Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Impact-Driven Process Model Repair

Published: 12 October 2016 Publication History

Abstract

The abundance of event data in today’s information systems makes it possible to “confront” process models with the actual observed behavior. Process mining techniques use event logs to discover process models that describe the observed behavior, and to check conformance of process models by diagnosing deviations between models and reality. In many situations, it is desirable to mediate between a preexisting model and observed behavior. Hence, we would like to repair the model while improving the correspondence between model and log as much as possible. The approach presented in this article assigns predefined costs to repair actions (allowing inserting or skipping of activities). Given a maximum degree of change, we search for models that are optimal in terms of fitness—that is, the fraction of behavior in the log not possible according to the model is minimized. To compute fitness, we need to align the model and log, which can be time consuming. Hence, finding an optimal repair may be intractable. We propose different alternative approaches to speed up repair. The number of alignment computations can be reduced dramatically while still returning near-optimal repairs. The different approaches have been implemented using the process mining framework ProM and evaluated using real-life logs.

References

[1]
Arya Adriansyah. 2014. Aligning Observed and Modeled Behavior. Ph.D. Dissertation. Technische Universiteit Eindhoven.
[2]
Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2011. Conformance checking using cost-based fitness analysis. In Proceedings of the 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC’11). IEEE, Los Alamitos, CA, 55--64.
[3]
Rumen Andonov, Vincent Poirriez, and Sanjay V. Rajopadhye. 2000. Unbounded knapsack problem: Dynamic programming revisited. European Journal of Operational Research 123, 2, 394--407.
[4]
Thomas Baier, Claudio Di Ciccio, Jan Mendling, and Mathias Weske. 2015a. Matching of events and activities—an approach using declarative modeling constraints. In Enterprise, Business-Process and Information Systems Modeling. Lecture Notes in Business Information Processing, Vol. 214. Springer, 119--134.
[5]
Thomas Baier, Andreas Rogge-Solti, Jan Mendling, and Mathias Weske. 2015b. Matching of events and activities: An approach based on behavioral constraint satisfaction. In Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM, New York, NY, 1225--1230.
[6]
Joos C. A. M. Buijs, Marcello La Rosa, Hajo A. Reijers, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2013. Improving business process models using observed behavior. In Data-Driven Process Discovery and Analysis. Springer, 44--59.
[7]
Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2012. On the role of fitness, precision, generalization and simplicity in process discovery. In On the Move to Meaningful Internet Systems: OTM 2012. Lecture Notes in Computer Science, Vol. 7565. Springer, 305--322.
[8]
Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2013. Discovering and navigating a collection of process models using multiple quality dimensions. In Business Process Management Workshops. Lecture Notes in Business Information Processing, Vol. 171. Springer, 3--14.
[9]
George B. Dantzig. 1957. Discrete-variable extremum problems. Operations Research 5, 2, 266--277.
[10]
Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. 2009. Linear and branching system metrics. IEEE Transactions on Software Engineering 35, 2, 258--273.
[11]
Massimiliano de Leoni and Wil M. P. van der Aalst. 2013a. Aligning event logs and process models for multi-perspective conformance checking: An approach based on integer linear programming. In Business Process Management. Lecture Notes in Computer Science, Vol. 8094. Springer, 113--129.
[12]
Massimiliano de Leoni and Wil M. P. van der Aalst. 2013b. Data-aware process mining: Discovering decisions in processes using alignments. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC’13). ACM, New York, NY, 1454--1461.
[13]
A. K. A. de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters. 2008. Quantifying process equivalence based on observed behavior. Data and Knowledge Engineering 64, 1, 55--74.
[14]
A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst. 2007. Genetic process mining: An experimental evaluation. Data Mining and Knowledge Discovery 14, 2, 245--304.
[15]
Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. 2004. Metrics for labelled Markov processes. Theoretical Computer Science 318, 3, 323--354.
[16]
Johann Eder, Juergen Mangler, Enrico Mussi, and Barbara Pernici. 2009. Using stateful activities to facilitate monitoring and repair in workflow choreographies. In Proceeedings of the 2009 IEEE Congress on Services, Part I (SERVICES I’09). IEEE, Los Alamitos, CA, 219--226.
[17]
Dirk Fahland and Wil M. P. van der Aalst. 2015. Model repair—aligning process models to reality. Information Systems, 220--243.
[18]
Didier Fayard and Gérard Plateau. 1975. Resolution of the 0-1 knapsack problem: Comparison of methods. Mathematical Programming 8, 1, 272--307.
[19]
Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Pernici, and Gaston Tagni. 2010. Exception handling for repair in service-based processes. IEEE Transactions on Software Engineering 36, 2, 198--215.
[20]
Walid Gaaloul, Sami Bhiri, and Mohsen Rouached. 2010. Event-based design and runtime verification of composite service transactional behavior. IEEE Transactions on Services Computing 3, 1, 32--45.
[21]
Walid Gaaloul, Khaled Gaaloul, Sami Bhiri, Armin Haller, and Manfred Hauswirth. 2009. Log-based transactional workflow mining. Distributed and Parallel Databases 25, 3, 193--240.
[22]
E. M. Goldratt, J. Cox, and D. Whitford. 2012. The Goal: A Process of Ongoing Improvement. North River Press, Great Barrington, MA.
[23]
Gianluigi Greco, Antonella Guzzo, Francesco Lupia, and Luigi Pontieri. 2015. Process discovery under precedence constraints. ACM Transactions on Knowledge Discovery from Data 9, 4, 32.
[24]
Christian W. Günther and Wil M. P. van der Aalst. 2007. Fuzzy mining—adaptive process simplification based on multi-perspective metrics. In Business Process Management. Lecture Notes in Computer Science, Vol. 4714. Springer, 328--343.
[25]
Farhana Islam, Meherun Nesa Lucky, and Barbara Pernici. 2010. Business analysis of Web service repairability. In Proceedings of the 4th IEEE International Conference on Research Challenges in Information Science (RCIS’10). IEEE, Los Alamitos, CA, 463--472.
