Lecture Shear Wall
Lecture Shear Wall
Lecture Shear Wall
References :
Column supported
Types of shear wall
Core type
Behavior of Shear Wall under Lateral Loads
• Buildings that carry gravity loads using bearing walls,
typically also use the walls as shear walls.
The walls must be design to serve both duties.
Reactions:
Lateral Loads Only Gravity Only Lateral + Gravity
Bar Bell Type walls : min. steel is put over inner 0.7 to 0.8 length L and
remaining steel is placed at end for a length 0.15 to 0.12 L on either side.
These are stronger and more ductile than the simple rectangular type.
Disadvantage
coupling beams
Fig.3
Two cases arises from combination of centre of stiffness & centre of mass :
1. If both coincide, no torsion.
2. If do not coincide, twisting moment produced.
Principle of Shear Wall Analysis
Assumptions :
1. All horizontal loads are taken by various shear walls and not by frames.
2. Where there is no torsion, load is taken by each shear wall in proportion to its
stiffness as below,
EL = F1 + F2 + F3 - - - - - -
Where, EL – Earthquake Load &
F1,F2,F3 ---- Forces on various shear walls
F1 = K 1
Where, ---- displacement at top &
K1 ---- Lateral stiffness of shear wall
Hence, K 1 + K2 + K3 + --- = EL
EL
K1 K 2 K 3
K1
F 1 = K1 EL
K 1
STIFFNESS OF WALL
There are three types of deflections to be considered :
W
Stiffness = Force required at top for unit deflection
WH 3
1] 1 bending (as cantilever )
3EI
WH
2] 2 shear
CAG
L1 / 2 L1 / 2
Moment due to
Bxxdxc B dx = (B L3 γ θ / 12)
2
rotation θ
M x
L1 / 2 L1 / 2
γ = Modulus of sub-grade reaction
Let, R = ( B L3) / 12 is the moment produce due to unit rotation of foundation.
Rotation due to moment, WH
WH
R
Hence, deflection produced = (Rotation )x (H)
WH 2
3 rocking
R
Hence, Total = 1+ 2+ 3
Therefore, Lateral stiffness K =
W
includes bending, shear & rotation
DESIGN OF RECTANGULAR & FLANGED SHEAR WALL
The design-detailing shall be done as per IS 13920 (1993)
General dimensions
1. Thickness of wall ( t ) NOT < 150 mm.
2. For flanged wall ,effective extension of flange width beyond face of web
should be least of the following. (refer following fig.)
a. ½ dist. to a adjacent shear wall
b. 1/10th of total wall height
c. Actual width “L”
Boundary element
(Note : If special confining steel is provided then boundary elements are not required)
Special confining
reinforcement
shall be provided
over the full
height of a
column
The min. steel ratios for each of the vertical and horizontal directions should be
> 0.0025
As
0.0025
Ac ( gross )
2. If factored shear stress (v) exceeds 0.25fck or if the thickness of wall exceeds
200 mm, then r/f should be provided on both faces of wall.
4. The max. spacing should not exceeds L/5,3t or 450 mm, where L is length of
wall.
REINFORCEMENT FOR SHEAR
Nominal shear stress is calculated as,
Vu
v
td
Where, d = Effective width ( = 0.8L for rectangular section)
Vu = Factored shear Force
Nominal shear stress v > c max. [ IS : 456 (2000) Table 20]
or > c max = 0.63 fck
• Shear taken by concrete is same as beam shear. ( Table 9 of IS 456 assuming
0.25% steel ) & if necessary increase it’s value by following multiplying factor ‘’
3Pu
1 (but not more than 1.5)
Ac fck
Where Pu --- Total axial load
--- Multiplying factor.
Shear capacity of concrete and steel is given by
Vc = c t d
Vs = Vu – Vc
The steel necessary to resist the shear is determined from following formula -
NOTE : Vertical steel provided in wall for shear should not be less than horiz. steel.
1. Load factor for gravity loads = 0.8 if gravity loads tend to add to strength of wall.
2. The boundary element is designed as column with vertical steel not less than
0.8% & not greater than 4%.
SHEAR WALL
Required Development Splice and Anchorage
2. 1 / 6 height of wall
Where
1 dl 0 0
0 1 0 0
F
0 0 1 bl
0 0 0 1
Data:
1. Size of frame – 4m x 4m.
2. Height of frame – 3m.
3. Grade of concrete – M20.
4. Thickness of slab – 100mm, 125mm and 150mm.
5. Beam size – 300 x 400 mm.
6.Ten various sizes of column.
