Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

Published: 01 September 2010 Publication History

Abstract

We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat nonnumerical values of the integrand, how they deal with improper divergent integrals, and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in MATLAB and tested using both the “families” suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.

References

[1]
}}Bauer, F. L., Rutishauser, H., and Stiefel, E. 1963. New aspects in numerical quadrature. In Proceedings of the Experimental Arithmetic, High Speed Computing and Mathematics, N. C. Metropolis, A. H. Taub, J. Todd, and C. B. Tompkins, Eds. American Mathematical Society, Providence, RI, 199--217.
[2]
}}Berntsen, J. and Espelid, T. O. 1991. Error estimation in automatic quadrature routines. ACM Trans. Math. Softw. 17, 2, 233--252.
[3]
}}Björck, Å . and Pereyra, V. 1970. Solution of Vandermonde systems of equations. Math. Comput. 24, 112, 893--903.
[4]
}}Casaletto, J., Pickett, M., and Rice, J. 1969. A comparison of some numerical integration programs. SIGNUM Newslett. 4, 3, 30--40.
[5]
}}Clenshaw, C. W. and Curtis, A. R. 1960. A method for numerical integration on an automatic computer. Numer. Math. 2, 197--205.
[6]
}}Davis, P. J. and Rabinowitz, P. 1984. Numerical Integration 2nd Ed. Blaisdell Publishing Company, Waltham, MA.
[7]
}}de Boor, C. 1971. CADRE: An algorithm for numerical quadrature. In Mathematical Software, J. R. Rice, Ed. Academic Press, New York, 201--209.
[8]
}}de Doncker, E. 1978. An adaptive extrapolation algorithm for automatic integration. SIGNUM Newsl. 13, 2, 12--18.
[9]
}}Eaton, J. W. 2002. GNU Octave Manual. Network Theory Limited.
[10]
}}Espelid, T. O. 2007. Algorithm 868: Globally doubly adaptive quadrature---Reliable Matlab codes. ACM Trans. Math. Softw. 33, 3, 21.
[11]
}}Favati, P., Lotti, G., and Romani, F. 1991. Interpolatory integration formulas for optimal composition. ACM Trans. Math. Softw. 17, 2, 207--217.
[12]
}}Forsythe, G. E., Malcolm, M. A., and Moler, C. B. 1977. Computer Methods for Mathematical Computations. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.
[13]
}}Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and Rossi, F. 2009. GNU Scientific Library Reference Manual 3rd Ed. Network Theory Ltd.
[14]
}}Gallaher, L. J. 1967. Algorithm 303: An adaptive quadrature procedure with random panel sizes. Comm. ACM 10, 6, 373--374.
[15]
}}Gander, W. and Gautschi, W. 1998. Adaptive quadrature---Revisited. Tech. rep. 306, Department of Computer Science, ETH Zurich, Switzerland.
[16]
}}Gander, W. and Gautschi, W. 2001. Adaptive quadrature---Revisited. BIT 40, 1, 84--101.
[17]
}}Gautschi, W. 1975. Norm estimates for inverses of Vandermonde matrices. Numer. Math. 23, 337--347.
[18]
}}Gautschi, W. 1997. Numerical Analysis, An Introduction. Birkhäuser Verlag, Basel.
[19]
}}Gentleman, W. M. 1972. Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation. Comm. ACM 15, 5, 343--346.
[20]
}}Golub, G. H. and Welsch, J. H. 1969. Calculation of Gauss quadrature rules. Math. Comput. 23, 106, 221--230.
[21]
}}Gonnet, P. G. 2009a. Adaptive quadrature re-revisited. Ph.D. thesis, ETH Zürich, Switzerland.
[22]
}}Gonnet, P. G. 2009b. Efficient construction, update and downdate of the coefficients of interpolants based on polynomials satisfying a three-term recurrence relation. arxiv:1003.4628v2 {cs.NA}.
[23]
}}Henriksson, S. 1961. Contribution no. 2: Simpson numerical integration with variable length of step. BIT Numer. Math. 1, 290.
[24]
}}Higham, N. J. 1988. Fast solution of Vandermonde-like systems involving orthogonal polynomials. IMA J. Numer. Anal. 8, 473--486.
[25]
}}Higham, N. J. 1990. Stability analysis of algorithms for solving confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appl. 11, 1, 23--41.
[26]
}}Hillstrom, K. E. 1970. Comparison of several adaptive Newton-Cotes quadrature routines in evaluating definite integrals with peaked integrands. Comm. ACM 13, 6, 362--365.
[27]
}}Kahaner, D. K. 1971. 5.15 Comparison of numerical quadrature formulas. In Mathematical Software, J. R. Rice, Ed. Academic Press, New York and London, 229--259.
