Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Classification of resource management approaches in fog/edge paradigm and future research prospects: a systematic review

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The fog paradigm extends the cloud capabilities at the edge of the network. Fog computing-based real-time applications (Online gaming, 5G, Healthcare 4.0, Industrial IoT, autonomous vehicles, virtual reality, augmented reality, and many more) are growing at a very fast pace. There are limited resources at the fog layer compared to the cloud, which leads to resource constraint problems. Edge resources need to be utilized efficiently to fulfill the growing demand for a large number of IoT devices. Lots of work has been done for the efficient utilization of edge resources. This paper provided a systematic review of fog resource management literature from the year 2016–2021. In this review paper, the fog resource management approaches are divided into 9 categories which include resource scheduling, application placement, load balancing, resource allocation, resource estimation, task offloading, resource provisioning, resource discovery, and resource orchestration. These resource management approaches are further subclassified based on the technology used, QoS factors, and data-driven strategies. Comparative analysis of existing articles is provided based on technology, tools, application area, and QoS factors. Further, future research prospects are discussed in the context of QoS factors, technique/algorithm, tools, applications, mobility support, heterogeneity, AI-based, distributed network, hierarchical network, and security. A systematic literature review of existing survey papers is also included. At the end of this work, key findings are highlighted in the conclusion section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing (MCC '12). Association for Computing Machinery, New York, NY, USA, pp. 13–16. https://doi.org/10.1145/2342509.2342513

  2. Samanta A, Tang J (2020) Dyme: dynamic microservice scheduling in edge computing enabled IoT. IEEE Internet Things J 7(7):6164–6174. https://doi.org/10.1109/JIOT.2020.2981958

    Article  Google Scholar 

  3. Pengfei H, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: architecture, key technologies, applications and open issues. J Netw Comput Appl 98:27–42. https://doi.org/10.1016/j.jnca.2017.09.002

    Article  Google Scholar 

  4. Kansal P, Kumar D, Kumar M (2020) Introduction to fog data analytics for IoT applications. A book chapter publish in “Springer Singapore” with ISBN 978–981–15–6044–6.

  5. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J, Jue JP (2019) All one needs to know about fog computing and related edge computing paradigms: a complete survey. J Syst Archit 98:289–330. https://doi.org/10.1016/j.sysarc.2019.02.009

    Article  Google Scholar 

  6. Atlam HF, Walters RJ, Wills GB (2018) “Fog computing and the internet of things: a review” Big Data Cogn. Comput 2(2):10. https://doi.org/10.3390/bdcc2020010

    Article  Google Scholar 

  7. Varghese B, Wang N, Nikolopoulos DS, Buyya R. 2017b. Feasibility of fog computing. (2017). arXiv:1701.05451arXiv:1701.05451

  8. Yu W et al (2018) A survey on the edge computing for the internet of things. IEEE Access 6:6900–6919. https://doi.org/10.1109/ACCESS.2017.2778504

    Article  Google Scholar 

  9. Ouyang T, Zhou Z, Chen X (2018) Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing. IEEE J Sel Areas Commun 36(10):2333–2345. https://doi.org/10.1109/JSAC.2018.2869954

    Article  Google Scholar 

  10. Haghi Kashani M, Rahmani AM, Jafari Navimipour N (2020) Quality of service-aware approaches in fog computing. Int J Commun Syst 33:e4340. https://doi.org/10.1002/dac.4340

    Article  Google Scholar 

  11. Hong C-H, Lee K, Kang M, Yoo C (2018) qCon: QoS-aware network resource management for fog computing. Sensors 18:3444. https://doi.org/10.3390/s18103444

    Article  Google Scholar 

  12. Kassir S, Veciana GD, Wang N, Wang X, Palacharla P (2020) Service placement for real-time applications: rate-adaptation and load-balancing at the network edge. In: 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 2020, pp. 207–215. https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00044

  13. Sood SK, Singh KD (2019) SNA based resource optimization in optical network using fog and cloud computing. Opt Switch Netw 33:114–121. https://doi.org/10.1016/j.osn.2017.12.007

    Article  Google Scholar 

  14. Zhao X, Shi Y, Chen S (2020) MAESP: mobility aware edge service placement in mobile edge networks. Comput Netw 182:107435. https://doi.org/10.1016/j.comnet.2020.107435

    Article  Google Scholar 

  15. Li S, Wang Q, Wang Y, Xie J, Li C, Tan D, Kou W, Li W (2021) Joint congestion control and resource allocation for delay-aware tasks in mobile edge computing. Wireless Commun Mobile Comput 2021:1–16. https://doi.org/10.1155/2021/8897814

    Article  Google Scholar 

  16. Tan Z, Yu FR, Li X, Ji H, Leung VC (2017) Virtual resource allocation for heterogeneous services in full duplex-enabled scns with mobile edge computing and caching. IEEE Trans Veh Technol 67(2):1794–1808

    Article  Google Scholar 

  17. Wang P, Yao C, Zheng Z, Sun G, Song L (2018) Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems. IEEE Internet Things J 6(2):2872–2884

    Article  Google Scholar 

  18. Shadroo S, Rahmani AM, Rezaee A (2020) The two-phase scheduling based on deep learning in the Internet of Things. Comput Netw 185:107684. https://doi.org/10.1016/j.comnet.2020.107684

    Article  Google Scholar 

  19. Wang Y, Wang K, Huang H, Miyazaki T, Guo S (2019) Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications. IEEE Trans Industr Inf 15:976–986. https://doi.org/10.1109/TII.2018.2883991

    Article  Google Scholar 

  20. Elgendy IA, Zhang WZ, He H et al (2021) Joint computation offloading and task caching for multi-user and multi-task MEC systems: reinforcement learning-based algorithms. Wireless Netw 27:2023–2038. https://doi.org/10.1007/s11276-021-02554-w

    Article  Google Scholar 

  21. Zhu Q, Si B, Yang F, Ma Y (2017) Task offloading decision in fog computing system. Chin Commun 14(11):59–68. https://doi.org/10.1109/CC.2017.8233651

    Article  Google Scholar 

  22. Beraldi R, Canali C, Lancellotti R, Mattia GP (2020) Distributed load balancing for heterogeneous fog computing infrastructures in smart cities. Perv Mobile Comput 67:101221. https://doi.org/10.1016/j.pmcj.2020.101221

    Article  Google Scholar 

  23. Rafiq A, Ping W, Min W, Muthanna MSA (2021) Fog assisted 6TiSCH Tri-layer network architecture for adaptive scheduling and energy-efficient offloading using rank-based Q-learning in smart industries. IEEE Sensors J. https://doi.org/10.1109/JSEN.2021.3058976

    Article  Google Scholar 

  24. Puliafito C, Vallati C, Mingozzi E, Merlino G, Longo F, Puliafito A (2019) Container migration in the fog: a performance evaluation. Sensors 19:1488. https://doi.org/10.3390/s19071488

    Article  Google Scholar 

  25. Calheiros RN, Ranjan R, Beloglazov A, De Rose C’AF, Buyya R (2011) CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Practic Exp 41(1):23–50

    Article  Google Scholar 

  26. Zhang J, Chen B, Zhao Y, Cheng X, Hu F (2018) Data security and privacy-preserving in edge computing paradigm: survey and open issues. IEEE Access 6:18209–18237

    Article  Google Scholar 

  27. Zhai Y, Bao T, Zhu L, Shen M, Du X, Guizani M (2020) Toward reinforcement-learning-based service deployment of 5G mobile edge computing with request-aware scheduling. IEEE Wireless Commun 27(1):84–91. https://doi.org/10.1109/MWC.001.1900298

    Article  Google Scholar 

  28. Babar M, Sohail KM (2021) ScalEdge: a framework for scalable edge computing in Internet of things–based smart systems. Int J Distrib Sens Netw. https://doi.org/10.1177/15501477211035332

    Article  Google Scholar 

  29. Dong Y, Xu G, Zhang M, Meng X (2021) A high-efficient joint ’cloud-edge’ aware strategy for task deployment and load balancing. IEEE Access 9:12791–12802. https://doi.org/10.1109/ACCESS.2021.3051672

    Article  Google Scholar 

  30. Brogi A, Forti S (2017) QoS-Aware deployment of IoT applications through the Fog. IEEE Internet Things J 4(5):1185–1192. https://doi.org/10.1109/JIOT.2017.2701408

    Article  Google Scholar 

  31. Yang J (2020) Low-latency cloud-fog network architecture and its load balancing strategy for medical big data. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02245-y

    Article  Google Scholar 

  32. Jiang C, Cao T, Guan J (2021) Intelligent task offloading and collaborative computation over D2D communication. Chin Commun 18(3):251–263. https://doi.org/10.23919/JCC.2021.03.020

    Article  Google Scholar 

  33. Sun C, Ni W, Wang X (2021) Joint computation offloading and trajectory planning for UAV-assisted edge computing. IEEE Trans Wireless Commun. https://doi.org/10.1109/TWC.2021.3067163

    Article  Google Scholar 

  34. Yu Z, Xu G, Li Y, Liu P, Li L (2021) Joint offloading and energy harvesting design in multiple time blocks for FDMA based wireless powered MEC. Future Internet 13:70. https://doi.org/10.3390/fi13030070

    Article  Google Scholar 

  35. Guo F, Zhang H, Ji H, Li X, Leung VCM (2018) An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Trans Netw 26:2651–2664. https://doi.org/10.1109/TNET.2018.2873002

    Article  Google Scholar 

  36. Fang J, Shi J, Lu S, Zhang M, Ye Z (2021) An efficient computation offloading strategy with mobile edge computing for IoT. Micromachines 12:204. https://doi.org/10.3390/mi12020204

    Article  Google Scholar 

  37. Moulik S, Devaraj R, Sarkar A, "HEART: A heterogeneous energy-aware real-time scheduler, In: 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID), 2019, pp. 476–481. https://doi.org/10.1109/VLSID.2019.00100

  38. Baccarelli E, Naranjo PGV, Scarpiniti M, Shojafar M, Abawajy JH (2017) Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study. IEEE Acc 5:9882–9910. https://doi.org/10.1109/ACCESS.2017.2702013

    Article  Google Scholar 

  39. Mahmoud MME, Rodrigues JJPC, Saleem K, Al-Muhtadi J, Kumar N, Korotaev V (2018) Towards energy-aware fog-enabled cloud of things for healthcare. Comput Electric Eng 67:58–69. https://doi.org/10.1016/j.compeleceng.2018.02.047

    Article  Google Scholar 

  40. Wang K, Wang X, Liu X (2021) A high reliable computing offloading strategy using deep reinforcement learning for IoVs in edge computing. J Grid Comput 19:15. https://doi.org/10.1007/s10723-021-09542-6

    Article  Google Scholar 

  41. Anzanpour A, Rashid H, Rahmani AM, Jantsch A, Dutt N, Liljeberg P (2019) Energy-efficient and Reliable wearable internet-of-things through fog-assisted dynamic goal management. Proc Comput Sci 151:493–500. https://doi.org/10.1016/j.procs.2019.04.067

    Article  Google Scholar 

  42. Sharma S, Gupta N (2020) Federated learning based caching in fog computing for future smart cities. Internet Technol Lett. https://doi.org/10.1002/itl2.225

    Article  Google Scholar 

  43. Svorobej S, Bendechache M, Griesinger F, Domaschka J (2020) Orchestration from the cloud to the edge. In: Lynn T, Mooney J, Lee B, Endo P (eds) The cloud-to-thing continuum. Palgrave studies in digital business & enabling technologies. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-41110-7_4

  44. Liu Z, Yang X, Yang Y, Wang K, Mao G (2019) DATS: dispersive stable task scheduling in heterogeneous fog networks. IEEE Internet Things J 6(2):3423–3436. https://doi.org/10.1109/JIOT.2018.2884720

    Article  Google Scholar 

  45. Masip-Bruin X, Marin-Tordera E, Jukan A, Ren G-J (2018) Managing resources continuity from the edge to the cloud: architecture and performance. Future Gener Comput Syst 79(3):777–785. https://doi.org/10.1016/j.future.2017.09.036

