Nothing Special   »   [go: up one dir, main page]

Saltar al conteníu

Homotopía

Esti artículu foi traducíu automáticamente y precisa revisase manualmente
De Wikipedia
Los dos caminos en negrina que s'amuesen enriba son homotópicos en rellación a los sos estremos. Les llinies fines marquen isocontornos d'una posible homotopía.

En topoloxía, y más precisamente en topoloxía alxebraica, dos aplicaciones continues d'un espaciu topolóxicu n'otru dícense homotópicas (del griegu homos = mesmu y topos = llugar) si una d'elles puede "deformarse de cutio" na otra.

Definición formal

[editar | editar la fonte]

Dos aplicaciones continues dícense homotópicas si esiste otra aplicación (continua tamién) tal que:


Un exemplu importante son les distintes clases (homotópicas) de mapeos del círculu a un espaciu

la estructura resultante ye'l perimportante grupu fundamental.

  • Si dos aplicaciones f y g son homotópicas, escríbese f ≃ g; lo que significa esta rellación ye efeutivamente una rellación d'equivalencia sobre'l conxuntu d'aplicaciones continues de de X en Y, Les clases d'equivalencia denominar clases de homotopía d'aplicaciones.[1]

Tipu homotópico

[editar | editar la fonte]

Dizse que dos espacios X, Y tienen el mesmu tipu homotópico, si esiste un par d'aplicaciones y tales que y son homotópicos a y respeutivamente.

Suel ser utilizáu'l símbolu: , pa indicar que los oxetos f y g son homotópicos.

Como exemplos, una 1-esfera y un toru sólidu tienen el mesmu tipu homotópico. Un espaciu topolóxicu que tien el mesmu tipu homotópico qu'un conxuntu unitariu dizse contractible.

Referencies

[editar | editar la fonte]
  1. Munkres: "Topoloxía"

Lliteratura del casu

[editar | editar la fonte]

Enllaces esternos

[editar | editar la fonte]