Comparison of deflection in bare
frame and frame with slab
Deflection of frame (mm)
Stiffness
Column
of
Sr. No size Without 100mm 125mm 150mm
Column
(mm) slab Thick slab Thick slab Thick slab
(N/mm)
9.00E+04
8.00E+04
7.00E+04
6.00E+04
Stiffness(N/mm)
2.00E+04
1.00E+04
0.00E+00
0 1 2 3 4 5 6 7
Deflection(mm)
Comparison of Time period in frame
Time period of frames in (sec) for diff.
Stiffness slab Thickness
Sr. Column size of
no (mm) Column
(N/mm) 100 mm 125mm 150mm
90000
80000
70000
60000
Stiffness(N/mm)
30000
20000
10000
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
Time period(sec)
Conclusions
• Horizontal deflection reduces by increase
in slab thickness. But reduction is very
small.
90000
80000
70000
60000
Stiffness(N/mm)
50000
C.C model
FSJC model
40000
30000
20000
10000
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
Deflection(mm)
Comparison of time period in model
with or without FSJC
Time period (Sec)
100mm Thick 125mm Thick 150mm Thick
Stiffnes
Column slab slab slab
Sr. s of
size
no Column
(mm) C.C FSJC C.C FSJC C.C FSJC
(N/mm)
model model model model model model
80000
70000
60000
C.C model
Stiffness(N/mm)
40000
30000
20000
10000
0
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
Time period(sec)
Observations
• The B.M in the column can be reduced
by 10 % with accounting the FSJC.
• Eccentricity of column.
• Eccentricity of beam.
80000
70000
60000
Stiffness(N/mm)
50000
C/C model
Slab eccentricite model
40000
30000
20000
10000
0
0 1 2 3 4 5 6 7
Deflection(mm)
Comparison of Time Period in model with
and without eccentricity
100mm Thick slab 125mm Thick slab 150mm Thick slab
Stiffness
Column size of
(mm) Column
Sr. (N/mm) C.C Ecce. C.C Ecce. C.C Ecce.
no model model model model model model
1 230 x 300 5140 0.0995 0.1004 0.1100 0.1118 0.1194 0.1223
2 230 x 350 8170 0.0830 0.0840 0.0914 0.0934 0.0989 0.1021
3 230 x 400 12200 0.0717 0.0727 0.0787 0.0808 0.0848 0.0882
4 230 x 450 17300 0.0634 0.0644 0.0695 0.0715 0.0745 0.0781
5 230 x 500 23800 0.0571 0.0580 0.0625 0.0644 0.0671 0.0703
6 230 x 550 31700 0.0520 0.0528 0.0569 0.0587 0.0610 0.0640
7 230 x 600 41100 0.0477 0.0485 0.0523 0.0538 0.0560 0.0588
8 230 x 650 52300 0.0441 0.0447 0.0483 0.0497 0.0518 0.0542
9 230 x 700 65300 0.0409 0.0414 0.0448 0.0461 0.0481 0.0503
10 230 x 750 80300 0.0380 0.0385 0.0418 0.0428 0.0449 0.0468
Comparison of Time period in model of 100mm
thick slab with and without slab eccentricity
90000
80000
70000
60000
Stiffness(N/mm)
20000
10000
0
0 0.02 0.04 0.06 0.08 0.1 0.12
Tim e period(sec)
Observations
• Deflection of the frame for the lateral load
increases by considering eccentricity.
• FEMA-356
• ATC-40
FEMA- 273 approach:
Parameters requires for calculate spring stiffness.
• Type of soil.
• Size of footing.
• Depth of footing.
Soil classifications:
k k o
Where
k 0 = Stiffness coefficient for the equivalent
circular footing
= Embedment factor.
Stiffness coefficient for the equivalent
circular footing :
Displacement degree of freedom k0
Degree of freedom
Equivalent
3 3 6
radius, R
Graph shows Shape factor for
footing
Graph shows Embedment factor for
footing
FEMA-356 Approach
K emb .K sur
Where
β = Embedment factor.
Spring constant at surface:
GB L
0.65
K X , sur 3.4 1.2
2 B
GB L
0.65
L
K Y , sur 3.4 0.4 0.8
2 B B
GB L
0.75
K Z , sur 1.55 0.8
1 B
GB 3 L
K XX , sur 0.4 0.1
1 B
GB 3
L
2.4
K YY , sur 0.47 0.034
1 B
L
2.45
K ZZ , sur GB 0.53 0.51
3
B
Where
G = shear modulus of soil.
