Nothing Special   »   [go: up one dir, main page]

0% found this document useful (0 votes)
18 views11 pages

4.damped SHM

Download as ppt, pdf, or txt
Download as ppt, pdf, or txt
Download as ppt, pdf, or txt
You are on page 1/ 11

Damped SHM

 F   bx  kx  mx

k o  k m  b m
“Natural Frequency” “Damping Parameter”
(rad/s) (s-1)
m

2
x   x  o x  0
“Damping Constant”
(kg/s) b
EOM: damped oscillator
Guess a complex solution: z (t )  Ae j  pt  

j 2 p 2 Ae j  pt    jpAe j  pt    o Ae j  pt    0
2


Ae j  pt    p 2  jp  o  0
2

A0
2
“trivial solution”  p 2  jp  o  0
Actually 2 equations:

Real = 0 Imaginary = 0

 p 2  o  0
2
jp  0
p  o  0

… also trivial !
Try a complex frequency: z (t )  Ae j n  js t  

 n  js    j n  js   o  0
2 2

2
 n 2  2 jns  s 2  jn  s  o  0

Real Imaginary
2
 n 2  s 2  s  o  0  2 jns  jn  0

 2
 2 
2
 n 2    o  0 s
4 2 2

2  2
n 2  o  A,  are free constants.
4
 2 
2
  
j    o   j t  
 4 2  
z (t )  Ae  

 2 
2 

 t j  o  t  

 4 
z (t )  Ae 2
e  


 t  2 2 
x(t )  Ae 2
cos o  t   
 4 
0.8

0.6

0.4

0.2
* amplitude decays due to damping

0
* frequency reduced due to damping
-0.2

-0.4

-0.6

-0.8
0 2 4 6 8 10 12
How damped?

Quality factor: unitless ratio of natural frequency to damping parameter

0
Q

  1 
 ot j  o 1 2 t  
2Q 4Q
z (t )  Ae e  

Often use it in the EOM:


o 2
x  x  o x  0
Q
1. “Under Damped” or “Lightly Damped”: Q  1

Oscillates at ~o (slightly less)

Looks like SHM (constant A) over a few cycles:

o = 1,  = .01, Q = 100, xo = 1
1

0.5
Position

-0.5

-1
0 5 10 15 20 25 30 35
Time

Amplitude drops by 1/e in Q/ cycles.


2. “Over Damped”: Q  1 o  

 2 
2 

 t j  o  t  

 4 
z (t )  Ae 2
e  

imaginary!

 2 

 t j j   o 2 t  
 4 
z (t )  Ae 2
e  


 t 
2
 o 2 t
part of A
z (t )  Ae 2
e 4
e j

Still need two constants for the 2nd order EOM:

 2   2 

   o 2  t 
   o 2 t
2 4  2 4 
z (t )  A1e  
 A2 e  

No oscillations!
Over Damped
o = 1,  = 10, Q = .1, xo = 1
1

0.8
Position 0.6

0.4

0.2

0
0 5 10 15 20 25 30 35
Time
3 “Critically Damped”: Q  0.5   2o
  2    2 
   o 2  t    o 2 t
2 4  2 4 
z (t )  A1e  
 A2 e  

0 0

 
  t
z (t )   A1  A2 e 2

…really just one constant, and we need two. Real solution:


 
  t
z (t )   A  Bt e 2
Critically Damped
o = 1,  = 2, Q = .5, xo = 1
1

0.8

0.6
Position
0.4

0.2

-0.2
0 5 10 15 20 25 30 35
Series

Fastest approach to zero with no overshoot.


Real oscillators lose energy due to damping. This can be
represented by a damping force in the equation of
motion, which leads to a decaying oscillation solution.
The relative size of the resonant frequency and damping
parameter define different behaviors: lightly damped,
critically damped, or over damped.

You might also like