Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

SSLB: Self-Similarity-Based Load Balancing for Large-Scale Fog Computing

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

As a novelty approach to achieve Internet of things and an important supplement of cloud, fog computing has been widely studied in recent years. The research in this domain is still in infancy, so an efficient resource management is seriously required. Existing solutions are mostly ported from cloud domain straightforward, which performed well in many cases, but cannot keep excellent when the fog scale increased. In this paper, we examine the runtime characteristics of fog infrastructure and propose SSLB, a self-similarity-based load balancing mechanism for large-scale fog computing. As far as we know, this is the first work try to address the load balancing challenges caused by fog’s ‘large-scale’ characteristic. Furthermore, we propose an adaptive threshold policy and corresponding scheduling algorithm, which successfully guarantees the efficiency of SSLB. Experimental results show that SSLB outperforms existing schemes in fog scenario. Specifically, the resources utilization of SSLB is 1.7\(\times \) and 1.2\(\times \) of traditional centralized and decentralized schemes under 1000 nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inayat, Z.; Gani, A.; Anuar, N.B.; Anwar, S.; Khan, M.K.: Cloud-based intrusion detection and response system: open research issues, and solutions. Arab. J. Sci. Eng. 42(2), 399–423 (2017)

    Article  Google Scholar 

  2. Dastjerdi, A.V.; Buyya, R.: Fog computing: helping the Internet of Things realize its potential. Computer 49(8), 112–116 (2016)

    Article  Google Scholar 

  3. Kim, H.; Feamster, N.: Improving network management with software defined networking. IEEE Commun. Mag. 51(2), 114–119 (2013)

    Article  Google Scholar 

  4. Hawilo, H.; Shami, A.; Mirahmadi, M.; Asal, R.: NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC). IEEE Netw. 28(6), 18–26 (2014)

    Article  Google Scholar 

  5. Demestichas, P.; Georgakopoulos, A.; Karvounas, D.; Tsagkaris, K.; Stavroulaki, V.; Lu, J.; Xiong, C.; Yao, J.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)

    Article  Google Scholar 

  6. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Big Data and Internet of Things: A Roadmap for Smart Environments, pp. 169–186 (2014)

    Chapter  Google Scholar 

  7. Cao, Y.; Chen, S.; Hou, P.; Brown, D.: FAST: a fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In: NAS, pp. 2–11 (2015)

  8. Zhu, J.; Chan, D.S.; Prabhu, M.S.; Natarajan, P.; Hu, H.; Bonomi, F.: Improving web sites performance using edge servers in fog computing architecture. In: SOSE, pp. 320–323 (2013)

  9. Stantchev, V.; Barnawi, A.; Ghulam, S.; Schubert, J.; Tamm, G.: Smart items, fog and cloud computing as enablers of servitization in healthcare. Sens. Transducers 185(2), 121 (2015)

    Google Scholar 

  10. Aazam, M.; Huh, E.N.: Fog computing and smart gateway based communication for cloud of things. In: FiCloud, pp. 464–470 (2014)

  11. Oueis, J.; Strinati, E.C.; Barbarossa, S.: The fog balancing: load distribution for small cell cloud computing. In: VTC Spring, pp. 1–6 (2015)

  12. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.: Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. In: ICC, pp. 3909–3914 (2015)

  13. Ye, Q.; Rong, B.; Chen, Y.; Al-Shalash, M.; Caramanis, C.; Andrews, J.G.: User association for load balancing in heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 12(6), 2706–2716 (2013)

    Article  Google Scholar 

  14. Karger, D.R.; Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer systems. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 36–43 (2004)

  15. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  16. Luan, T.H.; Gao, L.; Li, Z.; Xiang, Y.; Wei, G.; Sun, L.: Fog computing: focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815 (2015)

  17. A survey on the scale of base station in the China Mobile. https://www.mobileworldlive.com/asia/asianews/china-mobile-has-a-third-of-global-4g-basestations/ (2016). Accessed Dec 2016

  18. Xu, J.; Zhang, L.; Zuo, W.; Zhang, D.; Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising. In: The IEEE International Conference on Computer Vision, pp. 244–252 (2015)

  19. Rivaz, H.; Karimaghaloo, Z.; Collins, D.L.: Self-similarity weighted mutual information: a new nonrigid image registration metric. Med. Image Anal. 18(2), 343–358 (2014)

    Article  Google Scholar 

  20. Dokmanic, I.; Parhizkar, R.; Ranieri, J.; Vetterli, M.: Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32(6), 12–30 (2015)

    Article  Google Scholar 

  21. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst. 12(10), 1094–1104 (2001)

    Article  Google Scholar 

  22. Ousterhout, K.; Panda, A.; Rosen, J.; Venkataraman, S.; Xin, R.; Ratnasamy, S.; Shenker, S.; Stoica, I.: The case for tiny tasks in compute clusters. In: HotOS, vol. 13, pp. 14–14 (2013)

  23. Gupta, H.; Dastjerdi, A.V.; Ghosh, S.K.; Buyya, R.: IFogSim: a toolkit for modeling and simulation of resource management techniques in internet of things, edge and fog computing environments. arXiv preprint arXiv:1606.02007 (2016)

  24. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

    Article  Google Scholar 

  25. Lu, K.; Sun, M.; Li, C.; Zhuang, H.; Zhou, J.; Zhou, X.: Wave: trigger based synchronous data process system. In: Cluster, Cloud and Grid Computing (CCGrid), pp. 540–541 (2014)

  26. Li, C.; Zhuang, H.; Xu, B.; Wang, J.; Wang, C.; Zhou, X.: Light weight key-value store for efficient services on local distributed mobile devices. In: The 24th International Conference on Web Services, ICWS Research Track (2017)

  27. The official website of Apache Hadoop. http://hadoop.apache.org/. Accessed Apr 2017

  28. Ningning, S.; Chao, G.; Xingshuo, A.; Qiang, Z.: Fog computing dynamic load balancing mechanism based on graph repartitioning. China Commun. 13(3), 156–164 (2016)

    Article  Google Scholar 

  29. Cardellini, V.; Grassi, V.; Presti, F.L.; Nardelli, M.: On QoS-aware scheduling of data stream applications over fog computing infrastructures. In: ISCC, pp. 271–276 (2015)

  30. Intharawijitr, K.; Iida, K.; Koga, H.: Analysis of fog model considering computing and communication latency in 5G cellular networks. In: PerCom Workshops, pp. 1–4 (2016)

  31. Verma, M.; Bhardwaj, N.; Yadav, A.K.: Real time efficient scheduling algorithm for load balancing in fog computing environment. Int. J. Inf. Technol. Comput. Sci. 8(4), 1–10 (2016)

    Google Scholar 

  32. Bitam, S.; Zeadally, S.; Mellouk, A.: Fog computing job scheduling optimization based on bees swarm. Enterp. Inf. Syst. (2017). https://doi.org/10.1080/17517575.2017.1304579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhuang, H., Wang, Q. et al. SSLB: Self-Similarity-Based Load Balancing for Large-Scale Fog Computing. Arab J Sci Eng 43, 7487–7498 (2018). https://doi.org/10.1007/s13369-018-3169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3169-3

Keywords

Navigation