Nothing Special   »   [go: up one dir, main page]

ME302 - Final Exam Formula Sheet

Download as pdf or txt
Download as pdf or txt
You are on page 1of 2

ME 302 – FINAL EXAM FORMULA SHEET

Uniform thin rod: I = mL2/12 (about its mass centre), I = mL2/3 (about its end)
Uniform disk / cylinder: I = mr2/2
I G  mk 2 , where k is the radius of gyration ; I  IG  md 2 (parallel axis theorem)
 ext   ext   in   in 
U   Fi  ri  Ti  i   Fi  ri  Ti  i  0
AE m
Bar in axial loading: keq  meq 
L 3
GJ I
Circular shaft in torsion: kt eq  I eq 
L 3
3EI
Cantilever beam (end-point): keq  3 meq  0.24 m
L
48 EI
Simply supported beam (mid-point): k eq  3 meq  0.49 m
L
192 EI
Fixed-fixed beam (mid-point): k eq  meq  0.37 m
L3

keq kteq g Force required for unit deflectionof the mass


n    
meq I eq  static Massin motion
2
x   n x0 
xt   Asin nt  n  ; A  x0   0  ;
2
n  tan 1  
 n   x0 

c c c
   ; d  n 1  2
ccr 2mn 2 km
2
 x  n x0  1  d x0 
x  t   Ae n t
sin d t  d  ; A  x0   0 2
 ; d  tan  
 d   x0  n x0 

2 1  x t    E t 
  ln  
 ;  ;  e 2n
1  2 n  x  t  nTd   42   2 E  t  nTd 

x  t   e nt  C1  C2t  ; x  t   C1e1t  C2e 2t ; 1,2  n  n  2  1

;   tan 1 2 r2 ; M res 
kX 0 1 1
M  ; rres  1  2 2
F0
1  r  2 2 1 r 2 1   2
 (2 r ) 2

mX 0 mX 0 r2 1 1 Z0
Λ   ; Λ res  ; rres  ; 
A m0 e
1  r  2 2
 (2 r ) 2 2 1   2 1  2 2 Y0
X0 1  (2 r ) 2 2 r 2 r 3 T
FTR
T  ;   tan 1  tan 1
2 r  tan 1
;
Y0 1  r 
2 2
 (2 r ) 2 1 r2  4 2  1 r 2  1 F0

1  82
 
1/2
1
Tmax  4 2
; rres  1  8 2  1
2  162  164  82  2  1  82 2

 
 K   M X  0
2

 

3 3

2.5 2.5

2 2

1.5 1.5

1 1

0.5 0.5

0 0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

3
180
165
2.5
150
135
2
120
105
1.5
90
75
60 1

45
30 0.5
15
0 0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

You might also like