Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Bi-objective optimization for multi-task offloading in latency and radio resources constrained mobile edge computing networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The Mobile Edge Computing (MEC) environment provides leading-edge services to smart mobile devices (SMDs). Besides, computation offloading is a promising service in 5G: it reduces battery drain and applications’ execution time. In this context, we consider a general system consisting of a multi-cell communication network where each base station (BS) is equipped with a MEC server to provide computation offloading services to nearby mobile users. In addition, each SMD handles multiple independent offloadable heavy tasks that are latency-sensitive. The purpose of this article is to jointly optimize tasks’ offloading decisions as well as the allocation of critical radio resources while minimizing the overall energy consumption. Therefore, we have formulated a bi-objective optimization problem that is NP-hard. Because of the short decision time constraint, the optimal solution implementation is infeasible. Accordingly, with the use of the weighted aggregation approach, we propose Intelligent Truncation based Hybrid Local Search (ITHLS) solution. In critical radio resources situations, our solution jointly minimizes the number of penalized SMDs and the overall consumed energy. Finally, simulation experiments were realized to study the ITHLS solution performance compared to some effective state of the art solutions, and the simulation results in terms of decision-making time, energy and number of truncated SMDs are very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abraham S, Al-Khatib O, Malek M.F.A. (2020). Energy-efficient and delay-aware mobile cloud offloading over cellular networks. Telecommun Syst 73(1):131–142

  2. Ahmed E, Gani A, Sookhak M, Ab Hamid SH, Xia F (2015) Application optimization in mobile cloud computing: motivation taxonomies and open challenges. J Netw Comput Appl 52:52–68

    Article  Google Scholar 

  3. Ai Y, Peng M, Zhang K (2017) Edge cloud computing technologies for internet of things: a primer. Digital Communications and Networks

  4. Barbera MV, Kosta S, Mei A, Stefa J (2013) To offload or not to offload? The bandwidth and energy costs of mobile cloud computing. In: Proceedings IEEE INFOCOM. IEEE, pp. 1285–1293

  5. Chaufournier L, Sharma P, Le F, Nahum E, Shenoy P, and Towsley D (2017) Fast transparent virtual machine migration in distributed edge clouds. In: Proc. of the Second ACM/IEEE Symposium on Edge Computing

  6. Chen X (2015) Decentralized computation offloading game for Mobile cloud computing. IEEE Trans Parallel Distrib Syst 26(4):974–983

    Article  Google Scholar 

  7. Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808

    Article  Google Scholar 

  8. Chun B, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the sixth conference on Computer systems. ACM, pp. 301–314

  9. El Ghmary M, Chanyour T, Hmimz Y, Malki MOC (2019) Efficient multi-task offloading with energy and computational resources optimization in a mobile edge computing node. Int J Elect Comput Eng 9:2088–8708

    Google Scholar 

  10. El Ghmary M, Chanyour T, Hmimz Y, Malki MOC (2020) Processing time and computing resources optimization in a Mobile edge computing node. In: Embedded Systems and Artificial Intelligence. Springer, pp. 99–108

  11. Ericsson L (2011) More than 50 billion connected devices. White Paper

  12. Fan B, Leng S, Yang K (2016) A dynamic bandwidth allocation algorithm in mobile networks with big data of users and networks. IEEE Netw 30(1):6–10

    Article  Google Scholar 

  13. Fu Z, Ren K, Shu J, Sun X, Huang F (2016) Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans Parallel Dist Syst 27(9):2546–2559

    Article  Google Scholar 

  14. Gautam S, Lagunas E, Chatzinotas S, Ottersten B (2019) Relay selection and resource allocation for SWIPT in multi-user OFDMA systems. IEEE Trans Wirel Commun 18(5):2493–2508

    Article  Google Scholar 

  15. Ge X, Tu S, Mao G, Wang CX, Han T (2016) 5G ultra-dense cellular networks. IEEE Wirel Commun 23(1):72–79

    Article  Google Scholar 

  16. Gu B, Sheng VS (2017) A robust regularization path algorithm for ν-support vector classification. IEEE Trans Neural Netw Learn Syst 28(5):1241–1248

    Article  Google Scholar 

  17. Guo H, Liu J (2019) UAV-enhanced intelligent offloading for internet of things at the edge. IEEE Trans Indust Inform 16(4):2737–2746

    Article  Google Scholar 

  18. Guo F, Zhang H, Ji H, Li X, Leung VC (2018) An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Trans Networking 26(6):2651–2664

    Article  Google Scholar 

  19. Guo F, Zhang H, Ji H, Li X, Leung VC (2018) Energy efficient computation offloading for multi-access mec enabled small cell networks. In: 2018 IEEE international conference on communications workshops (ICC workshops). IEEE, pp 1-6

  20. Hegyi A, Flinck H, Ketyko I, Kuure P, Nemes C, Pinter L (2016) Application orchestration in mobile edge cloud: placing of IoT applications to the edge. In: IEEE 1st international workshops on foundations and applications of self* systems (FAS*W). IEEE, pp 230-235

  21. Hoang DT, Niyato D, Wang P (2012) Optimal admission control policy for mobile cloud computing hotspot with cloudlet. In: wireless communications and networking conference (WCNC). IEEE, pp 3145-3149

  22. Jafari A, Lpez-Prez D, Song H, Claussen H, Ho L, Zhang J (2015) Small cell backhaul: challenges and prospective solutions. EURASIP J Wireless Commun Netw 206:1–18

