p>Eamples of building damage in the datasets.</p> "> Figure 4
<p>Illustration of the proposed network. The network consists of a convolutional neural network (CNN) feature extractor and a classifier. Solid arrows represent data flow. We adopt VGG-16, ResNet-50, and a baseline network as our CNN feature extractors. The Softmax classifier and ordinal regression (OR) classifier offer the choice of two classifiers. The OR classifier that is shown in this figure branches out into three layers, where each layer contains two neurons. The prediction damage degree is decoded from these layers. The supervised information of the network is the damage grade of buildings.</p> "> Figure 5
<p>The impact of the number of training set samples on overall accuracy.</p> "> Figure 6
<p>Example of underestimated building damage by visual interpretation of an aerial image. <b>Left</b>: ground photo; <b>Right</b>: aerial image. The collapse of the building is not visible on the aerial image.</p> ">
Abstract
:1. Introduction
2. Data
2.1. Remote Sensing Data
2.1.1. Images From Yushu Earthquake
2.1.2. Images From Ludian Earthquake
2.2. Dataset of Labeled Damage Building
2.3. Data Augmentation
3. Background Knowledge
3.1. Introduction to CNN
3.2. Ordinal Regression
4. Proposed Method
4.1. CNN Feature Extractor
4.2. Classifier
4.3. Evaluated Networks
4.4. Model Realization
4.5. Model Evaluation Methods and Indicators
4.5.1. Confusion Matrix
4.5.2. Overall Accuracy and Kappa Coefficient
4.5.3. Mean Squared Error
5. Results
5.1. Dataset Configuration
5.2. Accuracy Results on Ludian Dataset
5.3. Accuracy Results on Yudian Dataset
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Tian, T.; Nielsen, A.A.; Reinartz, P. Building Damage Assessment after the Earthquake in Haiti using two Post-Event Satellite Stereo imagery and DSMs. Int. J. Image Data Fusion 2015, 6, 155–169. [Google Scholar] [CrossRef]
- Klonus, S.; Tomowski, D.; Ehlers, M.; Reinartz, P.; Michel, U. Combined Edge Segment Texture Analysis for the Detection of Damaged Buildings in Crisis Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1118–1128. [Google Scholar] [CrossRef]
- Chen, Z.; Hutchinson, T.C. Structural damage detection using bi-temporal optical satellite images. Int. J. Remote Sens. 2011, 32, 4973–4997. [Google Scholar] [CrossRef]
- Vu, T.T.; Ban, Y. Context-based mapping of damaged buildings from high-resolution optical satellite images. Int. J. Remote Sens. 2010, 31, 3411–3425. [Google Scholar] [CrossRef]
- Booth, E.; Saito, K.; Spence, R.; Madabhushi, G.; Eguchi, R.T. Validating assessments of seismic damage made from remote sensing. Earthq. Spectra 2011, 27, S157–S177. [Google Scholar] [CrossRef]
- Saito, K.; Spence, R.; de C Foley, T. Visual damage assessment using high-resolution satellite images following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 309–318. [Google Scholar] [CrossRef]
- Grünthal, G. European Macroseismic Scale 1998; European Seismological Commission (ESC): Luxembourg City, Luxembourg, 1998. [Google Scholar]
- Huyck, C.K.; Adams, B.J.; Cho, S.; Chung, H.-C.; Eguchi, R.T. Towards rapid citywide damage mapping using neighborhood edge dissimilarities in very high-resolution optical satellite imagery—Application to the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 255–266. [Google Scholar] [CrossRef]
- Adams, B. Improved disaster management through post-earthquake building damage assessment using multitemporal satellite imagery. In Proceedings of the ISPRS XXth Congress, Istanbul, Turkey, 12–23 July 2004; Volume 35, pp. 12–23. [Google Scholar]
- Anniballe, R.; Noto, F.; Scalia, T.; Bignami, C.; Stramondo, S.; Chini, M.; Pierdicca, N. Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake. Remote Sens. Environ. 2018, 210, 166–178. [Google Scholar] [CrossRef]
- Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef]
- Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M. Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 10–17. [Google Scholar]
- Li, P.; Xu, H.; Guo, J. Urban building damage detection from very high resolution imagery using OCSVM and spatial features. Int. J. Remote Sens. 2010, 31, 3393–3409. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, G.; Ge, X. Earthquake-collapsed building extraction from LiDAR and aerophotograph based on OBIA. In Proceedings of the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 4–6 December 2010; pp. 2034–2037. [Google Scholar]
- Cooner, A.; Shao, Y.; Campbell, J. Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake. Remote Sens. 2016, 8, 868. [Google Scholar] [CrossRef]