    Article  Google Scholar 

  46. Sha K et al (2018) On security challenges and open issues in internet of things, future gener. Comput Syst 83:326–337

    Google Scholar 

  47. Al-Khafajiy M, Otoum S, Baker T, Asim M, Maamar Z, Aloqaily M, Taylor M, Randles M (2021) Intelligent control and security of fog resources in healthcare systems via a cognitive fog model. ACM Trans Internet Technol 21(3):23. https://doi.org/10.1145/3382770

    Article  Google Scholar 

  48. Ferrag MA, Babaghayou M, Yazici MA (2020) Cyber security for fog-based smart grid SCADA systems: solutions and challenges. J Info Secur Appl 52:102500. https://doi.org/10.1016/j.jisa.2020.102500

    Article  Google Scholar 

  49. Sarma R, Kumar C, Barbhuiya FA (2021) PAC-FIT: an efficient privacy preserving access control scheme for fog-enabled IoT. Sustain Comput: Info Syst 30:100527. https://doi.org/10.1016/j.suscom.2021.100527

    Article  Google Scholar 

  50. Stojmenovic I, Wen S (2014) The Fog computing paradigm: scenarios and security issues. Fed Conf Comput Sci Info Syst 2014:1–8. https://doi.org/10.15439/2014F503

    Article  Google Scholar 

  51. Yang R, Yu FR, Si P, Yang Z, Zhang Y (2019) Integrated blockchain and edge computing systems: a survey, some research issues and challenges. IEEE Commun Surv Tutor 21(2):1508–1532. https://doi.org/10.1109/COMST.2019.2894727

    Article  Google Scholar 

  52. Liu Y, Yu FR, Li X, Ji H, Leung VCM (2019) Decentralized resource allocation for video transcoding and delivery in lockchain-based system with mobile edge computing. IEEE Trans Veh Technol 68(11):11169–11185

    Article  Google Scholar 

  53. Kang J, Yu R, Huang X, Wu M, Maharjan S, Xie S, Zhang Y (2018) Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE IoT J 6:4660–4670

    Google Scholar 

  54. Hosseinioun P, Kheirabadi M, Kamel Tabbakh SR, Ghaemi R (2020) Atask scheduling approaches in fog computing: a survey. Trans Emerg Tel Tech 2020:e3792. https://doi.org/10.1002/ett.3792

    Article  Google Scholar 

  55. Yang X, Rahmani N (2020) Task scheduling mechanisms in fog computing: review, trends, and perspectives. Kybernetes. https://doi.org/10.1108/K-10-2019-0666

    Article  Google Scholar 

  56. Mouradian C, Naboulsi D, Yangui S, Glitho RH, Morrow MJ, Polakos PA (2018) A Comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun Surv Tutor 20(1):416–464. https://doi.org/10.1109/COMST.2017.2771153

    Article  Google Scholar 

  57. Khan WZ, Ahmed E, Hakak S, Yaqoob I, Ahmed A (2019) Edge computing: a survey. Future Gener Comput Syst 97:219–235. https://doi.org/10.1016/j.future.2019.02.050

    Article  Google Scholar 

  58. Aladwani Tahani (2019) Scheduling IoT healthcare tasks in fog computing based on their importance. Proc Comput Sci 163:560–569. https://doi.org/10.1016/j.procs.2019.12.138

    Article  Google Scholar 

  59. Khan OA, Malik SUR, Baig FM, Islam SU, Pervaiz H, Malik H, Ahmed SH (2020) A cache-based approach toward improved scheduling in fog computing. Softw Pract Exper 2020:1–13. https://doi.org/10.1002/spe.2824

    Article  Google Scholar 

  60. Rausch Thomas, Rashed Alexander, Dustdar Schahram (2020) Optimized container scheduling for data-intensive serverless edge computing. Future Gener Comput Syst 114:259–271. https://doi.org/10.1016/j.future.2020.07.017

    Article  Google Scholar 

  61. Madhura R, Elizabeth BL, Uthariaraj VR (2021) An improved list-based task scheduling algorithm for fog computing environment. Computing. https://doi.org/10.1007/s00607-021-00935-9

    Article  MathSciNet  MATH  Google Scholar 

  62. Bitam S, Zeadally S, Mellouk A (2018) Fog computing job scheduling optimization based on bees swarm. Enterprise Infor Syst 12(4):373–397. https://doi.org/10.1080/17517575.2017.1304579

    Article  Google Scholar 

  63. Boveiri HR, Khayami R, Elhoseny M, Gunasekaran M (2019) An efficient Swarm-Intelligence approach for task scheduling in cloud based internet of things applications. J Ambient Intell Humaniz Comput 10:3469–3479

    Article  Google Scholar 

  64. Barzegaran M, Karagiannis† V, Avasalcai C, Pop P, Schulte S, Dustdar S (2020) Towards extensibility-aware scheduling of industrial applications on fog nodes. In: IEEE International Conference on Edge Computing (EDGE 2020), pp. 1–9

  65. Wang S, Li Y, Pang S, Qinghua L, Wang S, Zhao J (2020) A task scheduling strategy in edge-cloud collaborative scenario based on deadline. Sci Program 2020:9. https://doi.org/10.1155/2020/3967847

    Article  Google Scholar 

  66. Barzegaran M, Cervin A, Pop P (2020) Performance optimization of control applications on fog computing platforms using scheduling and isolation. IEEE Access 8:104085–104098. https://doi.org/10.1109/ACCESS.2020.2999322

    Article  Google Scholar 

  67. Li G, Liu Y, Junhua W, Lin D, Zhao S (2019) Methods of resource scheduling based on optimized fuzzy clustering in fog computing. Sensors. https://doi.org/10.3390/s19092122

    Article  Google Scholar 

  68. Wang Juan, Li Di (2019) Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors 19(5):1023. https://doi.org/10.3390/s19051023

    Article  Google Scholar 

  69. Yang Y, Wang K, Zhang G, Chen X, Luo X, Zhou MT (2018) MEETS: maximal energy efficient task scheduling in homogeneous fog networks. IEEE Internet Things J 5:4076–4087

    Article  Google Scholar 

  70. Auluck N, Azim A, Fizza K (2019) Improving the schedulability of real-time tasks using fog computing. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2019.2944360

    Article  Google Scholar 

  71. Deng R, Lu R, Lai C, Luan TH, Liang H (2016) Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J 3(6):1171–1181

    Google Scholar 

  72. Zhang G, Shen F, Chen N, Zhu P, Dai X, Yang Y (2018) DOTS: delay-optimal task scheduling among voluntary nodes in fog networks. IEEE Internet Things J 6:3533–3544

    Article  Google Scholar 

  73. Zheng X, Li M, Guo J (2020) Task scheduling using edge computing system in smart city. Int J Commun Syst 2020:e4422. https://doi.org/10.1002/dac.4422

    Article  Google Scholar 

  74. Huang J, Li S, Chen Y (2020) Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing. Peer-to-Peer Netw Appl 13(5):1776–1787. https://doi.org/10.1007/s12083-020-00880-y

    Article  Google Scholar 

  75. Fellir F, El Attar A, Nafil K, Chung L (2020) A multi-Agent based model for task scheduling in cloud-fog computing platform. In: 2020 IEEE international conference on informatics, IoT, and enabling technologies (ICIoT), Doha, Qatar, pp. 377–382. https://doi.org/10.1109/ICIoT48696.2020.9089625

  76. Huang X, Yu R, Ye D, Shu L, Xie S (2021) Efficient workload allocation and user-centric utility maximization for task scheduling in collaborative vehicular edge computing. IEEE Trans Veh Technol 70(4):3773–3787. https://doi.org/10.1109/TVT.2021.3064426

    Article  Google Scholar 

  77. Cao B et al (2021) Edge-cloud resource scheduling in space-air-ground integrated networks for internet of vehicles. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3065583

    Article  Google Scholar 

  78. Guevara JC, da Fonseca NLS (2021) Task scheduling in cloud-fog computing systems. Peer-to-Peer Netw Appl 14:962–977. https://doi.org/10.1007/s12083-020-01051-9

    Article  Google Scholar 

  79. Zeng D, Gu L, Guo S, Cheng Z, Yu S (2016) Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans Comput 65(12):3702–3712

    Article  MathSciNet  Google Scholar 

  80. Chen X, Wang L (2017) Exploring fog computing-based adaptive vehicular data scheduling policies through a compositional formal method—PEPA. IEEE Commun Lett 21(4):745–748

    Article  Google Scholar 

  81. Bittencourt LF, Diaz-Montes J, Buyya R, Rana OF, Parashar M (2017) Mobility-aware application scheduling in fog computing. IEEE Tech Comm Cloud Comput (TCCLD) 4(2):26–35

    Article  Google Scholar 

  82. Abdelmoneem RM, Benslimane A, Shaaban E (2020) Mobility-aware task scheduling in cloud-Fog IoT-based healthcare architectures. Comput Netw 179:107348. https://doi.org/10.1016/j.comnet.2020.107348

    Article  Google Scholar 

  83. Liu B, Xiaolong X, Qi L, Ni Q, Dou W (2020) Task scheduling with precedence and placement constraints for resource utilization improvement in multi-user MEC environment. J Syst Arch 114:101970. https://doi.org/10.1016/j.sysarc.2020.101970

    Article  Google Scholar 

  84. Hao Y, Cao J, Wang Q, Jinglin D (2020) Energy-aware scheduling in edge computing with a clustering method. Future Gener Comput Syst 117:259–272. https://doi.org/10.1016/j.future.2020.11.029

    Article  Google Scholar 

  85. Sun Y, Lin F, Xu H (2018) Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II. Wireless Pers Commun 102:1369–1385. https://doi.org/10.1007/s11277-017-5200-5

    Article  Google Scholar 

  86. Nguyen BM, Thi Thanh Binh H, Do SB (2019) Evolutionary algorithms to optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment. Appl Sci 9(9):1730

    Article  Google Scholar 

  87. Xu J, Hao Z, Zhang R, Sun X (2019) A method based on the combination of laxity and ant colony system for cloud-fog task scheduling. IEEE Access 7:116218–116226

    Article  Google Scholar 

  88. Abdel-Basset* M, Mohamed R, Elhoseny M, Bashir AK, Jolfaei A, Kumar N (2020) Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications. 2020.3001067, IEEE transactions on industrial informatics

  89. Abdel-Basset M, El-shahat D, Elhoseny M, Song H (2020) Energy aware meta heuristic algorithm for industrial internet of things task scheduling problems in fog computing applications. IEEE Internet Things J 8:12638–12649

    Article  Google Scholar 

  90. Ghobaei-Arani M, Souri A, Safara F, Norouzi M (2019) An efficient task scheduling approach using moth-flame optimization algorithm for cyber-physical system applications in fog computing. Trans Emerg Tel Tech. https://doi.org/10.1002/ett.3770

    Article  Google Scholar 

  91. Wu C‐G, Wang L (2020) An estimation of distribution algorithm to optimize the utility of task scheduling under fog computing systems. In: Fog computing (eds Zomaya A, Abbas A, Khan S). https://doi.org/10.1002/9781119551713.ch14

  92. Liu Y, Wang S, Zhao Q, Shiyu Du, Zhou Ao, Ma X, Yang F (2020) Dependency-aware task scheduling in vehicular edge computing. IEEE Internet Things J 7(6):4961–4971. https://doi.org/10.1109/JIOT.2020.2972041

    Article  Google Scholar 

  93. Sun H, Yu H, Fan G (2020) Contract-based resource sharing for time effective task scheduling in fog-cloud environment. IEEE Trans Netw Serv Manag 17(2):1040–1053. https://doi.org/10.1109/TNSM.2020.2977843

    Article  Google Scholar 

  94. Wang S, Zhao T, Pang S (2020) Task scheduling algorithm based on improved firework algorithm in fog computing. In IEEE Access 8:32385–32394. https://doi.org/10.1109/ACCESS.2020.2973758

    Article  Google Scholar 

  95. Wan J, Chen B, Wang S, Xia M, Li D, Liu C (2018) Fog computing for energy-aware load balancing and scheduling in smart factory. IEEE Trans Industr Inf 14:4548–4556