B = Width of footing.
L =Length of footing.
ν = Poisson ratio
Correction factor for embedment:
x 1 0.21
D
1 1.6
hd B L
0.4
2
B BL
Y x
2
z 1
1 D
B
d B L
3
2 2.6 1 0.32
21 B L BL
d 2d d
0.2
B
xx 1 2.5 1
B B D L
d
0. 6
d
1.9
d
0.6
0.9
B d
zz 1 2.61
L B
Where
D = Depth of foundation up to bottom of footing.
d = Thickness of footing.
e = Embedment factor.
Spring constant at surface:
GL B
0.85
GL B
K X , sur 2 2.5 0.11 L
2 L 0.75
GL B
0.85
K Y , sur 2 2.5
2 L
GL B
0.75
G 0.75
L
0.15
K yy , sur I Y 3
1 B
Where
G = shear modulus of soil.
B = Width of footing.
L =Length of footing.
= Poisson ratio.
Correction factor for embedment:
d
0.4
0. 5
D 16 L B d
2D 2
e x 1 0.15 1 0.52 2
L LB
d
0.4
0.5
D 16 L B d
2D 2
e y 1 0.15 1 0.52 2
B BL
2 L 2 B
0.67
D B
e z 1 0.095 1 1.3 1 0.2 d
B L LB
d 2d d
0.20
B
0.50
e xx 1 2.52 1
B B D L
2d
0.60
1.9
2d d
0.60
e yy 1 0.92 1.5
L L D
Winkler Spring model
Comparison of spring model
approaches
Comprising Parameters:
• Thickness of Footing.
Size of The Footing
Data:
160000.00
140000.00
120000.00
STIFFNESS(kN/m)
100000.00 ATC-40
FEMA-356
80000.00 FEMA-273
60000.00
40000.00
20000.00
0.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00
AREA(sq.m)
Variation of Kxx with respect to area of
footing. Area ATC-40 FEMA-356 FEMA-273
(m2) (kN/m) (kN/m) (kN/m)
1.00 12567.58 13887.81 6862.13
2.25 27886.38 30848.54 23159.70
4.00 52432.43 58048.70 54897.07
6.25 88608.65 98159.43 107220.85
9.00 138817.98 153851.89 185277.63
12.25 205463.35 227797.24 294214.01
16.00 290947.68 322666.62 439176.60
20.25 397673.91 441131.20 625311.99
25.00 528044.96 585862.12 857766.79
30.25 684463.76 759530.55 1141687.60
36.00 869333.24 964807.62 1482221.02
42.25 1085056.33 1204364.51 1884513.65
49.00 1334035.96 1480872.36 2353712.08
Graph show variation of Kxx with
respect to the area of the footing.
ATC-40
Variation of stiffness in spring (Kxx) FEMA-356
FEMA-273
2500000.00
2000000.00
STIFFNESS(kN/m)
1500000.00
1000000.00
500000.00
0.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00
AREA(sq.m)
Depth of the foundation:
Data:
1200000
1000000
800000 1m
Stiffness (kN/m)
1.5m
2m
600000 2.5m
3m
3.5m
400000 4m
200000
0
T-x T-y T-z R-x R-y Rz
Variation of spring stiffness with respect to depth in FEMA-356
1400000
1200000
1000000
1m
1.5m
Stiffness (kN/m)
800000
2m
2.5m
600000 3m
3.5m
4m
400000
200000
0
T-x T-y T-z R-x R-y Rz
Variation of spring stiffness with respect to depth in ATC-40
1200000
1000000
800000 1m
Stiffness (kN/m)
1.5m
2m
600000 2.5m
3m
3.5m
400000 4m
200000
0
T-x T-y T-z R-x R-y
Variation of Kx with depth
1200000
1000000
800000
Stiffness (kN/m)
ATC-40
600000 FEMA-356
FEMA-273
400000
200000
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Depth (m)
Effect of soil embedment
• Spring model.
