Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3544793.3563407acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article
Open access

Heart Rate Estimation from Noisy PPGs Using 1D/2D Conversion and Transfer Learning

Published: 24 April 2023 Publication History

Abstract

In this article, we introduce a new approach for estimating the heart rate from noisy photoplethysmography (PPG) signals. We propose the use of two-dimensional representations of signals that are fed into a residual deep neural network that performs the regression task. Our approach leverages transfer learning and pre-trained models to further reduce the prediction error, resulting in state-of-the-art results in a challenging benchmark dataset.

References

[1]
Constantino Álvarez Casado, Petteri Paananen, Pekka Siirtola, Susanna Pirttikangas, and Miguel Bordallo López. 2021. Meditation Detection Using Sensors from Wearable Devices. In Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers. 112–116.
[2]
Peter Bermant. 2021. BioCPPNet: automatic bioacoustic source separation with deep neural networks. Scientific Reports 11 (12 2021), 23502. https://doi.org/10.1038/s41598-021-02790-2
[3]
Alessio Burrello, Daniele Jahier Pagliari, Matteo Risso, Simone Benatti, Enrico Macii, Luca Benini, and Massimo Poncino. 2021. Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable Devices. IEEE Transactions on Biomedical Circuits and Systems PP (10 2021), 1–1. https://doi.org/10.1109/TBCAS.2021.3122017
[4]
Constantino Alvarez Casado and Miguel Bordallo López. 2022. Face2PPG: An unsupervised pipeline for blood volume pulse extraction from faces. arXiv preprint arXiv:2202.04101 (2022).
[5]
Constantino Álvarez Casado, Manuel Lage Cañellas, and Miguel Bordallo López. 2022. Depression Recognition using Remote Photoplethysmography from Facial Videos. arXiv preprint arXiv:2206.04399 (2022).
[6]
Eduardo Gil, Martin Mendez, Jose Maria Vergara, Sergio Cerutti, Anna Maria Bianchi, and Pablo Laguna. 2008. Discrimination of sleep-apnea-related decreases in the amplitude fluctuations of PPG signal in children by HRV analysis. IEEE transactions on biomedical engineering 56, 4 (2008), 1005–1014.
[7]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90
[8]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in Deep Residual Networks. CoRR abs/1603.05027 (2016). arXiv:1603.05027http://arxiv.org/abs/1603.05027
[9]
Nicholas Huang and Nandakumar Selvaraj. 2020. Robust PPG-based Ambulatory Heart Rate Tracking Algorithm, Vol. 2020. 5929–5934. https://doi.org/10.1109/EMBC44109.2020.9175346
[10]
Shahid Ismail, Imran Siddiqi, and Usman Akram. 2022. Heart rate estimation in PPG signals using Convolutional-Recurrent Regressor. Computers in Biology and Medicine 145 (2022), 105470. https://doi.org/10.1016/j.compbiomed.2022.105470
[11]
Peter Kovesi. 2015. Good Colour Maps: How to Design Them. CoRR abs/1509.03700 (2015). arXiv:1509.03700http://arxiv.org/abs/1509.03700
[12]
Mohammod Abdul Motin, Chandan Kumar Karmakar, and Marimuthu Palaniswami. 2019. PPG derived heart rate estimation during intensive physical exercise. IEEE access 7 (2019), 56062–56069.
[13]
Sungkyu Park, Marios Constantinides, Luca Maria Aiello, Daniele Quercia, and Paul Van Gent. 2020. Wellbeat: A framework for tracking daily well-being using smartwatches. IEEE Internet Computing 24, 5 (2020), 10–17.
[14]
Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. 2017. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 14 (12 2017), 1–17. https://doi.org/10.1007/s11633-017-1054-2
[15]
Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. 2019. Deep PPG: Large-scale heart rate estimation with convolutional neural networks. Sensors 19, 14 (2019), 3079.
[16]
Attila Reiss, Philip Schmidt, Ina Indlekofer, and Kristof Van Laerhoven. 2018. PPG-based Heart Rate Estimation with Time-Frequency Spectra: A Deep Learning Approach. 1283–1292. https://doi.org/10.1145/3267305.3274176
[17]
Giulio Ruffini, Ibanez-Soria David, Marta Castellano, Laura Dubreuil Vall, Aureli Soria-Frisch, Ron Postuma, Jean-François Gagnon, and Jacques Montplaisir. 2019. Deep Learning With EEG Spectrograms in Rapid Eye Movement Behavior Disorder. Frontiers in Neurology 10 (07 2019), 806. https://doi.org/10.3389/fneur.2019.00806
[18]
Seyed Salehizadeh, Duy Dao, Jeffrey Bolkhovsky, Chae Ho Cho, Yitzhak Mendelson, and Ki Chon. 2015. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Sensors 16 (12 2015), 10. https://doi.org/10.3390/s16010010
[19]
Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof Van Laerhoven. 2018. Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection(ICMI ’18). Association for Computing Machinery, New York, NY, USA, 400–408. https://doi.org/10.1145/3242969.3242985
[20]
Tim Schäck, Christian Sledz, Michael Muma, and Abdelhak M. Zoubir. 2015. A new method for heart rate monitoring during physical exercise using photoplethysmographic signals. In 2015 23rd European Signal Processing Conference (EUSIPCO). 2666–2670. https://doi.org/10.1109/EUSIPCO.2015.7362868
[21]
Seok Bin Song, Jung Woo Nam, and Jin Heon Kim. 2021. NAS-PPG: PPG-Based Heart Rate Estimation Using Neural Architecture Search. IEEE Sensors Journal 21, 13 (2021), 14941–14949. https://doi.org/10.1109/JSEN.2021.3073047
[22]
Dimitris Spathis, Ignacio Perez-Pozuelo, Soren Brage, Nicholas J Wareham, and Cecilia Mascolo. 2021. Self-supervised transfer learning of physiological representations from free-living wearable data. In Proceedings of the Conference on Health, Inference, and Learning. 69–78.
[23]
Paul Van Gent, Haneen Farah, Nicole Van Nes, and Bart Van Arem. 2019. HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation research part F: traffic psychology and behaviour 66 (2019), 368–378.
[24]
Albert Vilamala and Lars K. Hansen. 2017. Deep Convolutional Neural Networks for Interpretable Analysis of EEG Sleep Stage Scoring. https://doi.org/10.48550/ARXIV.1710.00633
[25]
Menglian Zhou and Nandakumar Selvaraj. 2020. Heart Rate Monitoring using Sparse Spectral Curve Tracing. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 5347–5352. https://doi.org/10.1109/EMBC44109.2020.9175349

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
UbiComp/ISWC '22 Adjunct: Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers
September 2022
538 pages
ISBN:9781450394239
DOI:10.1145/3544793
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 April 2023

Check for updates

Author Tags

  1. Deep learning
  2. Heart rate estimation
  3. PPG

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • the Academy of Finland 6G Flagship program
  • ECSEL Joint Undertaking (JU) - InSecTT
  • PROFI5 HiDyn

Conference

UbiComp/ISWC '22

Acceptance Rates

Overall Acceptance Rate 764 of 2,912 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 362
    Total Downloads
  • Downloads (Last 12 months)173
  • Downloads (Last 6 weeks)27
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media