    Article  Google Scholar 

  96. Hosseinzadeh M, Masdari M, Rahmani AM et al (2021) Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments. J Grid Comput 19:14. https://doi.org/10.1007/s10723-021-09556-0

    Article  Google Scholar 

  97. Hu F, Lv L, Zhang T, Shi Y (2021) Vehicular task scheduling strategy with resource matching computing in cloud-edge collaboration. IET Collab Intell Manuf. https://doi.org/10.1049/cim2.12023

    Article  Google Scholar 

  98. Hosseinioun P, Kheirabadi M, Tabbakh SRK, Ghaemi R (2020) A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm. J Parallel Distrib Comput 143:88–96. https://doi.org/10.1016/j.jpdc.2020.04.008

    Article  Google Scholar 

  99. Javanmardi S, Shojafar M, Persico V, Pescapè A (2020) FPFTS: a joint fuzzy particle swarm optimization mobility-aware approach to fog task scheduling algorithm for Internet of Things devices. Softw Pract Exper. https://doi.org/10.1002/spe.2867

    Article  Google Scholar 

  100. Farhat P, Sami H, Mourad A (2020) Reinforcement R-learning model for time scheduling of on-demand fog placement. J Supercomput 76(1):388–410

    Article  Google Scholar 

  101. Gazori P, Rahbari D, Nickray M (2020) Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach. Future Gener Comput Syst 110:1098–1115

    Article  Google Scholar 

  102. Bhatia M, Sood SK, Kaur S (2019) Quantum-based predictive fog scheduler for IoT applications. Comput Indus 111:51–67. https://doi.org/10.1016/j.compind.2019.06.002

    Article  Google Scholar 

  103. Ullah Y (2020) Task classification and scheduling based on k-means clustering for edge computing. Wireless Pers Commun 113:2611–2624. https://doi.org/10.1007/s11277-020-07343-w

    Article  Google Scholar 

  104. Tang Z, Jia W, Zhou X, Yang W, You Y (2020) Representation and reinforcement learning for task scheduling in edge computing. IEEE Trans Big Data. https://doi.org/10.1109/TBDATA.2020.2990558

    Article  Google Scholar 

  105. Sheng S, Chen P, Chen Z, Wu L, Yao Y (2021) Deep reinforcement learning-based task scheduling in iot edge computing. Sensors 21:1666. https://doi.org/10.3390/s21051666

    Article  Google Scholar 

  106. Yan Li, Zhu Z, Chen B (2020) EASE: Energy-efficient task scheduling for edge computing under uncertain runtime and unstable communication conditions. Concurrency Computat Pract Exper 2019:e5465. https://doi.org/10.1002/cpe.5465

    Article  Google Scholar 

  107. Aburukba RO, AliKarrar M, Landolsi T, El-Fakih K (2020) Scheduling Internet of Things requests to minimize latency in hybrid fog-cloud computing. Future Gener Comput Syst 111:539–551. https://doi.org/10.1016/j.future.2019.09.039

    Article  Google Scholar 

  108. Zhu Z, Zhang J, Zhao J, Cao J, Zhao D, Jia G, Meng Q (2019) A hardware and software task-scheduling framework based on CPU+FPGA heterogeneous architecture in edge computing. IEEE Access 7:148975–148988. https://doi.org/10.1109/ACCESS.2019.2943179

    Article  Google Scholar 

  109. Mastoi Q-u-a, Wah TY, Raj RG, Lakhan A (2020) A novel cost-efficient framework for critical heartbeat task scheduling using the internet of medical things in a fog cloud system. Sensors 20:441

    Article  Google Scholar 

  110. De Benedetti M, Messina F, Pappalardo G, Santoro C (2017) JarvSis: a distributed scheduler for IoT applications. Cluster Comput 20:1775–1790. https://doi.org/10.1007/s10586-017-0836-1

    Article  Google Scholar 

  111. Xiong G, Singh R, Li J (2021) Learning augmented index policy for optimal service placement at the network edge,arXiv:2101.03641

  112. Vinueza PG, Naranjo ZP, Shojafar M, Conti M, Buyya R (2019) FOCAN: a Fog-supported smart city network architecture for management of applications in the Internet of Everything environments. J Parallel Distrib Comput 132:274–283. https://doi.org/10.1016/j.jpdc.2018.07.003

    Article  Google Scholar 

  113. Tran MQ, Nguyen DT, Le VA, Nguyen DH, Pham TV (2019) Task placement on fog computing made efficient for iot application provision. Wireless Commun Mobile Comput 2019:17. https://doi.org/10.1155/2019/6215454

    Article  Google Scholar 

  114. Mahmud R, Srirama SN, Ramamohanarao K, Buyya R (2019) Quality of Experience (QoE)-aware placement of applications in Fog computing environments. J Parallel Distrib Comput 132:190–203. https://doi.org/10.1016/j.jpdc.2018.03.004

    Article  Google Scholar 

  115. Yao H, Bai C, Xiong M, Zeng D, Fu Z (2017) Heterogeneous cloudlet deployment and user-cloudlet association toward cost effective fog computing. Concurrency Computat: Pract Exper 29:e3975. https://doi.org/10.1002/cpe.3975

    Article  Google Scholar 

  116. Venticinque S, Amato A (2019) A methodology for deployment of IoT application in fog. J Ambient Intell Human Comput 10:1955–1976. https://doi.org/10.1007/s12652-018-0785-4

    Article  Google Scholar 

  117. Souza VB, Masip-Bruin X, Marín-Tordera E, Sànchez-López S, Garcia J, Ren GJ, Jukan A, Juan Ferrer A (2018) Towards a proper service placement in combined Fog-to-Cloud (F2C) architectures. Future Gener Comput Syst 87:1–15. https://doi.org/10.1016/j.future.2018.04.042

    Article  Google Scholar 

  118. Selimi M, Cerdà-Alabern L, Freitag F, Veiga L, Sathiaseelan A, Crowcroft J (2019) A lightweight service placement approach for community network micro-clouds. J Grid Comput 17:169–189. https://doi.org/10.1007/s10723-018-9437-3

    Article  Google Scholar 

  119. Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware application module management for fog computing environments. ACM Trans Internet Technol 19(1):2. https://doi.org/10.1145/3186592

    Article  Google Scholar 

  120. Zeng D, Lin G, Yao H (2020) Towards energy efficient service composition in green energy powered cyber-physical fog systems. Future Gener Comput Syst 105:757–765. https://doi.org/10.1016/j.future.2018.01.060

    Article  Google Scholar 

  121. Moubayed A, Shami A, Heidari P, Larabi A, Brunner R (2020) Edge-enabled V2X service placement for intelligent transportation systems. In IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2020.2965929

    Article  Google Scholar 

  122. Khosroabadi F, Fotouhi-Ghazvini F, Fotouhi H (2021) SCATTER: service placement in real-time fog-assisted IoT Networks. J Sens Actuator Netw 10:26. https://doi.org/10.3390/jsan10020026

    Article  Google Scholar 

  123. Xiao T, Cui T, Islam SMR, Chen Q (2021) Joint Content placement and storage allocation based on federated learning in F-RANs. Sensors 21:215. https://doi.org/10.3390/s21010215

    Article  Google Scholar 

  124. Velasquez K, Abreu DP, Curado M, Monteiro E (2017) Service placement for latency reduction in the internet of things. Ann Telecommun 72:105–115. https://doi.org/10.1007/s12243-016-0524-9

    Article  Google Scholar 

  125. Mahmud R, Srirama SN, Ramamohanarao K, Buyya R (2020) Profit-aware application placement for integrated Fog-Cloud computing environments. J Parallel Distrib Comput 135:177–190. https://doi.org/10.1016/j.jpdc.2019.10.001

    Article  Google Scholar 

  126. Baranwal G, Yadav R, Vidyarthi DP (2020) QoE Aware IoT application placement in fog computing using modified-TOPSIS. Mobile Netw Appl 25(5):1816–1832. https://doi.org/10.1007/s11036-020-01563-x

    Article  Google Scholar 

  127. Bi S, Huang L, Zhang YA (2020) Joint optimization of service caching placement and computation offloading in mobile edge computing systems. IEEE Trans Wireless Commun 19(7):4947–4963. https://doi.org/10.1109/TWC.2020.2988386

    Article  Google Scholar 

  128. Nashaat H, Ahmed E, Rizk R (2020) IoT application placement algorithm based on multi-dimensional QoE prioritization model in fog computing environment. IEEE Access 8:111253–111264. https://doi.org/10.1109/ACCESS.2020.3003249

    Article  Google Scholar 

  129. Bermbach D, Maghsudi S, Hasenburg J, Pfandzelter T (2020) Towards auction-based function placement in serverless fog platforms. In: IEEE international conference on fog computing (ICFC)

  130. Lin C, Yang J (2018) Cost-efficient deployment of fog computing systems at logistics centers in industry 4.0. IEEE Trans Indus Info 14(10):4603–4611. https://doi.org/10.1109/TII.2018.2827920

    Article  Google Scholar 

  131. Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P (2017) Optimized IoT service placement in the fog. SOCA 11:427–443. https://doi.org/10.1007/s11761-017-0219-8

    Article  Google Scholar 

  132. Goudarzi M, Wu H, Palaniswami MS, Buyya R (2020) An application placement technique for concurrent IoT applications in edge and fog computing environments. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2020.2967041

    Article  Google Scholar 

  133. Tham C, Chattopadhyay R (2017). A load balancing scheme for sensing and analytics on a mobile edge computing network. In 2017 IEEE 18th international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), Macau, pp. 1–9. https://doi.org/10.1109/WoWMoM.2017.7974307

  134. Talaat FM, Saraya MS, Saleh AI, Ali HA, Ali SH (2020) A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-01768-8

    Article  Google Scholar 

  135. Ningning S, Chao G, Xingshuo A, Qiang Z (2016) Fog computing dynamic load balancing mechanism based on graph repartitioning. Chin Commun 13(3):156–164. https://doi.org/10.1109/CC.2016.7445510

    Article  Google Scholar 

  136. Hosono K, Maki A, Watanabe Y, Takada H, Sato K (2021) Implementation and evaluation of load balancing mechanism with multiple edge server cooperation for dynamic map system. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2021.3067909

    Article  Google Scholar 

  137. Gu L, Zeng D, Guo S, Barnawi A, Xiang Y (2017) Cost efficient resource management in fog computing supported medical cyber-physical system. IEEE Trans Emerg Topics Comput 5(1):108–119. https://doi.org/10.1109/TETC.2015.2508382

    Article  Google Scholar 

  138. Kapsalis A, Kasnesis P, Venieris IS, Kaklamani DI, Patrikakis CZ (2017) A cooperative fog approach for effective workload balancing. IEEE Cloud Comput 4(2):36–45. https://doi.org/10.1109/MCC.2017.25

    Article  Google Scholar 

  139. Alqahtani F, Amoon M, Nasr AA (2021) Reliable scheduling and load balancing for requests in cloud-fog computing. Peer-to-Peer Netw Appl. https://doi.org/10.1007/s12083-021-01125-2

    Article  Google Scholar 

  140. Hameed AR, Islam SU, Ahmad I, Munir K (2020) Energy- and performance-aware load-balancing in vehicular fog computing. Sustain Comput: Info Syst 30: 100454. https://doi.org/10.1016/j.suscom.2020.100454

  141. Li C, Zhuang H, Wang Q, Zhou X (2018) SSLB: self-similarity- based load balancing for large-scale fog computing. Arab J Sci Eng 43:7487–7498. https://doi.org/10.1007/s13369-018-3169-3

    Article  Google Scholar 

  142. Beraldi R, Mtibaa A, Alnuweiri H (2017) Cooperative load balancing scheme for edge computing resources. In: 2017 second international conference on fog and mobile edge computing (FMEC), Valencia, pp. 94–100. https://doi.org/10.1109/FMEC.2017.7946414.