Spring Model
Mathematical model of Footing
spring constant for footing in different
types of soil
4 230 x 450 5.33 5.32 22.42 3.23 5.33 5.86 10.92 6.16 7.77 19.72
5 230 x 500 4.28 4.27 18.69 2.63 4.28 4.84 9.97 5.00 6.68 18.20
6 230 x 550 3.53 3.52 16.19 2.19 3.53 4.13 9.32 4.18 5.94 17.11
7 230 x 600 2.97 2.97 14.45 1.86 2.97 3.61 8.87 3.58 5.41 16.30
8 230 x 650 2.54 2.53 13.20 1.61 2.54 3.22 8.54 3.11 5.03 15.69
9 230 x 700 2.19 2.18 12.28 1.40 2.19 2.91 8.30 2.74 4.74 15.22
10 230 x 750 1.91 1.90 11.59 1.23 1.91 2.66 8.11 2.44 4.52 14.85
Deflection of frame without plinth beam
for different support condition
90000 FT
80000 FB
H&R
70000
SPRING (H)
60000 FEM(H)
50000 SPRING (M)
SPRING (S)
40000
FEM(M)
30000
FEM(S)
20000 Hinge
10000
0
0.00 10.00 20.00 30.00 40.00 50.00 60.00
Deflection (mm)
Deflection of frame with plinth beam for
different support condition
Deflection of frame in X-direction for various support condition (mm)
Sr
Column
. Spring Spring Spring FEM FEM FEM
size FB FT Hinge H&R
no (H) (M) (S) (H) (M) (S)
1 230 x 300 8.42 8.42 10.88 7.00 8.42 8.68 11.55 8.85 9.49 15.62
2 230 x 350 6.30 6.29 8.74 5.00 6.29 6.57 9.52 6.69 7.39 13.65
3 230 x 400 4.99 4.98 7.51 3.81 4.98 5.28 8.34 5.37 6.14 12.53
4 230 x 450 4.11 4.10 6.75 3.03 4.10 4.42 7.61 4.47 5.33 11.84
5 230 x 500 3.46 3.46 6.25 2.50 3.46 3.82 7.31 3.83 4.78 11.39
6 230 x 550 2.97 2.96 5.89 2.10 2.97 3.36 6.80 3.34 4.38 11.08
7 230 x 600 2.58 2.57 5.64 1.80 2.58 3.10 6.57 2.95 4.09 10.86
8 230 x 650 2.26 2.25 5.45 1.56 2.25 2.73 6.40 2.64 3.87 10.70
9 230 x 700 1.99 1.98 5.31 1.36 1.98 2.51 6.27 2.37 3.69 10.57
10 230 x 750 1.76 1.74 5.20 1.20 1.75 2.32 6.17 2.15 3.55 10.48
Deflection of frame with plinth beam for different
support condition
90000 FB
80000 FT
Hinge
70000
H&R
60000
Stiffness(N/mm)
Spring H
50000 Spring M
40000 Spring S
30000 FEM H
20000 FEM M
FEM S
10000
0
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00
Defflection(mm)
Comparison between Frame with plinth beam
and without plinth beam in various support
condition
90000
80000
70000
60000 FEM H
Stiffness(N/mm)
40000 Hinge
Hinge Plinth
30000
20000
10000
0
0.00 10.00 20.00 30.00 40.00 50.00 60.00
Deflection (m m )
Time period of frame without plinth beam
for different support condition
Time period of frame in X-direction for various Support conditions
Sr. Column Spring Spring Spring FEM FEM FEM
no size FB FT Hinge H&R (H) (M) (S) (H) (M) (S)
1 230 x 300 0.166 0.166 0.332 0.126 0.166 0.169 0.196 0.177 0.185 0.248
2 230 x 350 0.137 0.137 0.276 0.105 0.137 0.141 0.173 0.147 0.157 0.225
3 230 x 400 0.118 0.118 0.238 0.091 0.118 0.122 0.158 0.126 0.138 0.210
4 230 x 450 0.103 0.103 0.212 0.080 0.103 0.108 0.149 0.111 0.125 0.200
5 230 x 500 0.093 0.093 0.194 0.073 0.093 0.099 0.142 0.100 0.116 0.192
6 230 x 550 0.082 0.082 0.180 0.066 0.084 0.091 0.137 0.092 0.109 0.186
7 230 x 600 0.077 0.077 0.170 0.061 0.077 0.085 0.134 0.085 0.104 0.182
8 230 x 650 0.071 0.071 0.163 0.057 0.071 0.080 0.132 0.079 0.101 0.179
9 230 x 700 0.066 0.066 0.157 0.053 0.066 0.076 0.130 0.074 0.098 0.176
10 230 x 750 0.062 0.062 0.153 0.050 0.062 0.073 0.128 0.070 0.095 0.174
Time period of frame without plinth beam
for different support condition
90000
80000
FT
70000 FB
H&R
60000
Stiffness(N/mm)
SPRING (H)
50000 FEM(H)
0
0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500
Tim e period(sec)
Time period of frame with plinth beam for
different support condition
Time period of frame in X-direction for various Support conditions
Sr.