- Ji, M.; Liu, L.; Buchroithner, M. Identifying Collapsed Buildings Using Post-Earthquake Satellite Imagery and Convolutional Neural Networks: A Case Study of the 2010 Haiti Earthquake. Remote Sens. 2018, 10, 1689. [Google Scholar] [CrossRef]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Multi-Resolution Feature Fusion for Image Classification of Building Damages with Convolutional Neural Networks. Remote Sens. 2018, 10, 1636. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [Google Scholar] [CrossRef]
- Scott, G.J.; England, M.R.; Starms, W.A.; Marcum, R.A.; Davis, C.H. Training Deep Convolutional Neural Networks for Land 2013; Cover Classification of High-Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 549–553. [Google Scholar] [CrossRef]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Wang, W.; Wang, Q.; Dai, F. Object-Based Land-Cover Supervised Classification for Very-High-Resolution UAV Images Using Stacked Denoising Autoencoders. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3373–3385. [Google Scholar] [CrossRef]
- Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel Cloud Detection in Remote Sensing Images Based on Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3631–3640. [Google Scholar] [CrossRef]
- Gallego, A.-J.; Pertusa, A.; Gil, P. Automatic Ship Classification from Optical Aerial Images with Convolutional Neural Networks. Remote Sens. 2018, 10, 511. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Lei, L.; Zhang, L.; Chen, Y. Spatial distribution and inducement of collapsed buildings in Yushu earthquake based on remote sensing analysis. Sci. China Earth Sci. 2010, 53, 794–796. [Google Scholar] [CrossRef]
- Fan, Y.; Wen, Q.; Wang, W.; Wang, P.; Li, L.; Zhang, P. Quantifying Disaster Physical Damage Using Remote Sensing Data—A Technical Work Flow and Case Study of the 2014 Ludian Earthquake in China. Int. J. Disaster Risk Sci. 2017, 8, 471–488. [Google Scholar] [CrossRef]
- Xu, P.; Wen, R.; Wang, H.; Ji, K.; Ren, Y. Characteristics of strong motions and damage implications of M S6.5 Ludian earthquake on August 3, 2014. Earthq. Sci. 2015, 28, 17–24. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; Lake Tahoe, USA; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533. [Google Scholar] [CrossRef]
- Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Training convolutional neural networks for semantic classification of remote sensing imagery. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, UAE, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Wang, Y.; Gu, L.; Ren, R.; Zheng, X.; Fan, X. A land-cover classification method of high-resolution remote sensing imagery based on convolution neural network. In Proceedings of the Earth Observing Systems XXIII, San Diego, CA, USA, 7 September 2018; p. 107641Y. [Google Scholar]
- LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. Available online: http://yann.lecun.com/exdb/mnist (accessed on 28 November 2019).
- Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Philip, S.Y.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef]
- Guo, G.; Fu, Y.; Dyer, C.R.; Huang, T.S. Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 2008, 17, 1178–1188. [Google Scholar]
- Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, Canada, 8–13 December 2014; pp. 2366–2374. [Google Scholar]
- Greco, S.; Mousseau, V.; Słowiński, R. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. Eur. J. Oper. Res. 2008, 191, 416–436. [Google Scholar] [CrossRef]
- Niu, Z.; Zhou, M.; Wang, L.; Gao, X.; Hua, G. Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Les Vegas, NV, USA, 26 June–1 July 2016; pp. 4920–4928. [Google Scholar]
- Shashua, A.; Levin, A. Ranking with large margin principle: Two approaches. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Li, L.; Lin, H.-T. Ordinal regression by extended binary classification. In Proceedings of the Advances in Neural Information Processing Systems, Columbia, Canada, 4–7 December 2006; pp. 865–872. [Google Scholar]
- Fu, H.; Gong, M.; Wang, C.; Batmanghelich, K.; Tao, D. Deep Ordinal Regression Network for Monocular Depth Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 2002–2011. [Google Scholar]
- Nasrabadi, N.M. Pattern recognition and machine learning. J. Electron. Imaging 2007, 16, 049901. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556v6. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Computer Vision and Pattern Recognition, Les Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Chollet, F. Keras. In GitHub; 2015. Available online: https://github.com/fchollet/keras (accessed on 28 November 2019).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems; In GitHub; 2015. Available online: https: //www.tensorflow.org/ (accessed on 28 November 2019).