  143. Ouyang W, Chen Z, Wu J, Yu G, Zhang H (2021) Dynamic task migration combining energy efficiency and load balancing optimization in three-tier UAV-enabled mobile edge computing system. Electronics 10:190. https://doi.org/10.3390/electronics10020190

    Article  Google Scholar 

  144. Manasrah AM, Aldomi A, Gupta BB (2019) An optimized service broker routing policy based on differential evolution algorithm in fog/cloud environment. Cluster Comput 22(1):1639–1653. https://doi.org/10.1007/s10586-017-1559-z

    Article  Google Scholar 

  145. He X, Ren Z, Shi C, Fang J (2016) A novel load balancing strategy of software-defined cloud/fog networking in the Internet of Vehicles. Chin Commun 13(Supplement 2):140–149. https://doi.org/10.1109/CC.2016.7833468

    Article  Google Scholar 

  146. Lim J, Lee D (2020) A load balancing algorithm for mobile devices in edge cloud computing environments. Electronics 9(4):686

    Article  Google Scholar 

  147. Xiaolong X, Shucun F, Cai Q, Tian W, Liu W, Dou W, Sun X, Liu AX (2018) Dynamic resource allocation for load balancing in fog environment. Wireless Commun Mobile Comput 2018:15. https://doi.org/10.1155/2018/6421607

    Article  Google Scholar 

  148. Zhang F, Wang MM (2020) Stochastic congestion game for load balancing in mobile edge computing. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.3008009

    Article  Google Scholar 

  149. Qin Z, Cheng Z, Lin C, Zhaoyi L, Wang L (2021) Optimal workload allocation for edge computing network using application prediction. Wireless Commun Mobile Comput 2021:13. https://doi.org/10.1155/2021/5520455

    Article  Google Scholar 

  150. Hung Y-W, ChenY-C, Lo C, So AG, Chang SC (2021) Dynamic workload allocation for edge computing. IEEE Trans Very Large Scale Integ (VLSI) Syst 29(3): 519–529. https://doi.org/10.1109/TVLSI.2021.3049520

  151. Chen J, Xing H, Lin X, Nallanathan A, Bi S (2021) Joint resource allocation and cache placement for location-aware multi-user mobile edge computing, arXiv:2103.11220

  152. Liu X, Yu J, Wang J, Gao Y (2020) Resource allocation with edge computing in IoT networks via machine learning. IEEE Internet Things J 7(4):3415–3426. https://doi.org/10.1109/JIOT.2020.2970110

    Article  Google Scholar 

  153. Wang J, Zhao L, Liu J, Kato N (2019) Smart resource allocation for mobile edge computing: a deep reinforcement learning approach. IEEE Trans Emerg Topics Comput. https://doi.org/10.1109/TETC.2019.2902661

    Article  Google Scholar 

  154. Chen X, Liu G (2021) Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networks. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3050804

    Article  Google Scholar 

  155. Seid AM, Boateng GO, Anokye S, Kwantwi T, Sun G, Liu G (2021) Collaborative computation offloading and resource allocation in multi-UAV assisted iot networks: a deep reinforcement learning approach. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3063188

    Article  Google Scholar 

  156. Li D, Xu S, Li P (2021) Deep reinforcement learning-empowered resource allocation for mobile edge computing in cellular V2X networks. Sensors 21:372. https://doi.org/10.3390/s21020372

    Article  Google Scholar 

  157. Deng S, Xiang Z, Zhao P, Taheri J, Gao H, Yin J, Zomaya AY (2020) Dynamical resource allocation in edge for trustable internet-of-things systems: a reinforcement learning method. IEEE Trans Indus Info 16(9):6103–6113. https://doi.org/10.1109/TII.2020.2974875

    Article  Google Scholar 

  158. Vimal S, Khari M, Dey N, Crespo RG, Harold Robinson Y (2020) Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT. Comput Commun 151:355–364. https://doi.org/10.1016/j.comcom.2020.01.018

    Article  Google Scholar 

  159. Jiao Y, Wang P, Niyato D, Suankaewmanee K (2019) Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks. IEEE Trans Parallel Distrib Syst 30(9):1975–1989. https://doi.org/10.1109/TPDS.2019.2900238

    Article  Google Scholar 

  160. Anglano C, Canonico M, Guazzone M (2018) Profit-aware resource management for edge computing systems. In: EdgeSys ’18: International Workshop on Edge Systems, Analytics and Networking, June10–15, Munich, Germany. ACM, New York, NY, USA, 7 pages.https://doi.org/10.1145/3213344.3213349

  161. Alsaffar AA, Pham HP, Hong C-S, Huh E-N, Aazam M (2016) An architecture of IoT service delegation and resource allocation based on collaboration between fog and cloud computing. Mobile Info Syst 2016:15. https://doi.org/10.1155/2016/6123234

    Article  Google Scholar 

  162. Baek B, Lee J, Peng Y, Park S (2020) Three dynamic pricing schemes for resource allocation of edge computing for IoT environment. IEEE Internet Things J 7(5):4292–4303. https://doi.org/10.1109/JIOT.2020.2966627

    Article  Google Scholar 

  163. Zhang H, Xiao Y, Bu S, Niyato D, Yu FR, Han Z (2017) Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining stackelberg game and matching. IEEE Internet Things J 4(5):1204–1215. https://doi.org/10.1109/JIOT.2017.2688925

    Article  Google Scholar 

  164. Zhang H, Zhang Y, Gu Y, Niyato D, Han Z (2017) A hierarchical game framework for resource management in fog computing. IEEE Commun Mag 55(8):52–57. https://doi.org/10.1109/MCOM.2017.1600896

    Article  Google Scholar 

  165. Duo L, Li Q, Haitao X, Zhou Y (2020) Dynamic priority-based service resource allocation for context-aware conflict resolution in wisdom network with fog computing. Wireless Commun Mobile Comput 2020:7. https://doi.org/10.1155/2020/8812482

    Article  Google Scholar 

  166. Cui G, He Q, Chen F, Zhang Y, Jin H, Yang Y (2021) Interference-aware game-theoretic device allocation for mobile edge computing. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2021.3064063

    Article  Google Scholar 

  167. Nguyen DT, Le LB, Bhargava V (2018) Price-based resource allocation for edge computing: a market equilibrium approach. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2018.2844379

    Article  Google Scholar 

  168. Ni L, Zhang J, Jiang C, Yan C, Yu K (2017) Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J 4(5):1216–1228. https://doi.org/10.1109/JIOT.2017.2709814

    Article  Google Scholar 

  169. Xu J, Palanisamy B, Ludwig H, Wang Q (2017) Zenith: utility-aware resource allocation for edge computing. In: 2017 IEEE International Conference on Edge Computing (EDGE), Honolulu, HI, pp. 47–54. https://doi.org/10.1109/IEEE.EDGE.2017.15

  170. Kochar V, Sarkar A (2016) Real time resource allocation on a dynamic two level symbiotic fog architecture. In: 2016 Sixth International Symposium on Embedded Computing and System Design (ISED), Patna, pp. 49–55. https://doi.org/10.1109/ISED.2016.7977053.

  171. Naranjo P, Pooranian Z, Shamshirband S, Abawajy J, Conti M (2017) Fog over virtualized IoT: new opportunity for context-aware networked applications and a case study. Appl Sci 7(12):1325

    Article  Google Scholar 

  172. Zhang W, Zhang Z, Chao H (2017) Cooperative fog computing for dealing with big data in the internet of vehicles: architecture and hierarchical resource management. IEEE Commun Mag 55(12):60–67. https://doi.org/10.1109/MCOM.2017.1700208

    Article  Google Scholar 

  173. Zhao L, Wang J, Liu J, Kato N (2019) Optimal edge resource allocation in IoT-based smart cities. IEEE Netw 33(2):30–35. https://doi.org/10.1109/MNET.2019.1800221

    Article  Google Scholar 

  174. Naha RK, Garg S (2021) Multi-criteria–based dynamic user behaviour–aware resource allocation in fog computing. ACM Trans Internet Things 2(1):1–31. https://doi.org/10.1145/3423332

    Article  Google Scholar 

  175. Wang J, Wang L (2021) A computing resource allocation optimization strategy for massive internet of health things devices considering privacy protection in cloud edge computing environment. J Grid Comput 19:17. https://doi.org/10.1007/s10723-021-09558-y

    Article  Google Scholar 

  176. Peng X, Ota K, Dong M (2020) Multiattribute-based double auction toward resource allocation in vehicular fog computing. IEEE Internet Things J 7(4):3094–3103. https://doi.org/10.1109/JIOT.2020.2965009

    Article  Google Scholar 

  177. Chen X, Zhou Y, Yang L (2021) Lu Lv, Hybrid fog/cloud computing resource allocation: joint consideration of limited communication resources and user credibility. Comput Commun 169:48–58. https://doi.org/10.1016/j.comcom.2021.01.026

    Article  Google Scholar 

  178. Cao B, Sun Z, Zhang J, Gu Y (2020) Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2020.3048844

    Article  Google Scholar 

  179. Bai T, Pan C, Ren H, Deng Y, Elkashlan M, Nallanathan A (2021) Resource allocation for intelligent reflecting surface aided wireless powered mobile edge computing in OFDM Systems. IEEE Trans Wireless Commun. https://doi.org/10.1109/TWC.2021.3067709

    Article  Google Scholar 

  180. Li WT, Zhao M, Wu YH et al (2021) Collaborative offloading for UAV-enabled time-sensitive MEC networks. J Wireless Com Network. https://doi.org/10.1186/s13638-020-01861-8

    Article  Google Scholar 

  181. Zhang K, Peng M, Sun Y (2020) Delay-optimized resource allocation in fog based vehicular networks. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.3010861

    Article  Google Scholar 

  182. Fu Y, Yang X, Yang P et al (2021) Energy-efficient offloading and resource allocation for mobile edge computing enabled mission-critical internet-of-things systems. J Wireless Com Netw. https://doi.org/10.1186/s13638-021-01905-7

    Article  Google Scholar 

  183. Baidas MW (2021) Resource allocation for offloading-efficiency maximization in clustered NOMA-enabled mobile edge computing networks. Comput Netw 189:107919. https://doi.org/10.1016/j.comnet.2021.107919

    Article  Google Scholar 

  184. Chang L, Liu XG, Sheng Q (2020) Dynamic resource allocation and computation offloading for IoT fog computing system. IEEE Trans Indus Info. https://doi.org/10.1109/TII.2020.2978946

    Article  Google Scholar 

  185. Feng J, Liu L, Pei Q, Hou F, Yang T, Wu J (2021) Service characteristics-oriented joint optimization of radio and computing resource allocation in mobile-edge computing. IEEE Internet Things J 8(11):9407–9421. https://doi.org/10.1109/JIOT.2021.3058363

    Article  Google Scholar 

  186. Liao H, Zhou Z, Zhao X, Wang Y (2021) Learning-based queue-aware task offloading and resource allocation for space–air–ground-integrated power IoT. IEEE Internet Things J 8(7):5250–5263. https://doi.org/10.1109/JIOT.2021.3058236

    Article  Google Scholar 

  187. Huang X, Zhang W, Yang J, Yang L, Yeo CK (2021) Market-based dynamic resource allocation in mobile edge computing systems with multi-server and multi-user. Comput Commun 165:43–52. https://doi.org/10.1016/j.comcom.2020.11.001

    Article  Google Scholar 

  188. Abbasi M, Mohammadi-Pasand E, Khosravi MR (2021) Intelligent workload allocation in IoT–Fog–cloud architecture towards mobile edge computing. Comput Commun 169:71–80. https://doi.org/10.1016/j.comcom.2021.01.022

    Article  Google Scholar 

  189. Wang Y, Chen C-R, Huang P-Q, Wang K (2021) A new differential evolution algorithm for joint mining decision and resource allocation in a MEC-enabled wireless blockchain network. Comput Indus Eng 155:107186. https://doi.org/10.1016/j.cie.2021.107186

    Article  Google Scholar 

  190. Jiang C, Li Y, Su J et al (2021) Research on new edge computing network architecture and task offloading strategy for Internet of Things. Wireless Netw. https://doi.org/10.1007/s11276-020-02516-8