Column size Spring Spring Spring FEM FEM FEM
no FB FT Hinge H&R
(H) (M) (S) (H) (M) (S)
1 230 x 300 0.130 0.130 0.150 0.119 0.130 0.132 0.153 0.133 0.138 0.179
2 230 x 350 0.112 0.112 0.132 0.100 0.112 0.115 0.139 0.116 0.122 0.168
3 230 x 400 0.100 0.100 0.123 0.087 0.100 0.103 0.131 0.104 0.111 0.161
4 230 x 450 0.091 0.091 0.116 0.078 0.091 0.094 0.125 0.095 0.104 0.157
5 230 x 500 0.083 0.083 0.112 0.071 0.083 0.088 0.121 0.088 0.098 0.154
6 230 x 550 0.077 0.077 0.109 0.065 0.077 0.082 0.118 0.082 0.094 0.152
7 230 x 600 0.072 0.072 0.106 0.060 0.072 0.078 0.116 0.077 0.091 0.151
8 230 x 650 0.067 0.067 0.105 0.056 0.067 0.074 0.115 0.073 0.088 0.149
9 230 x 700 0.063 0.063 0.103 0.052 0.063 0.071 0.114 0.069 0.086 0.149
10 230 x 750 0.059 0.059 0.102 0.049 0.059 0.068 0.113 0.066 0.085 0.148
Time period of frame with plinth beam for
different support condition
90000
80000
FB
70000
FT
Hinge
60000
H&R
Stiffness(N/mm)
50000 Spring H
Spring M
40000 Spring S
FEM H
30000
FEM M
FEM S
20000
10000
0
0.0300 0.0500 0.0700 0.0900 0.1100 0.1300 0.1500 0.1700 0.1900
Tim e period(sec)
Comparison between Frame with plinth beam
and without plinth beam in various support
condition
90000
80000
70000
60000 FEM H
Stiffness(N/mm)
FEM H Plinth
50000
Hinge
40000
Hinge Plinth
30000
20000
10000
0
0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500
Tim e period (sec)
B.M in column without plinth beam for
different support condition
Max. B.M in column for various Support conditions
Sr. Column Spring Spring Spring FEM FEM FEM
no size FB FT Hinge H&R (H) (M) (S) (H) (M) (S)
1 230 x 300 51.02 53.01 100.00 38.61 53.01 52.61 51.35 49.10 48.06 57.61
2 230 x 350 52.06 54.60 100.00 37.94 54.60 53.96 51.97 50.14 48.58 59.95
3 230 x 400 53.55 56.56 100.00 39.71 56.55 55.60 52.64 51.60 49.37 62.28
4 230 x 450 55.46 58.83 100.00 41.74 58.82 57.48 53.31 53.46 50.42 64.41
5 230 x 500 57.71 61.36 100.00 43.97 61.34 59.53 53.96 55.64 51.64 66.27
6 230 x 550 60.21 64.06 100.00 46.31 64.04 61.68 54.56 58.05 52.96 67.84
7 230 x 600 62.86 66.86 100.00 48.68 66.83 63.86 55.09 60.61 54.31 69.14
8 230 x 650 65.56 69.67 100.00 51.03 69.63 66.00 55.56 63.22 55.84 70.20
9 230 x 700 68.25 72.42 100.00 53.29 72.37 68.05 55.96 65.81 56.91 71.06
10 230 x 750 70.85 75.06 100.00 55.44 75.01 69.98 56.30 68.33 58.09 71.75
B.M in column without plinth beam for
different support condition
90000
80000
70000
FT
60000
FB
Stiffness(N/mm)
H&R
50000
SPRING (H)
FEM(H)
40000
SPRING (M)
30000 SPRING (S)
Hinge
20000 FEM(M)
FEM(S)
10000
0
35.00 45.00 55.00 65.00 75.00 85.00 95.00 105.00
B.M(kN.m)
B.M in column with plinth beam for
different support condition
Max. B.M in column for various Support conditions
Sr. Column Spring Spring Spring FEM FEM FEM
no size FB FT Hinge H&R (H) (M) (S) (H) (M) (S)
1 230 x 300 34.61 38.06 40.00 38.58 38.06 38.09 38.26 34.33 34.19 34.39
2 230 x 350 34.53 37.78 41.15 39.62 37.78 37.85 38.36 34.10 33.79 34.09
3 230 x 400 34.98 38.09 42.41 41.06 38.08 37.90 38.37 34.34 33.72 34.09
4 230 x 450 35.96 39.24 43.71 42.83 39.23 38.86 38.31 35.09 33.98 34.31
5 230 x 500 37.41 40.78 44.98 44.85 40.78 40.14 38.22 36.28 34.52 34.69
