Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

Algorithm 670: a Runge-Kutta-Nyström code

Published: 01 March 1989 Publication History
First page of PDF

Supplementary Material

GZ File (670.gz)
Runge-Kutta-Nystrom. Two embedded formula pairs are provided, the lower order pair allowing interpolation Gams: I1a1a

References

[1]
BRANKIN, R. W., DORMAND, J. R., GLADWELL, I., PRINCE, P. J., AND SEWARD, W. A Runge- Kutta-Nystr6m Code. Num. Anal. Rep. 136, University of Manchester, Manchester, England, 1987.
[2]
DORMAND, J. R., AND PRINCE, P.J. New Runge-Kutta-Nystr6m algorithms for simulation in dynamical astronomy. Celestial Mechanics 18 (1978), 223-232.
[3]
DORMAND, J. R., AND PRINCE, P.J. Runge-Kutta-Nystrbm triples. Comp. and Math. with Appl. 14 (1988), 1007-1017.
[4]
DORMAND, J. R., EL-MIKKAWY, M. E. A., AND PRINCE, P.J. Families of Runge-Kutta-Nystr6m formulae. IMA J. Numer. Anal. 7 (1987), 235-250.
[5]
DORMAND, J. R., EL-MIKKAWY, M. E. A., AND PRINCE, P.Z. High order embedded Runge- Kutta-NystrSm formulae. IMA J. Nurner. Anal. 7 (1987), 423-430.
[6]
ENRIGHT, W. H., JACKSON, K. R., NORSETT, S. P., AND THOMSEN, P.G. Interpolants for Runge-Kutta formulas. ACM Trans. Math. Softw. I2, 3 (Sept. 1986), 193-218.
[7]
FEHLBERG, E. Classical eighth and lower order Runge-Kutta-Nystr6m formulas with step size control for special second order differential equations. NASA Tech. Rep. R-381, Washington, D.C., 1972.
[8]
FILIPPI, S., AND GRhF, J. New Runge-Kutta-Nystr6m formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for differential equations of the form y" = f(x, y). J Comput. Appl. Math. 14 (1986), 361-370.
[9]
GLADWELL, I. Initial value routines in the NAG library. ACM Trans. Math. Softw. 5, 4 (Dec. 1979), 386-400.
[10]
GLADWELL, I., BERZlNS, M., AND BRANKIN, R.W. Design of stiff integrators in the NAG library. SIGNUM 23 (1988), 16-23.
[11]
GLADWELL, I., SHAMPINE, L. F., AND BRANKIN, R.W. Automatic selection of the initial step size for an ODE solver. J. Comput. Appl. Math. 18 (1987), 175-192.
[12]
GLADWELL, I., SHAMPINE, L. F., AND BRANKIN, R.W. Locating special events when solving ODEs. Appl. Math. Lett. 1 (1988), 153-156.
[13]
GLADWELL, I., SHAMPINE, L. F., BACh, L. S., AND BRANKIN, R. W. Practical aspects of interpolation with Runge-Kutta codes. SIAM J. Sci. Stat. Comput. 8 (1987), 322-341.
[14]
HAIRER, E. M~thodes de Nystr6m pour l'~quation differentielle y" = f(x, y). Numer. Math. 27 (1977), 283-300.
[15]
HORN, M.K. Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output. SIAM J. Numer. Anal. 20 (1983) 558-568.
[16]
ISTPF, Toolpack/1 Release 2.1, PFORT-77 portability verifier. NAG Publication NP1312, Numerical Algorithms Group Ltd., Oxford, England.
[17]
SHAMPINE, L.F.Storage reduction for Runge-Kutta codes. ACM Trans. Math. Softw. 5, 3 (Sept. 1979), 245-250.
[18]
SHAMPINE, L.F. Interpolation for Runge-Kutta methods. SIAM J. Numer. Anal. 22 (1985), 1014-1027.
[19]
SHAMPINE, L.F. Some practical Runge-Kutta formulas. Math. Comput. 46 (1986), 135-150.
[20]
SHAMPINE, L. F., AND WATTS, H.A. The art of writing a Runge-Kutta code, Part I. Mathematical Software III, J. R. Rice, Ed. Academic Press, Orlando, Fla., 1977, 257-275.
[21]
SHAMPINE, L. F., AND WATTS, H.A. The art of writing a Runge-Kutta code, II. Appl. Math. Comput. 5 (1979), 93-121.
[22]
SHAMPINE, L. F., AND WATTS, H.A. DEPAC--Design of a user-oriented package of ODE solvers. Tech. Rep. SAND79-2374, Sandia National Laboratories, Albuquerque, N. Mex.
[23]
VAST VERSION 1.22W. Pacific-Sierra Research, Mill Valley, Calif.

Cited By

View all
  • (2024)Nine-Stage Runge–Kutta–Nyström Pairs Sharing Orders Eight and SixMathematics10.3390/math1202031612:2(316)Online publication date: 18-Jan-2024
  • (2024)Economical handling of Runge–Kutta–Nyström step rejectionJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115528438(115528)Online publication date: Mar-2024
  • (2023)Orbits and Masses of the Small Satellites of PlutoThe Planetary Science Journal10.3847/PSJ/acde774:7(120)Online publication date: 11-Jul-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 15, Issue 1
March 1989
89 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/62038
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 1989
Published in TOMS Volume 15, Issue 1

Permissions

Request permissions for this article.

Check for updates

Badges

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)127
  • Downloads (Last 6 weeks)27
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Nine-Stage Runge–Kutta–Nyström Pairs Sharing Orders Eight and SixMathematics10.3390/math1202031612:2(316)Online publication date: 18-Jan-2024
  • (2024)Economical handling of Runge–Kutta–Nyström step rejectionJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115528438(115528)Online publication date: Mar-2024
  • (2023)Orbits and Masses of the Small Satellites of PlutoThe Planetary Science Journal10.3847/PSJ/acde774:7(120)Online publication date: 11-Jul-2023
  • (2023)Runge–Kutta–Nyström Pairs of Orders 8(6) for Use in Quadruple Precision ComputationsMathematics10.3390/math1104089111:4(891)Online publication date: 9-Feb-2023
  • (2023)Runge–Kutta–Nyström methods of eighth order for addressing Linear Inhomogeneous problemsJournal of Computational and Applied Mathematics10.1016/j.cam.2022.114778419(114778)Online publication date: Feb-2023
  • (2022)Orbits and Occultation Opportunities of 15 TNOs Observed by New HorizonsThe Planetary Science Journal10.3847/PSJ/ac34913:1(23)Online publication date: 26-Jan-2022
  • (2022)Runge-Kutta-Nyström Pairs of Orders 8(6) with Coefficients Trained to Perform Best on Classical OrbitsMathematics10.3390/math1004065410:4(654)Online publication date: 19-Feb-2022
  • (2022)Testing the third-body hypothesis in the cataclysmic variables LU Camelopardalis, QZ Serpentis, V1007 Herculis and BK LyncisMonthly Notices of the Royal Astronomical Society10.1093/mnras/stac1112514:3(4629-4638)Online publication date: 5-Jul-2022
  • (2020)REVISITING FS AURIGAE AND ITS TRIPLE CATACLYSMIC VARIABLE SYSTEM HYPOTHESISRevista Mexicana de Astronomía y Astrofísica10.22201/ia.01851101p.2020.56.01.0456:1(19-28)Online publication date: 1-Apr-2020
  • (2019)UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix methodComputer Physics Communications10.1016/j.cpc.2019.107092(107092)Online publication date: Dec-2019
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media