    Article  Google Scholar 

  191. Elbamby B, Saad H (2018) Proactive edge computing in fog networks with latency and reliability guarantees. J Wireless Com Network 2018:209. https://doi.org/10.1186/s13638-018-1218-y

    Article  Google Scholar 

  192. Nair B, Somasundaram MSB (2019) Overload prediction and avoidance for maintaining optimal working condition in a fog node. Comput Electr Eng 77:147–162. https://doi.org/10.1016/j.compeleceng.2019.05.011

    Article  Google Scholar 

  193. Verba N, Chao K-M, Lewandowski J, Shah N, James A, Tian F (2019) Modeling industry 4.0 based fog computing environments for application analysis and deployment. Future Gener Comput Syst 91:48–60. https://doi.org/10.1016/j.future.2018.08.043

    Article  Google Scholar 

  194. Guo J, Li C, Chen Y, Luo Y (2020) On-demand resource provision based on load estimation and service expenditure in edge cloud environment. J Netw Comput Appl 151:102506. https://doi.org/10.1016/j.jnca.2019.102506

    Article  Google Scholar 

  195. Li S, Wu W (2018) Method of resource estimation based on QoS in edge computing. Wireless Commun Mobile Comput 2018:1–9. https://doi.org/10.1155/2018/7308913

    Article  Google Scholar 

  196. Aazam M, St-Hilaire M, Lung C-H, Lambadaris I, Huh E-N (2018) IoT resource estimation challenges and modeling in fog. Fog Comput Internet Things. https://doi.org/10.1007/978-3-319-57639-8_2

    Article  Google Scholar 

  197. Farahbakhsh F, Shahidinejad A, Ghobaei-Arani M (2020) Multi-user context-aware computation offloading in mobile edge computing based on Bayesian learning automata. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.4127

    Article  Google Scholar 

  198. Shakarami A, Shahidinejad A, Ghobaei-Arani M (2021) An autonomous computation offloading strategy in mobile edge Computing: a deep learning-based hybrid approach. J Netw Comput Appl 178:102974. https://doi.org/10.1016/j.jnca.2021.102974

    Article  Google Scholar 

  199. Chu CH (2021) Task offloading based on deep learning for blockchain in mobile edge computing. Wireless Netw 27:117–127. https://doi.org/10.1007/s11276-020-02444-7

    Article  Google Scholar 

  200. Yu B, Zhang X, You I, Khan US (2021) Efficient computation offloading in edge computing enabled smart home. IEEE Access 9:48631–48639. https://doi.org/10.1109/ACCESS.2021.3066789

    Article  Google Scholar 

  201. Li Z, Chang V, Ge J et al (2021) Energy-aware task offloading with deadline constraint in mobile edge computing. J Wireless Com Netw. https://doi.org/10.1186/s13638-021-01941-3

    Article  Google Scholar 

  202. Min M, Xiao L, Chen Y, Cheng P, Wu D, Zhuang W (2019) Learning-based computation offloading for iot devices with energy harvesting. IEEE Trans Veh Technol 68:1930–1941. https://doi.org/10.1109/TVT.2018.2890685

    Article  Google Scholar 

  203. Chen C, Zhang Y, Wang Z, Wan S, Pei Q (2021) Distributed computation offloading method based on deep reinforcement learning in ICV. Appl Soft Comput 103:107108. https://doi.org/10.1016/j.asoc.2021.107108

    Article  Google Scholar 

  204. Li H, Fang F, Ding Z (2021) DRL-assisted resource allocation for NOMA-MEC offloading with hybrid SIC. Entropy 23:613. https://doi.org/10.3390/e23050613

    Article  MathSciNet  Google Scholar 

  205. Weng Y, Chu H, Shi Z (2021) An intelligent offloading system based on multiagent reinforcement learning. Secur Commun Netw 2021:1–13. https://doi.org/10.1155/2021/8830879

    Article  Google Scholar 

  206. Liu T, Zhang Y, Zhu Y, Tong W, Yang Y (2021) Online computation offloading and resource scheduling in mobile-edge computing. IEEE Internet Things J 8(8):6649–6664. https://doi.org/10.1109/JIOT.2021.3051427

    Article  Google Scholar 

  207. Li C et al (2021) Dynamic offloading for multiuser Muti-CAP MEC networks: a deep reinforcement learning approach. IEEE Trans Veh Technol 70(3):2922–2927. https://doi.org/10.1109/TVT.2021.3058995

    Article  Google Scholar 

  208. Tuong VD, Truong TP, Nguyen T-V, Noh W, Cho S (2021) Partial computation offloading in NOMA-assisted mobile edge computing systems using deep reinforcement learning. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3064995

    Article  Google Scholar 

  209. Aazam M, Zeadally S, Flushing EF (2021) Task offloading in edge computing for machine learning-based smart healthcare. Comput Netw 191:108019. https://doi.org/10.1016/j.comnet.2021.108019

    Article  Google Scholar 

  210. Manogaran G, Mumtaz S, Mavromoustakis CX, Pallis E, Mastorakis G (2021) Artificial intelligence and blockchain-assisted offloading approach for data availability maximization in edge nodes. IEEE Trans Veh Technol 70(3):2404–2412. https://doi.org/10.1109/TVT.2021.3058689

    Article  Google Scholar 

  211. Cheng N, Lyu F, Quan W, Zhou C, He H, Shi W, Shen X (2019) Space/aerial-assisted computing offloading for Iot applications: a learning-based approach. IEEE J Sel Areas Commun 37:1117–1129. https://doi.org/10.1109/JSAC.2019.2906789

    Article  Google Scholar 

  212. Wei Z, Zhao B, Su J, Lu X (2019) Dynamic edge computation offloading for internet of things with energy harvesting: a learning method. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2018.2882783

    Article  Google Scholar 

  213. Xu J, Chen L, Ren S (2017) Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans Cognit Commun Netw 3:361–373. https://doi.org/10.1109/TCCN.2017.2725277

    Article  Google Scholar 

  214. Zheng X, Li M, Tahir M, Chen Y, Alam M (2019) Stochastic computation offloading and scheduling based on mobile edge computing. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2919651

    Article  Google Scholar 

  215. Zhu S, Gui L, Zhao D, Cheng N, Zhang Q, Lang X (2021) Learning-based computation offloading approaches in UAVs-assisted edge computing. IEEE Trans Veh Technol 70(1):928–944. https://doi.org/10.1109/TVT.2020.3048938

    Article  Google Scholar 

  216. Lin P, Song Q, Yu FR, Wang D, Guo L (2021) Task offloading for wireless VR-enabled medical treatment with blockchain security using collective reinforcement learning. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3051419

    Article  Google Scholar 

  217. Aljanabi S, Chalechale A (2021) Improving IoT services using a hybrid fog-cloud offloading. IEEE Access 9:13775–13788. https://doi.org/10.1109/ACCESS.2021.3052458

    Article  Google Scholar 

  218. Hossain MD, Sultana T, Hossain MA, Hossain MI, Huynh LNT, Park J, Huh E-N (2021) Fuzzy decision-based efficient task offloading management scheme in multi-tier MEC-enabled networks. Sensors 2021(21):1484. https://doi.org/10.3390/s21041484

    Article  Google Scholar 

  219. Chen X, Jiao L, Li W, Xiaoming F (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808. https://doi.org/10.1109/TNET.2015.2487344

    Article  Google Scholar 

  220. Xiong Z, Feng S, Wang W, Niyato D, Wang P, Han Z (2018) Cloud/fog computing resource management and pricing for blockchain networks. IEEE Internet Things J 6(3):4585–4600. https://doi.org/10.1109/JIOT.2018.2871706

    Article  Google Scholar 

  221. Cao H, Cai J (2018) Distributed multiuser computation offloading for cloudlet-based mobile cloud computing: a game-theoretic machine learning approach. IEEE Trans Veh Technol 67:752–764. https://doi.org/10.1109/TVT.2017.2740724

    Article  Google Scholar 

  222. Liu L, Chang Z, Guo X (2018) Socially aware dynamic computation offloading scheme for fog computing system with energy harvesting devices. IEEE Internet Things J 5(3):1869–1879. https://doi.org/10.1109/JIOT.2018.2816682

    Article  Google Scholar 

  223. Liu Y, Changqiao X, Zhan Y, Liu Z, Guan J, Zhang H (2017) Incentive mechanism for computation offloading using edge computing: a Stackelberg game approach. Comput Netw 129(2):399–409. https://doi.org/10.1016/j.comnet.2017.03.015

    Article  Google Scholar 

  224. Zuo Y, Jin S, Zhang S, Zhang Y (2021) Blockchain storage and computation offloading for cooperative mobile-edge computing. IEEE Internet Things J 8(11):9084–9098. https://doi.org/10.1109/JIOT.2021.3056656

    Article  Google Scholar 

  225. Zhao L et al (2021) Vehicular computation offloading for industrial mobile edge computing. IEEE Trans Indus Info. https://doi.org/10.1109/TII.2021.3059640

    Article  Google Scholar 

  226. Dai M, Su Z, Xu Q, Zhang N (2021) Vehicle assisted computing offloading for unmanned aerial vehicles in smart city. IEEE Trans Intell Transp Syst 22(3):1932–1944. https://doi.org/10.1109/TITS.2021.3052979

    Article  Google Scholar 

  227. Yang X, Luo H, Sun Y, Zou J, Guizani M (2021) Coalitional game based cooperative computation offloading in MEC for reusable tasks. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3064186

    Article  Google Scholar 

  228. Yang Y, Long C, Wu J, Peng S, Li B (2021) D2D-enabled mobile-edge computation offloading for multi-user IoT Network. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3068722

    Article  Google Scholar 

  229. Ren Y, Xie Z, Ding Z, Sun X, Xia J, Tian Y (2021) Computation offloading game in multiple unmanned aerial vehicle-enabled mobile edge computing networks. IET Commun 2021:1–10. https://doi.org/10.1049/cmu2.12102

    Article  Google Scholar 

  230. Apostolopoulos PA, Fragkos G, Tsiropoulou EE, Papavassiliou S (2021) Data offloading in UAV-assisted multi-access edge computing systems under resource uncertainty. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2021.3069911

    Article  Google Scholar 

  231. Zhou J, Tian D, Sheng Z, Duan X, Shen X (2021) Distributed task offloading optimization with queueing dynamics in multi-agent mobile-edge computing networks. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3063509

    Article  Google Scholar 

  232. Abdenacer N, Wu H, Abdelkader NN, Dhelim S, Ning H (2021) A novel framework for mobile edge computing by optimizing task offloading. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3064225

    Article  Google Scholar 

  233. Song M, Lee Y, Kim K (2021) Reward-oriented task offloading under limited edge server power for multi-access edge computing. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3065429

    Article  Google Scholar 

  234. Li X, Chen T, Yuan D, Xu J, Liu X (2021) A novel graph-based computation offloading strategy for workflow applications in mobile edge computing, arXiv:2102.12236

  235. Mukherjee A, Deb P, De D, Buyya R (2018) C2OF2N: a low power cooperative code offloading method for femtolet-based fog network. J Supercomput 74:2412–2448. https://doi.org/10.1007/s11227-018-2269-x

    Article  Google Scholar 

  236. Ahn S, Gorlatova M, Chiang M (2017) Leveraging fog and cloud computing for efficient computational offloading. In: 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, pp. 1–4. https://doi.org/10.1109/URTC.2017.8284203

  237. Liang K, Zhao L, Zhao X, Wang Y, Ou S (2016) Joint resource allocation and coordinated computation offloading for fog radio access networks. In Chin Commun 13(Supplement 2):131–139. https://doi.org/10.1109/CC.2016.7833467

    Article  Google Scholar 

  238. Hmimz Y, Chanyour T, El Ghmary M, Malki MOC (2021) Joint radio and local resources optimization for tasks offloading with priority in a mobile edge computing network. Pervasive Mobile Comput 73:101368. https://doi.org/10.1016/j.pmcj.2021.101368