[26]
Richard M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations. IBM Research Symposia Series. Plenum Press, New York, NY, 85--103. http://www.cs.berkeley.edu/∼luca/cs172/karp.pdf.
[27]
Aline A. S. Leão, Luiz H. Cherri, and Marcos N. Arenales. 2014. Determining the k-best solutions of knapsack problems. Computers and Operations Research 49, 71--82.
[28]
Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. 2013. Discovering block-structured process models from event logs containing infrequent behaviour. In Business Process Management. Lecture Notes in Business Information Processing, Vol. 171. Springer, 66--78.
[29]
Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. 2015. In Enterprise, Business-Process and Information System Modeling. Lecture Notes in Business Information Processing, Vol. 214. Springer, 85--101.
[30]
Chen Li, Manfred Reichert, and Andreas Wombacher. 2009. Discovering reference models by mining process variants using a heuristic approach. In Business Process Management. Lecture Notes in Computer Science, Vol. 5701. Springer, 344--362.
[31]
Chen Li, Manfred Reichert, and Andreas Wombacher. 2010. The minadept clustering approach for discovering reference process models out of process variants. International Journal of Cooperative Information Systems 19, 3--4, 159--203.
[32]
Chen Li, Manfred Reichert, and Andreas Wombacher. 2011. Mining business process variants: Challenges, scenarios, algorithms. Data and Knowledge Engineering 70, 5, 409--434.
[33]
Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil M. P. van der Aalst. 2015. Balanced multi-perspective checking of process conformance. Computing 98, 4, 407--437.
[34]
Silvano Martello, David Pisinger, and Paolo Toth. 2000. New trends in exact algorithms for the 0-1 knapsack problem. European Journal of Operational Research 123, 2, 325--332.
[35]
Thomas Molka, David Redlich, Marc Drobek, Artur Caetano, Xiao-Jun Zeng, and Wasif Gilani. 2014. Conformance checking for BPMN-based process models. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (SAC’14). ACM, New York, NY, 1406--1413.
[36]
Jorge Munoz-Gama and Josep Carmona. 2011. Enhancing precision in process conformance: Stability, confidence and severity. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM’11). IEEE, Los Alamitos, CA, 184--191.
[37]
Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. 2013a. Conformance checking in the large: Partitioning and topology. In Business Process Management. Lecture Notes in Computer Science, Vol. 8094. Springer, 130--145.
[38]
Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. 2013b. Hierarchical conformance checking of process models based on event logs. In Application and Theory of Petri Nets and Concurrency. Springer, 291--310.
[39]
Mike P. Papazoglou. 2003. Service-oriented computing: Concepts, characteristics and directions. In Proceedings of the 4th International Conference on Web Information Systems Engineering (WISE’03). IEEE, Los Alamitos, CA, 3--12.
[40]
Artem Polyvyanyy. 2012. Structuring Process Models. Ph.D. Dissertation. University of Potsdam. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59024.
[41]
Artem Polyvyanyy and Christoph Bussler. 2013. The structured phase of concurrency. In Seminal Contributions to Information Systems Engineering, 25 Years of CAiSE, J. A. Bubenko Jr., J. Krogstie, O. Pastor, B. Pernici, C. Rolland, and A. Sølvberg (Eds.). Springer, 257--263.
[42]
Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. 2011. Simplified computation and generalization of the refined process structure tree. In Web Services and Formal Methods. Lecture Notes in Computer Science, Vol. 6551. Springer, 25--41.
[43]
Artem Polyvyanyy, Matthias Weidlich, and Mathias Weske. 2012. Isotactics as a foundation for alignment and abstraction of behavioral models. In Business Process Management. Lecture Notes in Computer Science, Vol. 7481. Springer, 335--351.
[44]
Wolfgang Reisig. 1998. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. Springer-Verlag, Berlin, Germany. http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-62752-4.
[45]
Anne Rozinat and Wil M. P. van der Aalst. 2008. Conformance checking of processes based on monitoring real behavior. Information Systems 33, 1, 64--95.
[46]
Wil M. P. van der Aalst. 1997. Verification of workflow nets. In Application and Theory of Petri Nets 1997. Lecture Notes in Computer Science, Vol. 1248. Springer, 407--426.
[47]
Wil M. P. van der Aalst. 2011. Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer-Verlag, Berlin, Germany. http://www.springer.com/gp/book/9783642193446
[48]
Wil M. P. van der Aalst. 2013. Decomposing Petri nets for process mining: A generic approach. Distributed and Parallel Databases 31, 4, 471--507.
[49]
Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. 2012. Replaying history on process models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 2, 182--192.
[50]
Wil M. P. van der Aalst, Kees M. van Hee, Jan Martijn E. M. van der Werf, and Marc Verdonk. 2010. Auditing 2.0: Using process mining to support tomorrow’s auditor. IEEE Computer 43, 3, 90--93.
[51]
Wil M. P. van der Aalst, A. J. M. M. Weijters, and Laura Maruster. 2004. Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16, 9, 1128--1142.
[52]
Boudewijn F. van Dongen, Ana Karla Alves de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and Wil M. P. van der Aalst. 2005. The ProM framework: A new era in process mining tool support. In Applications and Theory of Petri Nets 2005. Lecture Notes in Computer Science, Vol. 3536. Springer, 444--454.
[53]
Rob J. van Glabbeek. 1990. The linear time-branching time spectrum (extended abstract). In Proceedings on Theories of Concurrency: Unification and Extension (CONCUR’90). 278--297.
[54]
Pamela H. Vance. 1993. Knapsack problems: Algorithms and computer implementations. SIAM Review 35, 4, 684--685. http://dx.doi.org/10.1137/1035174
[55]
Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. 2009. The refined process structure tree. Data and Knowledge Engineering 68, 9, 793--818.
[56]
H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. 2011. XES, XESame, and ProM 6. In Information Systems Evolution. Lecture Notes in Computer Science, Vol. 72. Springer, 60--75.
[57]
A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. A. de Medeiros. 2006. Process Mining with the Heuristics Miner-Algorithm. Technical Report WP 166. Technische Universiteit Eindhoven.
[58]
Franz Wotawa. 2001. A variant of Reiter’s hitting-set algorithm. Information Processing Letters 79, 1, 45--51.