    Google Scholar 

  23. Kumar K, Lu Y (2010) Cloud computing for Mobile users: can offloading computation save energy? IEEE Computer 43(4):51–56

    Article  Google Scholar 

  24. Li Y, Wang S (2018) An energy-aware edge server placement algorithm in mobile edge computing. In: 2018 international conference on EDGE computing (EDGE). IEEE, pp 66-73

  25. Lin YD, Chu ETH, Lai YC, Huang TJ (2015) Time-and-energy aware computation offloading in handheld devices to coprocessors and clouds. IEEE Syst J 9(2):393–405

    Article  Google Scholar 

  26. Liu J, Zhang Q (2019) Code-partitioning offloading schemes in mobile edge computing for augmented reality. IEEE Access 7:11222–11236

    Article  Google Scholar 

  27. Liu J, Ahmed E, Shiraz M, Gani A, Buyya R, Qureshi A (2015) Application partitioning algorithms in mobile cloud computing: taxonomy, review and future directions. J Netw Comput Appl 48:99–117

    Article  Google Scholar 

  28. Liu L, Guo X, Chang Z, Ristaniemi T (2019) Joint optimization of energy and delay for computation offloading in cloudlet-assisted mobile cloud computing. Wirel Netw 25(4):2027–2040

    Article  Google Scholar 

  29. Lyu X, Tian H, Sengul C, Zhang P (2017) Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Trans Veh Technol 66(4):3435–3447

    Article  Google Scholar 

  30. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surveys Tuts 19(3):1628–1656

    Article  Google Scholar 

  31. Niu X, Shao S, Xin C, Zhou J, Guo S, Chen X, Qi F (2019) Workload allocation mechanism for minimum service delay in edge computing-based power internet of things. IEEE Access 7:83771–83784

    Article  Google Scholar 

  32. Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A. et al (2014) Mobile-edge computing introductory technical white paper. Mobile-edge computing (MEC) industry initiative

  33. Peng M, Zhang K, Jiang J, Wang J, Wang W (2015) Energy-efficient resource assignment and power allocation in heterogeneous cloud radio access networks. IEEE Trans Veh Technol 64(11):5275–5287

    Article  Google Scholar 

  34. Sardellitti S, Scutari G, Barbarossa S (2015) Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans Signal Inf Process Over Netw 1(2):89–103

    Article  MathSciNet  Google Scholar 

  35. Secci S, Raad P, Gallard P (2016) Linking virtual machine mobility to user mobility. IEEE Trans Netw Service Manag 13(4):927–940

    Article  Google Scholar 

  36. Shiraz M, Gani A (2012) Mobile cloud computing: critical analysis of application deployment in virtual machines. In: proceedings of the international conference on information and computer networks (ICICN’12)

  37. Sun H, Zhou F, Hu RQ (2019) Joint offloading and computation energy efficiency maximization in a mobile edge computing system. IEEE Trans Veh Technol 68(3):3052–3056

    Google Scholar 

  38. Wu Y, Wang Y, Zhou F, Hu RQ (2019) Computation efficiency maximization in OFDMA-based Mobile edge computing networks. IEEE Commun Lett 24(1):159–163

    Article  Google Scholar 

  39. Yan J, Bi S, Zhang YJA, Tao M (2019) Optimal task offloading and resource allocation in Mobile-edge computing with inter-user task dependency. IEEE Trans Wirel Commun 19(1):235–250

    Article  Google Scholar 

  40. Yang L, Cao J, Yuan Y, Li T, Han A, Chan A (2013) A framework for partitioning and execution of data stream applications in mobile cloud computing. ACM SIGMETRICS perform. Eval Rev 40(4):23–32

    Article  Google Scholar 

  41. Yu Y, Zhang J, Letaief KB (2016) Joint subcarrier and CPU time allocation for mobile edge computing. In: Proceedings of IEEE GLOBECOM. IEEE, pp. 1–6

  42. Zhang W, Wen Y, Guan K, Kilper D, Luo H, Wu D (2013) Energy optimal Mobile cloud computing under stochastic Wireless Channel. IEEE Trans Wirel Commun 12(9):4569–4581

    Article  Google Scholar 

  43. Zhang W, Wen Y, Chen HH (2014) Toward transcoding as a service: energy-efficient offloading policy for green mobile cloud. IEEE Netw 28(6):67–73

    Article  Google Scholar 

  44. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y (2016) Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks. IEEE Access 4:5896–5907

    Article  Google Scholar 

  45. Zhang H, Guo J, Yang L, Li X, Ji H (2017) Computation offloading considering fronthaul and backhaul in small-cell networks integrated with MEC. In: 2017 IEEE conference on computer communications workshops (INFOCOM WKSHPS). IEEE, pp 115–120

  46. Zhao P, Tian H, Qin C, Nie G (2017) Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing. IEEE Access 5:11255–11268

    Article  Google Scholar 

  47. Zhao Z, Zhao R, Xia J, Lei X, Li D, Yuen C, Fan L (2020) A novel framework of three-hierarchical offloading optimization for MEC in industrial IoT networks. IEEE TransIndust Inform 16(8):5424–5434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Hmimz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hmimz, Y., Chanyour, T., El Ghmary, M. et al. Bi-objective optimization for multi-task offloading in latency and radio resources constrained mobile edge computing networks. Multimed Tools Appl 80, 17129–17166 (2021). https://doi.org/10.1007/s11042-020-09365-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09365-9

Keywords

Navigation