Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Task offloading based on deep learning for blockchain in mobile edge computing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Blockchain is an advanced technique to realize smart contracts, various transactions, and P2P crypto-currencies in the e-commerce society. However, the traditional blockchain does not consider a mobile environment to design a data offloading of the blockchain such that the blockchain results in high computational cost and huge data propagation delay. In this paper, to remedy the above problem, we propose a scalable blockchain and a task offloading technique based on the neural network of the mobile edge computing scenario. Experimental results show that our approach is very scalable in the mobile scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nakamoto, S. (2008). Bitcoin a peer-to-peer electronic cash system. Retrieved from http://www.bitcoin.org/bitcoin.pdf

  2. Rausch, P., Hashemi, S. H., Faghri, F., & Campbell, R. H. (2016). World of empowered IoT users. In IEEE first international conference on internet of things design and implementation (IoTDI).

  3. Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. IEEE Access, 4, 2292–2303.

    Article  Google Scholar 

  4. Jurdak, R., Dorri, A., Kanhere, S. S., & Gauravaram, P. (2019). Lsb a lightweight scalable blockchain for iot security and privacy. Journal of Parallel and Distributed Computing., 134, 180–197.

    Article  Google Scholar 

  5. Niyato, D., Wang, P., Xiong, Z., Feng, S., Han, Z. (2017). Edge computing resource management and pricing for mobile blockchain. arXiv preprint.

  6. Bruce, J. (2014). The mini-blockchain scheme. www.cryptonite.info.

  7. Pouwelse, J., Otte, P., de Vos, M. (2017). Trustchain: A sybil-resistant scalable blockchain. In Future generation computer systems. Elsevier.

  8. Samet, H. (1989). The design and analysis of spatial data structures. Boston: Addison-Wesley.

    Google Scholar 

  9. Bayer, S. H. D., & Stornetta, W. S. (1993). Improving the efficiency and reliability of digital time-stamping (pp. 329–334). New York: Springer.

    MATH  Google Scholar 

  10. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. vol. 151. Ethereum Project Yellow Paper.

  11. Aitzhan, N. Z., & Svetinovic, D. (2016). Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Transactions on Dependable and Secure Computing., 15(5), 840–852.

    Article  Google Scholar 

  12. Stanciu, A. (2017). Blockchain based distributed control system for edge computing. In International conference on control systems and computer science (CSCS) (pp. 667–671).

  13. Samaniego, M., & Deters, R. (2016). Blockchain as a service for iot. In IEEE international conference on internet of things (iThings) (pp. 433–436).

  14. Omohundro, S. (2014). Autonomous technology and the greater human good. Journal of Experimental and Theoretical Artificial Intelligence, 26(3), 303–315.

    Article  Google Scholar 

  15. Tao, X., Ota, K., Dong, M., Qi, H., & Li, K. (2017). Performance guaranteed computation offloading for mobile-edge cloud computing. IEEE Wireless Communications Letters, 6, 774–777.

    Article  Google Scholar 

  16. Zhang, J., Mao, Y., & Letaief, K. B. (2016). Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.

    Article  Google Scholar 

  17. Liu, X., Zeng, N., Liu, Y., Alsaadi, F. E., Liu, W., & Wang, Z. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26.

    Article  Google Scholar 

  18. Gerding, E., Perez-Diaz, A., & McGroarty, F. (2018). Decentralised coordination of electric vehicle aggregators. In International workshop on optimization in multiagent systems.

  19. Kilari, V. T., Yang, D., Tang, J., Yu, R., & Xue, G. (2018). Coinexpress: A fast payment routing mechanism in blockchain-based payment channel networks. In International conference on computer communication and networks (ICCCN).

  20. Monga, R., Chen, K., Devin, M., Dean, J., Le, Q. V., Mao, M., Corrado, G., Ranzato, M. A., Senior, A., Tucker, P., Yang, K. (2012). Large scale distributed deep networks. In Advances in neural information processing systems (NIPS). (Vol. 1, pp. 1223–1232)

  21. Hazan, E., Duchi, J., & Singer, Y. (2011). Adaptive subgradient methods for online leaning and stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.

    MATH  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G. E., Srivastava, N., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs1207.0580.

  23. Ns3. https://www.nsnam.org (2017).

  24. Github. (2016). Network simulator for edge computing and cloud computing. https://github.com/subinjp/edgecomputing.

  25. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

    Article  Google Scholar 

  26. Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Communications Surveys & Tutorials, 11(4), 19–41.

    Article  Google Scholar 

  27. Park, J., Seok, B., & Park, J. H. (2019). A lightweight hash-based blockchain architecture for industrial Iot. Applied Sciences, 9(18), 3740.

    Article  Google Scholar 

  28. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, N. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.

    MathSciNet  MATH  Google Scholar 

  29. TensorFlow. (2017). https://www.tensorflow.org/.

  30. Chen, X., Zhong, W., Yang, C., Liu, Y., & Xie, S. (2019). Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access, 7, 26652–26664.

    Article  Google Scholar 

  31. Chen, M., & Hao, Y. (2018). Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3), 587–597.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hua Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, CH. Task offloading based on deep learning for blockchain in mobile edge computing. Wireless Netw 27, 117–127 (2021). https://doi.org/10.1007/s11276-020-02444-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02444-7

Keywords

Navigation