[28]
}}Krommer, A. R. and Ü berhuber, C. W. 1998. Computational Integration. SIAM, Philadelphia, PA.
[29]
}}Kronrod, A. S. 1965. Nodes and Weights of Quadrature Formulas---Authorized Translation from the Russian. Consultants Bureau, New York.
[30]
}}Kuncir, G. F. 1962. Algorithm 103: Simpson’s rule integrator. Comm. ACM 5, 6, 347.
[31]
}}Laurie, D. P. 1983. Sharper error estimates in adaptive quadrature. BIT 23, 258--261.
[32]
}}Laurie, D. P. 1992. Stratified sequences of nested quadrature formulas. Quaestiones Mathematicae 15, 364--384.
[33]
}}Lyness, J. N. 1970. Algorithm 379: SQUANK (Simpson quadrature used adaptively -- noise killed). Comm. ACM 13, 4, 260--262.
[34]
}}Lyness, J. N. and Kaganove, J. J. 1977. A technique for comparing automatic quadrature routines. Comput. J. 20, 2, 170--177.
[35]
}}Malcolm, M. A. and Simpson, R. B. 1975. Local versus global strategies for adaptive quadrature. ACM Trans. Math. Softw. 1, 2, 129--146.
[36]
}}McKeeman, W. M. 1962. Algorithm 145: Adaptive numerical integration by Simpson’s rule. Comm. ACM 5, 12, 604.
[37]
}}McKeeman, W. M. 1963. Algorithm 198: Adaptive integration and multiple integration. Comm. ACM 6, 8, 443--444.
[38]
}}McKeeman, W. M. and Tesler, L. 1963. Algorithm 182: Nonrecursive adaptive integration. Comm. ACM 6, 6, 315.
[39]
}}Morrin, H. 1955. Integration subroutine -- Fixed point. Tech. rep. 701 Note #28, U.S. Naval Ordnance Test Station, China Lake, California.
[40]
}}Ninham, B. W. 1966. Generalised functions and divergent integrals. Numer. Math. 8, 444--457.
[41]
}}Ninomiya, I. 1980. Improvements of adaptive Newton-Cotes quadrature methods. J. Inform. Porc. 3, 3, 162--170.
[42]
}}O’Hara, H. and Smith, F. J. 1968. Error estimation in Clenshaw-Curtis quadrature formula. Comput. J. 11, 2, 213--219.
[43]
}}O’Hara, H. and Smith, F. J. 1969. The evaluation of definite integrals by interval subdivision. Comput. J. 12, 2, 179--182.
[44]
}}Oliver, J. 1972. A doubly-adaptive Clenshaw-Curtis quadrature method. Comput. J. 15, 2, 141--147.
[45]
}}Patterson, T. N. L. 1973. Algorithm 468: Algorithm for automatic numerical integration over a finite interval. Comm. ACM 16, 11, 694--699.
[46]
}}Piessens, R. 1973. An algorithm for automatic integration. Angewandte Inf. 9, 399--401.
[47]
}}Piessens, R., de Doncker-Kapenga, E., Überhuber, C. W., and Kahaner, D. K. 1983. QUADPACK A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin.
[48]
}}Ralston, A. and Rabinowitz, P. 1978. A First Course in Numerical Analysis. McGraw-Hill Inc., New York.
[49]
}}Rice, J. R. 1975. A metalgorithm for adaptive quadrature. J. ACM 22, 1, 61--82.
[50]
}}Robinson, I. 1979. A comparison of numerical integration programs. J. Comput. Appl. Math. 5, 3, 207--223.
[51]
}}Rowland, J. H. and Varol, Y. L. 1972. Exit criteria for Simpson’s compound rule. Math. Comput. 26, 119, 699--703.
[52]
}}Rutishauser, H. 1976. Vorlesung über Numerische Mathematik. Birkhäuser Verlag, Basel.
[53]
}}Schwarz, H. R. 1997. Numerische Mathematik. B. G. Teubner, Stuttgart.
[54]
}}Stiefel, E. 1961. Einführung in Die Numerische Mathematik. B. G. Teubner Verlagsgesellschaft, Stuttgart.
[55]
}}Sugiura, H. and Sakurai, T. 1989. On the construction of high-order integration formulae for the adaptive quadrature method. J. Comput. Appl. Math. 28, 367--381.
[56]
}}The Mathworks. 2003. MATLAB 6.5 Release Notes. The Mathworks, Natick, MA.
[57]
}}Trefethen, L. N. 2008. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 1, 67--87.
[58]
}}Venter, A. and Laurie, D. P. 2002. A doubly adaptive integration algorithm using stratified rules. BIT 42, 1, 183--193.
[59]
}}Villars, D. S. 1956. Use of the IBM 701 computer for quantum mechanical calculations II. overlap integral. Tech. rep. 5257, U.S. Naval Ordnance Test Station, China Lake, CA.
[60]
}}Waldvogel, J. 2009. Towards a general error theory of the trapezoidal rule. In Approximation and Computation, W. Gautschi and G. Mastroianni and Th.M. Rassias, To appear. Preprint Eds. Springer. http://www.math.ethz.ch/waldvoge/Projects/nisJoerg.pdf.

