Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Code Based on the Two-Stage Runge-Kutta Gauss Formula for Second-Order Initial Value Problems

Published: 01 September 2010 Publication History

Abstract

A code based on the two-stage Gauss formula (order four) for second-order initial value problems of a special type is developed. This code can be used to obtain a low- to medium-precision integration for a wide range of problems in the class of oscillatory type, Hamiltonian problems, and time-dependent partial differential equations discretized in space by finite differences or finite elements. The iteration process used in solving for the stage values of the Gauss formula, the selection of the initial step size, and the choice of an appropriate local error estimator for determining the step size change according to a particular tolerance specified by the user are studied. Moreover, a global error estimate and a dense output at equidistant points in the integration interval are supplied with the code. Numerical experiments and some comparisons with certain standard codes on relevant test problems are also given.

References

[1]
}}Addison, C. A. 1984. A comparison of several formulas on lightly damped, oscillatory problems. SIAM J. Sci. Statist. Comput. 5, 4, 920--936.
[2]
}}Bickart, T. A. 1977. An efficient solution process for implicit Runge-Kutta methods. SIAM J. Numer. Anal. 14, 1022--1027.
[3]
}}Brankin, R., Gladwell, I., Dormand, J., Prince, P., and Seward, W. 1989. Algorithm 670. A Runge-Kutta-Nyström. ACM Trans. Math. Softw. 15, 31--40.
[4]
}}Brown, P., Byrne, G., and Hindmarsh, A. 1989. Vode: A variable-coefficient ode solver. SIAM J. Sci. Statist. Comput. 10, 1038--1051.
[5]
}}Calvo, M., González-Pinto, S., and Montijano, J. 2008. Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes. J. Comput. Appl. Math. 218, 329--341.
[6]
}}Cash, J. 2005. A variable step Runge-Kutta Nyström integrator for reversible systems of second order initial value problems. Siam J. Sci. Comp. 26, 3, 963--978.
[7]
}}Cooper, G. and Butcher, J. An iteration scheme for implicit Runge-Kutta methods. IMA J. Numer. Anal. 3.
[8]
}}Cooper, G. and Vignesvaran, R. 1990. A scheme for the implementation of implicit Runge-Kutta methods. Comput. 45, 321--332.
[9]
}}Enright, W. 1978. Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations. ACM Trans. Math. Softw. 4, 127--136.
[10]
}}Enright, W. 1980. On the efficient time integration of systems of second order equations arising on structural dynamics. Intern. J. Num. Meth. Engin. 16, 13--18.
[11]
}}Fehlberg, E., Filippi, S., and Graf, J. 1986. Ein Runge-Kutta-Nyström-Formelpaar der Ordnung 10(11) für Differentialgleichur-gen der Form y. ZAMM 66, 7, 265--270.
[12]
}}Fermi, E., Pasta, J., and Ulam, S. 1974. Los alamos report no. la-1940 (1965). Lect. Appli. Math. 15, 143.
[13]
}}Filippi, S. and Graf, J. 1986. New Runge-Kutta-Nyström formula-pairs of order 8(7), 9(8), 10(9), and 11(10) for differential equations of the form y = f(x,y). J. Comput. Appl. Math. 14, 361--370.
[14]
}}Franco, J., Gomez, J. M., and Randez, L. 1997. Sdirk methods for odes with oscillating solutions. J. Comput. Appl. Math. 81, 197--209.
[15]
}}Gladwell, I. and Thomas, R. 1990. Efficiency of methods for second--order problems. IMA J. Numer. Anal. 10, 181--207.
[16]
}}González-Pinto, S., Montijano, J., and Rández, L. 1995. Iterative schemes for three stage implicit Runge-Kutta methods. Appl. Numer. Math. 17, 363--382.
[17]
}}Gonzalez-Pinto, S., Pérez-Rodrí guez, S., and Rojas-Bello, R. 2009. Gauss2 a fortran 90 code for second order initial value problems. http://pcmap.unizar.es/numerico/software.php.
[18]
}}González-Pinto, S., Peréz-Rodrí guez, S., and Rojas-Bello, R. 2006. Efficient iteration for gauss methods on second order problems. J. Comput. Appl. Math. 189, 80--97.
[19]
}}Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric Numerical Integration. Springer, Berlin.
[20]
}}Hairer, E., Nørsett, S., and Wanner, G. 1993. Solving Ordinary Differential Equations I, Nonstiff Problems. Springer, Berlin.
[21]
}}Hairer, E. and Wanner, G. 1996. Solving Ordinary Differential Equations II. Springer, Berlin.
[22]
}}Lambert, J. and Watson, I. Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189--202.
[23]
}}Sanz-Serna, J. and Calvo, M. Numerical Hamiltonian Problems. Chapman & Hall, London.
[24]
}}Shampine, L. and Baca, L. 1984. Error estimators for stiff differential equations. J. Comput. Appl. Math. 11, 197--207.
[25]
}}van der Houwen, P. and Messina, E. 1997. Parallel linear system solvers for Runge-Kutta-Nyström. J. Comput. Appl. Math. 82, 407--422.
[26]
}}van der Houwen, P. and Sommeijer, B. 1989. Diagonally implicit Runge-Kutta-Nyström. SIAM J. Numer. Anal. 26, 2, 414--429.
[27]
}}Varah, J. 1979. On the efficient implementation of implicit Runge-Kutta methods. Math. Comput. 33, 557--561.

Cited By

View all
  • (2024)A computational approach to solving some applied rigid second-order problemsMathematics and Computers in Simulation10.1016/j.matcom.2023.10.019217(121-138)Online publication date: Mar-2024
  • (2022)A High-Accurate Time Integration Method for Solving Structural Vibration ResponsesMathematical Problems in Engineering10.1155/2022/35633932022(1-8)Online publication date: 2-Nov-2022

Index Terms

  1. A Code Based on the Two-Stage Runge-Kutta Gauss Formula for Second-Order Initial Value Problems

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 37, Issue 3
    September 2010
    296 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/1824801
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 September 2010
    Accepted: 01 November 2009
    Revised: 01 October 2009
    Received: 01 September 2005
    Published in TOMS Volume 37, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Second-order problems
    2. implicit Runge-Kutta Nyström methods
    3. initial step size
    4. local error estimators
    5. predictors
    6. stage values

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • project

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 24 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A computational approach to solving some applied rigid second-order problemsMathematics and Computers in Simulation10.1016/j.matcom.2023.10.019217(121-138)Online publication date: Mar-2024
    • (2022)A High-Accurate Time Integration Method for Solving Structural Vibration ResponsesMathematical Problems in Engineering10.1155/2022/35633932022(1-8)Online publication date: 2-Nov-2022

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media