    Article  Google Scholar 

  239. Hmimz Y, Chanyour T, El Ghmary M et al (2021) Bi-objective optimization for multi-task offloading in latency and radio resources constrained mobile edge computing networks. Multimed Tools Appl 80:17129–17166. https://doi.org/10.1007/s11042-020-09365-9

    Article  Google Scholar 

  240. Li K (2021) Heuristic computation offloading algorithms for mobile users in fog computing. ACM Trans Embed Comput Syst 20(2):1–28. https://doi.org/10.1145/3426852

    Article  Google Scholar 

  241. Wang Q, Gao A, Hu Y (2021) Joint power and QoE optimization scheme for multi-UAV assisted offloading in mobile computing. IEEE Access 9:21206–21217. https://doi.org/10.1109/ACCESS.2021.3055335

    Article  Google Scholar 

  242. Cha N, Wu C, Yoshinaga T, Ji Y, Yau K-LA (2021) Virtual edge: exploring computation offloading in collaborative vehicular edge computing. IEEE Access 9:37739–37751. https://doi.org/10.1109/ACCESS.2021.3063246

    Article  Google Scholar 

  243. Hao X, Zhao R, Yang T et al (2021) A risk-sensitive task offloading strategy for edge computing in industrial Internet of Things. J Wireless Com Network 2021:39. https://doi.org/10.1186/s13638-021-01923-5

    Article  Google Scholar 

  244. Li SA (2021) task offloading optimization strategy in MEC-based smart cities. Internet Technol Lett 4:e158. https://doi.org/10.1002/itl2.158

    Article  Google Scholar 

  245. Liang J, Li K, Liu C, Li K (2021) Joint offloading and scheduling decisions for DAG applications in mobile edge computing. Neurocomputing 424:160–171. https://doi.org/10.1016/j.neucom.2019.11.081

    Article  Google Scholar 

  246. Liu C, Liu K, Ren H et al (2021) RtDS: real-time distributed strategy for multi-period task offloading in vehicular edge computing environment. Neural Comput Appl. https://doi.org/10.1007/s00521-021-05766-5

    Article  Google Scholar 

  247. Ko H, Lee J, Pack S (2018) Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous networks. IEEE Access 6:18920–18932. https://doi.org/10.1109/ACCESS.2018.2818111

    Article  Google Scholar 

  248. Silva J, Marques ERB, Lopes LMB, Silva F (2021) Energy-aware adaptive offloading of soft real-time jobs in mobile edge clouds, arXiv:2102.05504

  249. Razaq MM, Tak B, Peng L, Guizani M (2021) Privacy-aware collaborative task offloading in fog computing. IEEE Trans Comput Soc Syst. https://doi.org/10.1109/TCSS.2020.3047382

    Article  Google Scholar 

  250. Liu Y et al (2021) Physical layer security assisted computation offloading in intelligently connected vehicle networks. IEEE Trans Wireless Commun. https://doi.org/10.1109/TWC.2021.3051772

    Article  Google Scholar 

  251. Bai W et al (2021) Joint optimization of computation offloading, data compression, energy harvesting, and application scenarios in fog computing. IEEE Access 9:45462–45473. https://doi.org/10.1109/ACCESS.2021.3067702

    Article  Google Scholar 

  252. Khadir AA, Seno SAH (2021) SDN-based offloading policy to reduce the delay in fog-vehicular networks. Peer-to-Peer Netw Appl 14:1261–1275. https://doi.org/10.1007/s12083-020-01066-2

    Article  Google Scholar 

  253. Almutairi J, Aldossary M (2021) Modeling and analyzing offloading strategies of IoT applications over edge computing and joint clouds. Symmetry 13:402. https://doi.org/10.3390/sym13030402

    Article  Google Scholar 

  254. Tang L, Tang B, Zhang L et al (2021) Joint optimization of network selection and task offloading for vehicular edge computing. J Cloud Comp 10:23. https://doi.org/10.1186/s13677-021-00240-y

    Article  Google Scholar 

  255. Xue J, An Y (2021) Joint task offloading and resource allocation for multi-task multi-server NOMA-MEC networks. IEEE Access 9:16152–16163. https://doi.org/10.1109/ACCESS.2021.3049883

    Article  Google Scholar 

  256. Xiaohui G, Zhang G (2021) Energy-efficient computation offloading for vehicular edge computing networks. Comput Commun 166:244–253. https://doi.org/10.1016/j.comcom.2020.12.010

    Article  Google Scholar 

  257. Li R, Ma Q, Gong J, Zhou Z, Chen X (2021) Age of processing: age-driven status sampling and processing offloading for edge computing-enabled real-time IoT applications. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3064055

    Article  Google Scholar 

  258. Li W, Jin S (2021) Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity. J Supercomput. https://doi.org/10.1007/s11227-021-03781-w

    Article  Google Scholar 

  259. Nan Y, Li W, Bao W, Delicato FC, Pires PF, Zomaya AY (2018) A dynamic tradeoff data processing framework for delay-sensitive applications in Cloud of Things systems. J Parallel Distrib Comput 112(1):53–66. https://doi.org/10.1016/j.jpdc.2017.09.009

    Article  Google Scholar 

  260. Bao W, Li W, Delicato FC, Pires PF, Dong Yuan D, Zhou BB, Zomaya AY (2017) Cost-effective processing in fog-integrated internet of things ecosystems. In: Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM '17). Association for Computing Machinery, New York, NY, USA, pp. 99–108. https://doi.org/10.1145/3127540.3127547

  261. Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J Sel Areas Commun 34:3590–3605. https://doi.org/10.1109/JSAC.2016.2611964

    Article  Google Scholar 

  262. Zhang G, Zhang W, Cao Y, Li D, Wang L (2018) Energy delay tradeoff for dynamic offloading in mobile-edge computing system with energy harvesting devices. IEEE Trans Industr Inf 14:4642–4655. https://doi.org/10.1109/TII.2018.2843365

    Article  Google Scholar 

  263. Lyu X, Ni W, Tian H, Liu RP, Wang X, Giannakis GB, Paulraj A (2017) Optimal schedule of mobile edge computing for internet of things using partial information. IEEE J Sel Areas Commun 35:2606–2615. https://doi.org/10.1109/JSAC.2017.2760186

    Article  Google Scholar 

  264. Chen W, Wang D, Li K (2018) Multi-user multi-task computation offloading in green mobile edge cloud computing. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2018.2826544

    Article  Google Scholar 

  265. Zhang D, Tan L, Ren J, Awad MK, Zhang S, Zhang Y, Wan P (2019) Near-optimal and truthful online auction for computation offloading in green edge-computing systems. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2019.2901474

    Article  Google Scholar 

  266. Pu L, Chen X, Xu J, Fu X (2016) D2d fogging: An energy efficient and incentive-aware task offloading framework via network assisted d2d collaboration. IEEE J Sel Areas Commun 34:3887–3901. https://doi.org/10.1109/JSAC.2016.2624118

    Article  Google Scholar 

  267. Peng K, Nie J, Kumar N, Cai C, Kang J, Xiong Z, Zhang Y (2021) Joint optimization of service chain caching and task offloading in mobile edge computing. Appl Soft Comput 103:107142. https://doi.org/10.1016/j.asoc.2021.107142

    Article  Google Scholar 

  268. Zhao F, Chen Y, Zhang Y, Liu Z, Chen X (2021) Dynamic offloading and resource scheduling for mobile edge computing with energy harvesting devices. IEEE Trans Netw and Service Manag. https://doi.org/10.1109/TNSM.2021.3069993

    Article  Google Scholar 

  269. Suzhi Bi, Liang Huang, Hui Wang, and Ying-Jun Angela Zhang (2021) Stable online computation offloading via lyapunov-guided deep reinforcement learning, arXiv:2102.03286v1

  270. Huynh LNT, Pham Q-V, Nguyen TDT, Hossain MD, Shin Y-R, Huh E-N (2021) Joint computational offloading and data-content caching in NOMA-MEC networks. IEEE Access 9:12943–12954. https://doi.org/10.1109/ACCESS.2021.3051278

    Article  Google Scholar 

  271. Liu L, Sun B, Wu Y, Tsang DHK (2021) Latency optimization for computation offloading with hybrid NOMA–OMA transmission. IEEE Internet Things J 8(8):6677–6691. https://doi.org/10.1109/JIOT.2021.3055510

    Article  Google Scholar 

  272. Lakhan A, Ahmad M, Bilal M, Jolfaei A, Mehmood RM (2021) Mobility aware blockchain enabled offloading and scheduling in vehicular fog cloud computing. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2021.3056461

    Article  Google Scholar 

  273. Liu L, Chang Z, Guo X, Mao S, Ristaniemi T (2018) Multi objective optimization for computation offloading in fog computing. IEEE Internet Things J 5(1):283–294. https://doi.org/10.1109/JIOT.2017.2780236

    Article  Google Scholar 

  274. Wang X, Ning Z, Wang L (2018) Offloading in internet of vehicles: a fog-enabled real-time traffic management system. IEEE Trans Industr Inf 14(10):4568–4578. https://doi.org/10.1109/TII.2018.2816590

    Article  Google Scholar 

  275. Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans Commun 64:4268–4282. https://doi.org/10.1109/TCOMM.2016.2599530

    Article  Google Scholar 

  276. Chen M, Hao Y (2018) Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J Sel Areas Commun 36:587–597. https://doi.org/10.1109/JSAC

    Article  Google Scholar 

  277. Ji L, Guo S (2019) Energy-efficient cooperative resource allocation in wireless powered mobile edge computing. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2018.2880812

    Article  Google Scholar 

  278. Hu X, Wong K, Yang K (2018) Wireless powered cooperation assisted mobile edge computing. IEEE Trans Wireless Commun 17:2375–2388. https://doi.org/10.1109/TWC.2018.2794345

    Article  Google Scholar 

  279. Wang F, Xu J, Wang X, Cui S (2018) Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans Wireless Commun 17:1784–1797. https://doi.org/10.1109/TWC.2017.2785305

    Article  Google Scholar 

  280. Bi S, Zhang YJ (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wireless Commun 17:4177–4190. https://doi.org/10.1109/TWC.2018.2821664

    Article  Google Scholar 

  281. Zhou F, Wu Y, Hu RQ, Qian Y (2018) Computation rate maximization in uav-enabled wireless-powered mobile-edge computing systems. IEEE J Sel Areas Commun 36:1927–1941. https://doi.org/10.1109/JSAC.2018.2864426

    Article  Google Scholar 

  282. Dinh TQ, Tang J, La QD, Quek TQS (2017) Offloading in mobile edge computing: task allocation and computational frequency scaling. IEEE Trans Commun 65:3571–3584. https://doi.org/10.1109/TCOMM.2017.2699660

    Article  Google Scholar 

  283. Qiu Y, Zhang H, Long K (2021) Computation offloading and wireless resource management for healthcare monitoring in fog-computing based internet of medical things. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3066604

    Article  Google Scholar 

  284. Zhang G, Zhang S, Zhang W, Shen Z, Wang L (2021) Joint service caching, computation offloading and resource allocation in mobile edge computing systems. IEEE Trans Wireless Commun. https://doi.org/10.1109/TWC.2021.3066650

  285. Liao Z, Ma Y, Huang J, Wang J, Wang J (2021) HOTSPOT: a UAV-assisted dynamic mobility-aware offloading for mobile edge computing in 3D space. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3051214

    Article  Google Scholar 

  286. Muzakkir Hussain Md, Sufyan Beg MM (2021) CODE-V: multi-hop computation offloading in vehicular fog computing. Future Gener Comput Syst 116:86–102. https://doi.org/10.1016/j.future.2020.09.039

    Article  Google Scholar 

  287. Youwei Yuan L, Qian GJ, Longxuan Y, Zixuan Y, Zhao Q (2021) Efficient computation offloading for service workflow of mobile applications in mobile edge computing. Mobile Info Syst 2021:1–11. https://doi.org/10.1155/2021/5578465

    Article  Google Scholar 

  288. Sun Y, Song C, Yu S, Liu Y, Pan H, Zeng P (2021) Energy-efficient task offloading based on differential evolution in edge computing system with energy harvesting. IEEE Access 9:16383–16391. https://doi.org/10.1109/ACCESS.2021.3052901