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- Nvidia, C. Compute Unified Device Architecture Programming Guide; NVIDIA Corporation. Available online: http://docs.nvidia.com/cuda (accessed on 28 November 2019).
- Warmerdam, F. The geospatial data abstraction library. In Open Source Approaches in Spatial Data Handling; Springer: Berlin, Heidelberg, 2008; Volume 2, pp. 87–104. [Google Scholar]
- Huh, M.; Agrawal, P.; Efros, A.A. What Makes ImageNet Good for Transfer Learning? Available online: https://arxiv.org/abs/1608.08614 (accessed on 28 November 2019).
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010; Lechevallier, Y., Saporta, G., Eds.; Springer: Berlin, Germany, 2010; pp. 177–186. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings of the International conference on machine learning, Atlanta, GA, USA, 16 July 2018; pp. 1139–1147. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Solomatine, D.P.; See, L.M.; Abrahart, R.J. Chapter 2 Data-Driven Modelling: Concepts, Approaches and Experiences; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ci, T. Building_Assessment_Code_and_Dataset. Available online: https://github.com/city292/build_assessment (accessed on 28 November 2019).
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 39, 2999–3007. [Google Scholar] [CrossRef] [Green Version]
Earthquake | Spatial Resolution (m) | Bands | Date |
---|---|---|---|
Ludian | 0.2 | R, G, B | 7 and 14 August 2014 |
Yushu | 0.1 | R, G, B | 16 April 16 2010 |
Damage Grade | Description | Interpretation |
---|---|---|
D0 | No observable damage | No cracking, breakage, etc. |
D1 | Light damage | Little cracking, breakage |
D2 | Heavy damage | Cracking in load-bearing elements with significant deformations across cracks |
D3 | Collapse | Collapse of complete structure or less of a floor |
Damage Grade | Number of Samples in the Ludian Dataset | Number of Samples in the Yushu Dataset |
---|---|---|
D0 | 2680 | 778 |
D1 | 5013 | 918 |
D2 | 2807 | 665 |
D3 | 3280 | 1140 |
Total | 13,780 | 3501 |
Data Augmentation Examples | |||
---|---|---|---|
Original | Rotating clockwise by 90° | vertical flipping | horizontal flipping |
Rotating 15° clockwise | Rotating 15° counterclockwise | Increasing the brightness | Reducing the brightness |
Regression | Classification | Ordinal Regression | |
---|---|---|---|
Type of output variables | Continuous data | Tag data or discrete data | Ordinal discrete data |
Evaluation method | Mean squared error | Accuracy and confusion matrix | Mean squared error, accuracy, and confusion matrix |
Example | People’s height | Categories of fruit | People’s age |
# | Layer | Kernel Size | Output Size |
---|---|---|---|
1 | Conv-BN-ReLU | 3 | 16 × 88 × 88 |
2 | Maxpooling | 2 | 16 × 44 × 44 |
3 | Conv-BN-ReLU | 3 | 32 × 44 × 44 |
4 | Maxpooling | 2 | 32 × 22 × 22 |
5 | Conv-BN-ReLU | 3 | 64 × 11 × 11 |
6 | Maxpooling | 2 | 64 × 11 × 11 |
7 | Conv-BN-ReLU | 3 | 128 × 11 × 11 |
8 | Maxpooling | 2 | 128 × 6 × 6 |
9 | Conv-BN-ReLU | 3 | 128 × 6 × 6 |
10 | GlobalPooling | 128 |