Cited By

View all
  • (2024)Model repair supported by frequent anomalous local instance graphsInformation Systems10.1016/j.is.2024.102349122:COnline publication date: 2-Jul-2024
  • (2024)Adaptive goal recognition using process mining techniquesEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.108189133(108189)Online publication date: Jul-2024
  • (2024)An ILASP-Based Approach to Repair Petri NetsLogic Programming and Nonmonotonic Reasoning10.1007/978-3-031-74209-5_7(85-97)Online publication date: 9-Oct-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Software Engineering and Methodology
ACM Transactions on Software Engineering and Methodology  Volume 25, Issue 4
May 2017
183 pages
ISSN:1049-331X
EISSN:1557-7392
DOI:10.1145/3007747
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 October 2016
Accepted: 01 June 2016
Revised: 01 April 2016
Received: 01 September 2015
Published in TOSEM Volume 25, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Process mining
  2. event log
  3. process model
  4. process model repair
  5. repair recommendation

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Australian Research Council's Discovery

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)41
  • Downloads (Last 6 weeks)6
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Model repair supported by frequent anomalous local instance graphsInformation Systems10.1016/j.is.2024.102349122:COnline publication date: 2-Jul-2024
  • (2024)Adaptive goal recognition using process mining techniquesEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.108189133(108189)Online publication date: Jul-2024
  • (2024)An ILASP-Based Approach to Repair Petri NetsLogic Programming and Nonmonotonic Reasoning10.1007/978-3-031-74209-5_7(85-97)Online publication date: 9-Oct-2024
  • (2024)Repairing Process Models Through Simulation and Explainable AIBusiness Process Management10.1007/978-3-031-70396-6_8(129-145)Online publication date: 2-Sep-2024
  • (2024)Beyond Log and Model Moves in Conformance Checking: Discovering Process-Level Deviation PatternsBusiness Process Management10.1007/978-3-031-70396-6_22(381-399)Online publication date: 1-Sep-2024
  • (2023)AIMED: An automatic and incremental approach for business process model repair under concept driftInformation Systems10.1016/j.is.2023.102285119(102285)Online publication date: Oct-2023
  • (2023)Incremental Discovery of Process Models Using Trace FragmentsBusiness Process Management10.1007/978-3-031-41620-0_4(55-73)Online publication date: 11-Sep-2023
  • (2023)Unblocking Inductive MinerEnterprise, Business-Process and Information Systems Modeling10.1007/978-3-031-34241-7_23(327-342)Online publication date: 31-May-2023
  • (2022)Repairing Event Logs to Enhance the Performance of a Process Mining ModelMathematical Problems in Engineering10.1155/2022/47412322022(1-10)Online publication date: 26-Aug-2022
  • (2022)Discovering Structural Errors From Business Process Event LogsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2021.305292734:11(5293-5306)Online publication date: 1-Nov-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media