4.damped SHM
4.damped SHM
4.damped SHM
F bx kx mx
k o k m b m
“Natural Frequency” “Damping Parameter”
(rad/s) (s-1)
m
2
x x o x 0
“Damping Constant”
(kg/s) b
EOM: damped oscillator
Guess a complex solution: z (t ) Ae j pt
j 2 p 2 Ae j pt jpAe j pt o Ae j pt 0
2
Ae j pt p 2 jp o 0
2
A0
2
“trivial solution” p 2 jp o 0
Actually 2 equations:
Real = 0 Imaginary = 0
p 2 o 0
2
jp 0
p o 0
… also trivial !
Try a complex frequency: z (t ) Ae j n js t
n js j n js o 0
2 2
2
n 2 2 jns s 2 jn s o 0
Real Imaginary
2
n 2 s 2 s o 0 2 jns jn 0
2
2
2
n 2 o 0 s
4 2 2
2 2
n 2 o A, are free constants.
4
2
2
j o j t
4 2
z (t ) Ae
2
2
t j o t
4
z (t ) Ae 2
e
t 2 2
x(t ) Ae 2
cos o t
4
0.8
0.6
0.4
0.2
* amplitude decays due to damping
0
* frequency reduced due to damping
-0.2
-0.4
-0.6
-0.8
0 2 4 6 8 10 12
How damped?
0
Q
1
ot j o 1 2 t
2Q 4Q
z (t ) Ae e
o = 1, = .01, Q = 100, xo = 1
1
0.5
Position
-0.5
-1
0 5 10 15 20 25 30 35
Time
2
2
t j o t
4
z (t ) Ae 2
e
imaginary!
2
t j j o 2 t
4
z (t ) Ae 2
e
t
2
o 2 t
part of A
z (t ) Ae 2
e 4
e j
2 2
o 2 t
o 2 t
2 4 2 4
z (t ) A1e
A2 e
No oscillations!
Over Damped
o = 1, = 10, Q = .1, xo = 1
1
0.8
Position 0.6
0.4
0.2
0
0 5 10 15 20 25 30 35
Time
3 “Critically Damped”: Q 0.5 2o
2 2
o 2 t o 2 t
2 4 2 4
z (t ) A1e
A2 e
0 0
t
z (t ) A1 A2 e 2
0.8
0.6
Position
0.4
0.2
-0.2
0 5 10 15 20 25 30 35
Series