    Article  Google Scholar 

  289. Guan S, Boukerche A (2021) A Novel mobility-aware offloading management scheme in sustainable multi-access edge computing. IEEE Trans Sustain Comput. https://doi.org/10.1109/TSUSC.2021.3065310

    Article  Google Scholar 

  290. Peng G, Wu H, Wu H, Wolter K (2021) Constrained multi-objective optimization for IoT-enabled computation offloading in collaborative edge and cloud computing. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3067732

    Article  Google Scholar 

  291. Tout H, Mourad A, Kara N, Talhi C (2021) Multi-persona mobility: joint cost-effective and resource-aware mobile-edge computation offloading. IEEE/ACM Trans Netw. https://doi.org/10.1109/TNET.2021.3066558

    Article  Google Scholar 

  292. Keshavarznejad M, Rezvani MH, Adabi S (2021) Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Cluster Comput. https://doi.org/10.1007/s10586-020-03230-y

    Article  Google Scholar 

  293. Liao Z, Peng J, Xiong B et al (2021) Adaptive offloading in mobile-edge computing for ultra-dense cellular networks based on genetic algorithm. J Cloud Comp 10:15. https://doi.org/10.1186/s13677-021-00232-y

    Article  Google Scholar 

  294. Deng X, Sun Z, Li D, Luo J, Wan S (2021) User-centric computation offloading for edge computing. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3057694

    Article  Google Scholar 

  295. Russo Russo G, Nardelli M, Cardellini V, Lo Presti F (2018) Multi-level elasticity for wide-area data streaming systems: a reinforcement learning approach. Algorithms 11:134. https://doi.org/10.3390/a11090134

    Article  Google Scholar 

  296. Dehnavi S, Faragardi HR, Kargahi M, Fahringer T (2019) A reliability-aware resource provisioning scheme for real-time industrial applications in a Fog-integrated smart factory. Microproc Microsyst 70:1–14. https://doi.org/10.1016/j.micpro.2019.05.011

    Article  Google Scholar 

  297. Mohammad FM, Jabbehdari S, Javadi HHS (2020) A dynamic fog service provisioning approach for IoT applications. Int J Commun Syst 33(14):e4541

    Article  Google Scholar 

  298. Shahidinejad A, Ghobaei‐Arani M (2020) Joint computation offloading and resource provisioning for edge‐cloud computing environment: a machine learning‐based approach. Softw: Pract Exper 50: 2212– 2230. https://doi.org/10.1002/spe.2888

  299. Wang N, Matthaiou M, Nikolopoulos DS, Varghese B (2020) DYVERSE: dynamic vertical scaling in multi-tenant edge environments. Future Gener Comput Syst 108:598–612. https://doi.org/10.1016/j.future.2020.02.043

    Article  Google Scholar 

  300. Tseng F, Tsai M, Tseng C, Yang Y, Liu C, Chou L (2018) A lightweight autoscaling mechanism for fog computing in industrial applications. IEEE Trans on Indus Info 14(10):4529–4537. https://doi.org/10.1109/TII.2018.2799230

    Article  Google Scholar 

  301. Mulinti RB, Nagendra M (2021) An efficient latency aware resource provisioning in cloud assisted mobile edge framework. Peer-to-Peer Netw Appl 14:1044–1057. https://doi.org/10.1007/s12083-020-01070-6

    Article  Google Scholar 

  302. Wang N, Varghese B, Matthaiou M, Nikolopoulos DS (2017) ENORM: a framework for edge node resource management. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2017.2753775

    Article  Google Scholar 

  303. Baghban H, Huang C-Y, Hsu C-H (2020) Resource provisioning towards OPEX optimization in horizontal edge federation. Comput Commun 158:39–50. https://doi.org/10.1016/j.comcom.2020.04.009

    Article  Google Scholar 

  304. Vinueza Naranjo PG, Baccarelli E, Scarpiniti M (2018) Design and energy-efficient resource management of virtualized networked Fog architectures for the real-time support of IoT applications. J Supercomput 74:2470–2507. https://doi.org/10.1007/s11227-018-2274-0

    Article  Google Scholar 

  305. Naha RK, Garg S, Chan A, Battula SK (2020) Deadline-based dynamic resource allocation and provisioning algorithms in fog-cloud environment. Future Gener Comput Syst 104:131–141. https://doi.org/10.1016/j.future.2019.10.018

    Article  Google Scholar 

  306. Son J, Buyya R (2019) Latency-aware virtualized network function provisioning for distributed edge clouds. J Syst Softw 152:24–31. https://doi.org/10.1016/j.jss.2019.02.030

    Article  Google Scholar 

  307. El Kafhali S, Salah K (2017) Efficient and dynamic scaling of fog nodes for IoT devices. J Supercomput 73:5261–5284. https://doi.org/10.1007/s11227-017-2083-x

    Article  Google Scholar 

  308. Arkian HR, Diyanat A, Pourkhalili A (2017) MIST: fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications. J Netw Comput Appl 82:152–165. https://doi.org/10.1016/j.jnca.2017.01.012

    Article  Google Scholar 

  309. Santos J, Wauters T, Volckaert B, De Turck F (2021) Towards end-to-end resource provisioning in fog computing over low power wide area networks. J Netw Comput Appl 175:102915. https://doi.org/10.1016/j.jnca.2020.102915

    Article  Google Scholar 

  310. Ma X, Wang S, Zhang S, Yang P, Lin C, Shen XS (2019) Cost-efficient resource provisioning for dynamic requests in cloud assisted mobile edge computing. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2019.2903240

    Article  Google Scholar 

  311. Zhou Z, Yu S, Chen W, Chen X (2020) CE-IoT: cost-effective cloud-edge resource provisioning for heterogeneous IoT applications. IEEE Internet Things J 7(9):8600–8614. https://doi.org/10.1109/JIOT.2020.2994308

    Article  Google Scholar 

  312. Abouaomar A, Cherkaoui S, Mlika Z, Kobbane A (2021) Resource provisioning in edge computing for latency sensitive applications. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3052082

    Article  Google Scholar 

  313. Madan N, Malik AW, Rahman AU, Ravana SD (2020) On-demand resource provisioning for vehicular networks using flying fog. Veh Commun 25:100252. https://doi.org/10.1016/j.vehcom.2020.100252

    Article  Google Scholar 

  314. Etemadi M, Ghobaei-Arani M, Shahidinejad A (2020) Resource provisioning for IoT services in the fog computing environment. An autonomic approach. Comput Commun 161:109–131. https://doi.org/10.1016/j.comcom.2020.07.028

    Article  Google Scholar 

  315. Li C, Bai J, Luo Y (2020) Efficient resource scaling based on load fluctuation in edge-cloud computing environment. J Supercomput 76:6994–7025. https://doi.org/10.1007/s11227-019-03134-8

    Article  Google Scholar 

  316. Murturi I, Avasalcai C, Tsigkanos C, Dustdar S (2019) edge-to-edge resource discovery using metadata replication. In: 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC), Larnaca, Cyprus, pp.1–6. https://doi.org/10.1109/CFEC.2019.8733149

  317. Babou CSM, Fall D, Kashihara S, Taenaka Y, Bhuyan MH, Niang I, Kadobayashi Y (2020) Hierarchical load balancing and clustering technique for home edge computing. IEEE Access 8:127593–127607. https://doi.org/10.1109/ACCESS.2020.3007944

    Article  Google Scholar 

  318. Gedeon J, Meurisch C, Bhat D, Stein M, Wang L, Mühlhäuser M (2017) Router-based brokering for surrogate discovery in edge computing. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, pp. 145–150. https://doi.org/10.1109/ICDCSW.2017.61

  319. Rejiba Z, Masip-Bruin X, Jurnet A, Marin-Tordera E, Ren G (2018) F2C-aware: enabling discovery in wi-fi-powered fog-to-cloud (F2C) systems. In: 2018 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Bamberg, pp. 113–116. https://doi.org/10.1109/MobileCloud.2018.00025

  320. Tanganelli G, Vallati C, Mingozzi E (2018) Edge-centric distributed discovery and access in the internet of things. IEEE Internet Things J 5(1):425–438. https://doi.org/10.1109/JIOT.2017.2767381

    Article  Google Scholar 

  321. Saurez E, Hong K, Lillethun D, Ramachandran U, Ottenwälder B (2016) Incremental deployment and migration of geo-distributed situation awareness applications in the fog. In: Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems (DEBS '16). Association for Computing Machinery, New York, NY, USA, 258–269. https://doi.org/10.1145/2933267.2933317

  322. Fayos-Jordan R, Felici-Castell S, Segura-Garcia J, Lopez-Ballester J, Cobos M (2020) Performance comparison of container orchestration platforms with low cost devices in the fog, assisting Internet of Things applications. J Netw Comput Appl 169:102788. https://doi.org/10.1016/j.jnca.2020.102788

    Article  Google Scholar 

  323. Okwuibe J, Haavisto J, Harjula E, Ahmad I, Ylianttila M (2020) SDN enhanced resource orchestration of containerized edge applications for industrial IoT. IEEE Access 8:229117–229131. https://doi.org/10.1109/ACCESS.2020.3045563

    Article  Google Scholar 

  324. Slamnik-Kriještorac N, de Britto e Silva E, Municio E, Carvalho de Resende HC, Hadiwardoyo SA, Marquez-Barja JM (2020) Network service and resource orchestration: a feature and performance analysis within the MEC-enhanced vehicular network context. Sensors 20: 3852. https://doi.org/10.3390/s20143852

  325. Yuan Q et al (2020) Cross-domain resource orchestration for the edge-computing-enabled smart road. IEEE Network 34(5):60–67. https://doi.org/10.1109/MNET.011.2000007

    Article  Google Scholar 

  326. Petri I, Rana O, Bittencourt LF, Balouek-Thomert D, Parashar M (2020) Autonomics at the edge: resource orchestration for edge native applications. IEEE Internet Comput. https://doi.org/10.1109/MIC.2020.3039551

    Article  Google Scholar 

  327. Sonmez C, Ozgovde A, Ersoy C (2019) Fuzzy workload orchestration for edge computing. IEEE Trans Netw Serv Manage 16(2):769–782. https://doi.org/10.1109/TNSM.2019.2901346

    Article  Google Scholar 

  328. Vu D-N, Dao N-N, Na W, Cho S (2020) Dynamic resource orchestration for service capability maximization in fog-enabled connected vehicle networks. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2020.3001289

    Article  Google Scholar 

  329. Liu Q, Han T (2019) VirtualEdge: multi-domain resource orchestration and virtualization in cellular edge computing. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, pp. 1051–1060. https://doi.org/10.1109/ICDCS.2019.00108

  330. Babirye S, Serugunda J, Okello D, Mwanje S (2020) Resource-aware workload orchestration for edge computing. In: 2020 28th Telecommunications Forum (TELFOR), pp. 1–4. https://doi.org/10.1109/TELFOR51502.2020.9306551

  331. Liu Q, Han T (2019) DIRECT: distributed cross-domain resource orchestration in cellular edge computing. In Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc '19). Association for Computing Machinery, New York, NY, USA, 181–190. https://doi.org/10.1145/3323679.3326516

  332. AlEbrahim S, Ahmad I (2017) Task scheduling for heterogeneous computing systems. J Supercomput 73:2313–2338. https://doi.org/10.1007/s11227-016-1917-2

    Article  Google Scholar 

  333. Sharma Y, Das Z, Moulik S (2021) SPORTS: a semi-partitioned real-time scheduler for heterogeneous multicore platforms. In: Ning L., Chau V., Lau F. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2020. Communications in Computer and Information Science, vol 1362. Springer, Singapore. https://doi.org/10.1007/978-981-16-0010-4_35

  334. Moulik S, Devaraj R, Sarkar A COST: a cluster-oriented scheduling technique for heterogeneous multi-cores. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 1951–1957. https://doi.org/10.1109/SMC.2018.00337

  335. Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R. 2016. Fog computing: principles, architectures, and applications. In: Internet of Things. Elsevier, pp. 61–75

  336. de Assunção MD, da Silva Veith A, Buyya R (2018) Distributed data stream processing and edge computing: A survey on resource elasticity and future directions. J Netw Comput Appl 103: 1–17. https://doi.org/10.1016/j.jnca.2017.12.001

  337. Chirivella-Perez E, Alcaraz JM, Calero QW, Gutiérrez-Aguado J (2018) Orchestration architecture for automatic deployment of 5G services from bare metal in mobile edge computing infrastructure. Wireless Commun Mobile Comput 2018:18. https://doi.org/10.1155/2018/5786936

    Article  Google Scholar 

  338. Bellavista P, Zanni A. 2017 Feasibility of fog computing deployment based on docker containerization over raspberry Pi. In: Proceedings of the 18th International Conference on Distributed Computing and Networking. ACM, 16.