Name | Feature Extractor | Classifier | Para Num. |
---|---|---|---|
Baseline-SC | Baseline | Softmax classifier | 57,254 |
Baseline-OR | Baseline | OR classifier | 57,510 |
VGG-SC | VGG | Softmax classifier | 7,833,670 |
VGG-OR | VGG | OR classifier | 7,833,926 |
ResNet-SC | ResNet-50 | Softmax classifier | 23,851,014 |
ResNet-OR | ResNet-50 | OR classifier | 23,851,270 |
Confusion Matrixes 1 | Confusion Matrixes 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | ||
A | 10 | 8 | 6 | 4 | A | 10 | 6 | 8 | 6 |
B | 8 | 10 | 8 | 6 | B | 6 | 10 | 6 | 8 |
C | 6 | 8 | 10 | 8 | C | 8 | 6 | 10 | 6 |
D | 4 | 6 | 8 | 10 | D | 6 | 8 | 6 | 10 |
OA | 0.3333 | OA | 0.3333 | ||||||
Kappa | 0.1098 | Kappa | 0.1111 | ||||||
MSE | 1.8 | MSE | 2.2667 |
Set | Subclass | Damage Grade |
---|---|---|
1 | Nearly intact | D0, D1, D2 |
damaged | D3 | |
2 | Nearly intact | D0, D1 |
Severe damage | D2 | |
Complete collapse | D3 | |
3 | No observable damage | D0 |
Light damage | D1 | |
Heavy damaged | D2 | |
Collapse | D3 |
Model | Set 1 | Set 2 | Set 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
OA | Kappa | MSE | OA | Kappa | MSE | OA | Kappa | MSE | |
Baseline-SC | 92.40% | 0.78 | 0.08 | 82.73% | 0.71 | 0.20 | 72.86% | 0.62 | 0.30 |
VGG-SC | 93.66% | 0.82 | 0.06 | 85.05% | 0.74 | 0.20 | 75.10% | 0.66 | 0.28 |
ResNet-SC | 92.99% | 0.80 | 0.08 | 83.16% | 0.71 | 0.22 | 74.31% | 0.64 | 0.31 |
Average | 93.02% | 0.80 | 0.07 | 83.65% | 0.72 | 0.21 | 74.09% | 0.64 | 0.30 |
Baseline-OR | 92.40% | 0.79 | 0.08 | 82.81% | 0.71 | 0.21 | 73.73% | 0.64 | 0.32 |
VGG-OR | 93.95% | 0.83 | 0.06 | 85.46% | 0.75 | 0.17 | 77.39% | 0.69 | 0.25 |
ResNet-OR | 93.81% | 0.82 | 0.07 | 84.71% | 0.72 | 0.19 | 75.05% | 0.66 | 0.30 |
Average | 93.39% | 0.81 | 0.07 | 84.33% | 0.73 | 0.19 | 75.39% | 0.66 | 0.29 |
Model | Set 3 | ||
---|---|---|---|
SD for OA | SD for Kappa | SD for MSE | |
Baseline-SC | 0.0122 | 0.0188 | 0.0154 |
VGG-SC | 0.0064 | 0.0099 | 0.0081 |
ResNet-SC | 0.0152 | 0.0234 | 0.0191 |
Baseline-OR | 0.0086 | 0.0133 | 0.0108 |
VGG-OR | 0.0056 | 0.0086 | 0.0070 |
ResNet-OR | 0.0112 | 0.0173 | 0.0141 |
Set | OA | Kappa | MSE |
---|---|---|---|
Set 1 | 90.14% | 0.80 | 0.10 |
Set 2 | 74.43% | 0.60 | 0.32 |
Set 3 | 64.28% | 0.49 | 0.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ci, T.; Liu, Z.; Wang, Y. Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in Combination with Ordinal Regression. Remote Sens. 2019, 11, 2858. https://doi.org/10.3390/rs11232858
Ci T, Liu Z, Wang Y. Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in Combination with Ordinal Regression. Remote Sensing. 2019; 11(23):2858. https://doi.org/10.3390/rs11232858
Chicago/Turabian StyleCi, Tianyu, Zhen Liu, and Ying Wang. 2019. "Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in Combination with Ordinal Regression" Remote Sensing 11, no. 23: 2858. https://doi.org/10.3390/rs11232858
APA StyleCi, T., Liu, Z., & Wang, Y. (2019). Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in Combination with Ordinal Regression. Remote Sensing, 11(23), 2858. https://doi.org/10.3390/rs11232858