Cited By

View all
  • (2024)Efficiency of Optimized Approaches for Gravity Operator ModelingRemote Sensing10.3390/rs1621403116:21(4031)Online publication date: 30-Oct-2024
  • (2024)Coarse graining with control points: a cubic-Bézier based approach to modeling athermal fibrous materialsInternational Journal for Computational Methods in Engineering Science and Mechanics10.1080/15502287.2024.235830925:5(347-356)Online publication date: 3-Jun-2024
  • (2022)Learning Feynman Diagrams with Tensor TrainsPhysical Review X10.1103/PhysRevX.12.04101812:4Online publication date: 16-Nov-2022
  • Show More Cited By

Index Terms

  1. Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 37, Issue 3
      September 2010
      296 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/1824801
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 September 2010
      Accepted: 01 January 2010
      Revised: 01 January 2010
      Received: 01 December 2008
      Published in TOMS Volume 37, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Adaptive quadrature
      2. error estimation
      3. interpolation
      4. orthogonal polynomials

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)20
      • Downloads (Last 6 weeks)4
      Reflects downloads up to 09 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Efficiency of Optimized Approaches for Gravity Operator ModelingRemote Sensing10.3390/rs1621403116:21(4031)Online publication date: 30-Oct-2024
      • (2024)Coarse graining with control points: a cubic-Bézier based approach to modeling athermal fibrous materialsInternational Journal for Computational Methods in Engineering Science and Mechanics10.1080/15502287.2024.235830925:5(347-356)Online publication date: 3-Jun-2024
      • (2022)Learning Feynman Diagrams with Tensor TrainsPhysical Review X10.1103/PhysRevX.12.04101812:4Online publication date: 16-Nov-2022
      • (2021)Fast and accurate computation of interactions between linear fiber segmentsEngineering Computations10.1108/EC-06-2020-034538:7(3061-3076)Online publication date: 10-Jun-2021
      • (2021)Tkwant: a software package for time-dependent quantum transportNew Journal of Physics10.1088/1367-2630/abddf723:2(023025)Online publication date: 17-Feb-2021
      • (2021)Complete analytic integrations for the 2D BEM representation of the Laplace equation with linear shape functionsEngineering Analysis with Boundary Elements10.1016/j.enganabound.2021.07.017132(481-488)Online publication date: Nov-2021
      • (2021)Numerical IntegrationAn Introduction to Numerical Methods and Analysis 3e10.1002/9781119604754.ch5(269-336)Online publication date: 16-Jul-2021
      • (2020)Electromagnetic modeling of damaged fiber-reinforced laminatesJournal of Computational Physics10.1016/j.jcp.2020.109318409(109318)Online publication date: May-2020
      • (2019)Galileo Ionospheric Correction Algorithm: An Optimization Study of NeQuick‐GRadio Science10.1029/2019RS00687554:11(1156-1169)Online publication date: 24-Nov-2019
      • (2018)Algorithm 988ACM Transactions on Mathematical Software10.1145/315773544:3(1-19)Online publication date: 11-Apr-2018
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media