  339. Liu P, Willis D, Banerjee S. 2016 Paradrop: enabling lightweight multi-tenancy at the network’s extreme edge. In: 2016 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, pp. 1–13

  340. Cardellini V, Lo Presti F, Nardelli M, Rossi F (2020) Self-adaptive container deployment in the fog: a survey. In: Brandic I., Genez T., Pietri I., Sakellariou R. (eds) algorithmic aspects of cloud computing. ALGOCLOUD 2019. lecture notes in computer science, vol 12041. Springer, Cham. https://doi.org/10.1007/978-3-030-58628-7_6

  341. Shekhar S, Chhokra AD, Bhattacharjee A, Aupy G, Gokhale A. 2017. INDICES: exploiting edge resources for performance-aware cloud hosted services. In: IEEE 1st International Conference on Fog and Edge Computing. IEEE, pp. 75–80

  342. Bittencourt LF, Lopes MM, Petri I, Rana OF 2015. Towards virtual machine migration in fog computing. In: 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. IEEE, pp. 1–8

  343. Hong C-H, Spence I, Nikolopoulos DS (2017) FairGV: fair and fast GPU virtualization. IEEE Trans Parallel Distrib Syst 28(12):3472–3485

    Article  Google Scholar 

  344. Ha K, Abe Y, Eiszler T, Chen Z, Hu W, Amos B, Upadhyaya R, Pillai P, Satyanarayanan M you can teach elephants to dance: agile VM handoff for edge computing. In: Proceedings of the ACM/IEEE 2nd Symposium on Edge Computing (SEC), San Jose, CA, USA, 28 July 2017; pp. 1–14

  345. He J, Ji S, Pan Y, Li Y (2014) Constructing load-balanced data aggregation trees in probabilistic wireless sensor networks. IEEE Trans Parallel Distrib Syst 25(7):1681–1690

    Article  Google Scholar 

  346. Sefraoui O, Aissaoui M, Eleuldj M (2012) OpenStack: toward an open-source solution for cloud computing. Int J Comput Appl 55:3

    Google Scholar 

  347. Brewer EA. 2015. Kubernetes and the path to cloud native. In: Proceedings of the Sixth ACM Symposium on Cloud Computing (SoCC '15). Association for Computing Machinery, New York, NY, USA, 167. https://doi.org/10.1145/2806777.2809955

  348. Mahmud R, Ramamohanarao K, Buyya R (2020) Application management in fog computing environments: a taxonomy, review and future directions. ACM Comput Surv 1(1):36. https://doi.org/10.1145/nnnnnnn.nnnnnnn

    Article  Google Scholar 

  349. Moulik S, Das Z, Saikia G CEAT: a cluster based energy aware scheduler for real-time heterogeneous systems. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, pp. 1815–1821. https://doi.org/10.1109/SMC42975.2020.9283084

  350. Zhou J et al (2020) Security-critical energy-aware task scheduling for heterogeneous real-time MPSoCs in IoT. IEEE Trans Serv Comput 13(4):745–758. https://doi.org/10.1109/TSC.2019.2963301

    Article  Google Scholar 

  351. Hua Y, Guan L, Kyriakopoulos KG (2020) A Fog caching scheme enabled by ICN for IoT environments. Future Gener Comput Syst 111:82–95. https://doi.org/10.1016/j.future.2020.04.040

    Article  Google Scholar 

  352. Afrin M, Jin J, Rahman A, Tian Y-C, Kulkarni A (2019) Multi-objective resource allocation for edge cloud based robotic workflow in smart factory. Futur Gener Comput Syst 97(2019):119–130

    Article  Google Scholar 

  353. Gupta H, Dastjerdi AV, Ghosh SK, Buyya R 2017. iFogSim: a toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw: Pract Exp 47(9): 1275–1296

  354. Sonmez C, Ozgovde A, Ersoy C (2018) EdgeCloudSim: an environment for performance evaluation of edge computing systems. Trans Emerg Telecommun Technol 29(11):e3493

    Article  Google Scholar 

  355. Schulz P, Matthe M, Klessig H, Simsek M, Fettweis G, Ansari J, Ashraf SA, Almeroth B, Voigt J, Riedel I, Puschmann A, Mitschele-Thiel A, Muller M, Elste T, Windisch M (2017) Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun Mag 55(2):70–78

    Article  Google Scholar 

  356. Bellavista P, Chessa S, Foschini L, Gioia L, Girolami M (2018) Human-enabled edge computing: exploiting the crowd as a dynamic extension of mobile edge computing. IEEE Commun Mag 56(1):145–155

    Article  Google Scholar 

  357. Kang Y, Hauswald J, Gao C, Rovinski A, Mudge T, Mars J, Tang L (2017) Neurosurgeon: collaborative intelligence between the cloud and mobile edge. Acm Sigplan Notices 52(4):615–629

    Article  Google Scholar 

  358. Teerapittayanon S, McDanel B, Kung HT 2017. Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE, pp. 328–339

  359. Xia Q, Ye W, Tao Z, Jindi W, Li Q (2021) A survey of federated learning for edge computing: research problems and solutions. High-Confid Comput 1(1):100008. https://doi.org/10.1016/j.hcc.2021.100008

    Article  Google Scholar 

  360. Sanaei Z, Abolfazli S, Gani A, Buyya R (2014) Heterogeneity in mobile cloud computing: taxonomy and open challenges. IEEE Commun Surv Tut 16(1):369–392

    Article  Google Scholar 

  361. Xiao Y, Noreikis M, Yl¨a-Ja¨ aiski A 2017. Qos-oriented capacity planning for edge computing In: 2017 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6

  362. Varghese B, Wang N, Li J, Nikolopoulos DS 2017a. Edge-as-a-Service: towards distributed cloud architectures. In International Conference on Parallel Computing (Advances in Parallel Computing). IOS Press, pp. 784–793

  363. Fernando N, Loke SW, Rahayu W 2016. Computing with nearby mobile devices: a work sharing algorithm for mobile edge-clouds. IEEE Transactions on Cloud Computing (2016)

  364. Tang B, Chen Z, Hefferman G, Wei T, He H, Qing Yang Q. 2015. A hierarchical distributed fog computing architecture for big data analysis in smart cities. In: Proceedings of the ASE BigData & Social Informatics. ACM, 28

  365. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc IEEE. https://doi.org/10.1109/JPROC.2019.2918951

    Article  Google Scholar 

  366. Xiao Y, Jia Y, Liu C, Cheng X, Yu J, Lv W (2019) Edge computing security: state of the art and challenges. Proc IEEE 107:1608–1631

    Article  Google Scholar 

  367. Hong C-H, Varghese B (2019) Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms. ACM Comput Surv 52(5):1–37. https://doi.org/10.1145/332606

    Article  Google Scholar 

  368. Ghobaei-Arani M, Souri A, Rahmanian AA (2020) Resource management approaches in fog computing: a comprehensive review. J Grid Comput 18:1–42. https://doi.org/10.1007/s10723-019-09491-1

    Article  Google Scholar 

  369. Puliafito C, Mingozzi E, Longo F, Puliafito A, Rana O (2019) Fog computing for the internet of things: a Survey. ACM Trans Internet Technol (TOIT) 19(2):18

    Article  Google Scholar 

  370. Toczé K, Nadjm-Tehrani S (2018) A taxonomy for management and optimization of multiple resources in edge computing. Wireless Commun Mobile Comput 2018:1–23. https://doi.org/10.1155/2018/7476201

    Article  Google Scholar 

  371. Luo Q, Shihong H, Li C, Li G, Shi W (2021) Resource scheduling in edge computing: a survey. IEEE Commun Surv Tut 23(4):2131–2165

    Article  Google Scholar 

  372. Salaht FA, Desprez F, Lebre A (2020) An overview of service placement problem in fog and edge computing. ACM Comput 53(3):1–35. https://doi.org/10.1145/3391196

    Article  Google Scholar 

  373. Nayeri ZM, Ghafarian T, Javadi B (2021) Application placement in Fog computing with AI approach: taxonomy and a state of the art survey. J Netw Comput Appl 185:103078. https://doi.org/10.1016/j.jnca.2021

    Article  Google Scholar 

  374. Kaur M, Aron R (2021) A systematic study of load balancing approaches in the fog computing environment. J Supercomput 77:9202–9247. https://doi.org/10.1007/s11227-020-03600-8

    Article  Google Scholar 

  375. Neghabi N, Hosseinzadeh R (2018) Load balancing mechanisms in the software defined networks: a systematic and comprehensive review of the literature. IEEE Access 6:14159–14178. https://doi.org/10.1109/ACCESS.2018.2805842

    Article  Google Scholar 

  376. Lin H, Zeadally S, Chen Z, Labiod H, Wang L (2020) A survey on computation offloading modeling for edge computing. J Netw Comput Appl 169:102781. https://doi.org/10.1016/j.jnca.2020.102781

    Article  Google Scholar 

  377. Wang J, Pan J, Esposito F, Calyam P, Yang Z, Mohapatra P (2019) Edge cloud offloading algorithms: issues, methods, and perspectives. ACM Comput Surv (CSUR) 52(1):1–23

    Article  Google Scholar 

  378. Aazam M, Zeadally S, Harras KA (2018) Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Future Gener Comput Syst 87:278–289. https://doi.org/10.1016/j.future.2018.04.057

    Article  Google Scholar 

  379. Jiang C, Cheng X, Gao H, Zhou X, Wan J (2019) Toward computation offloading in edge computing: a survey. IEEE Access 7:131543–131558. https://doi.org/10.1109/ACCESS.2019.2938660

    Article  Google Scholar 

  380. Shakarami A, Ghobaei-Arani M, Masdari M et al (2020) A survey on the computation offloading approaches in mobile edge/cloud computing environment: a stochastic-based perspective. J Grid Comput. https://doi.org/10.1007/s10723-020-09530-2

    Article  Google Scholar 

  381. Le Duc T, Leiva RG, Casari P, Östberg P-O (2019) Machine learning methods for reliable resource provisioning in edge-cloud computing: a survey. ACM Comput Surv 52(5):1–39. https://doi.org/10.1145/3341145

    Article  Google Scholar 

  382. Velasquez K, Abreu DP, Assis M et al (2018) (2018) Fog orchestration for the Internet of Everything: state-of-the-art and research challenges. J Internet Serv Appl 9:14. https://doi.org/10.1186/s13174-018-0086-3

    Article  Google Scholar 

  383. Casalicchio E (2019) Container orchestration: A survey. In: Puliafito A., Trivedi K. (eds) Systems Modeling: Methodologies and Tools. EAI/Springer innovations in communication and computing. Springer, Cham. https://doi.org/10.1007/978-3-319-92378-9_14

  384. Ren J, Zhang D, He S, Zhang Y, Li T (2019) A survey on end-edge-cloud orchestrated network computing paradigms: transparent computing, mobile edge computing, fog computing, and cloudlet. ACM Comput Surv 52(6):1–36. https://doi.org/10.1145/3362031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansal, P., Kumar, M. & Verma, O.P. Classification of resource management approaches in fog/edge paradigm and future research prospects: a systematic review. J Supercomput 78, 13145–13204 (2022). https://doi.org/10.1007/s11227-022-04338-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04338-1

Keywords

Navigation