6 230 x 550 39.24 42.66 46.16 47.03 42.64 41.64 38.09 37.84 35.26 35.15
7 230 x 600 41.34 44.76 47.23 49.28 44.74 43.29 37.96 39.84 36.13 35.63
8 230 x 650 43.60 46.99 48.18 51.52 46.97 45.00 37.84 41.67 37.07 36.10
9 230 x 700 45.93 49.27 49.00 53.70 49.24 46.70 37.72 43.74 38.02 36.53
10 230 x 750 48.25 51.54 49.70 55.78 51.50 48.35 37.69 45.82 38.96 36.93
B.M in column with plinth beam for
different support condition
90000
80000
70000
60000 FB
Stiffness(N/mm)
FT
50000 Hinge
H&R
40000
Spring H
Spring M
30000
Spring S
20000 FEM H
FEM M
10000 FEM S
0
30.00 35.00 40.00 45.00 50.00 55.00 60.00
B.M(kN.m )
Comparison between Frame with plinth beam
and without plinth beam in various support
condition
B.M in Column
90000
80000
70000 FEM H
FEM H Plinth
Stiffness(N/mm)
60000
Hinge
50000
Hinge Plinth
40000
30000
20000
10000
0
20.00 40.00 60.00 80.00 100.00 120.00
B.M (kN.m )
Conclusions
• The deflection and Time period of frame
with hinged support are near about same
as that of frame with soft soil model.
• Semi-symmetrical building
• Unsymmetrical building
symmetrical model
Design data for the building
Type of structure Reinforced concrete
structure (G + 9)
Zone III
Response reduction factor 5
Importance factor 1
Soil condition Hard, Medium, soft
Floor to floor height 3m
Depth of foundation 2m
Depth of slab 140mm
External wall 230mm
Internal wall 150mm
Shear wall 200mm
Grade of concrete M20, M25,M30
Wide column element modeling Shell element modeling
of shear wall of shear wall
comparison of axial force in member for
different element
4000.00
3500.00
2000.00
1500.00
1000.00
500.00
0.00
Axial Axial
1482 1472
comparisons of Shear forces and B.M in
member for different element
s hell elem ent
w ide colum n e le m ent
45
40
35
S .F ,A x ia l ( k N )
30
25
20
15
10
0
s hear B.M s hear B.M
1482 1472
Effect of support condition in static
analysis in shell element model
2000.00
1800.00
1600.00
1400.00
Axial force (kN)
1200.00
1000.00
Axial
800.00
600.00
400.00
200.00
0.00
FT FB Hinge H&R ATC- FEMA- FEMA- ATC- FEMA- FEMA- ATC- FEMA- FEMA-
40 SH 356 273 40 SM 356 273 40 SS 356 273
SH SH SM SM SS SS
Support condition
Comparison of B.M and S.F in member
1472 for different support condition
60.00 FT
FB
Hinge
50.00 H&R
ATC-40 SH
B.M and S.F (kN.M , kN)
40.00 FEMA-356 SH
FEMA-273 SH
ATC-40 SM
30.00 FEMA-356 SM
FEMA-273 SM
20.00 ATC-40 SS
FEMA-356 SS
FEMA-273 SS
10.00
0.00
shear B.M
Response Spectrum Analysis of
Building
• Response spectrum analysis done for three different
types of soil condition.
0.8
Time period (Sec)
0.6
Wide colum n elem ent
0.4 Shell elem ent
0.2
0
1 2 3 4 5 6 7 8 9 10 11 12
Mode no
Comparison of story deflection in shell
element model and wide column element
model
7.00
6.00
5.00
Deflection (mm)
4.00
2.00
1.00
0.00
Roof 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Ground
Time period for different support
condition in Symmetrical model
Symmetrical model (time period in Sec):
mode
no FT FB Hinge H&R spring H spring M spring S
1 1.0693 1.0547 1.0581 1.0000 1.0564 1.2159 1.7283
2 1.0692 1.0547 1.0581 0.9998 1.0564 1.2159 1.7283
3 0.7544 0.7450 0.7469 0.7087 0.7459 0.8212 0.8732
4 0.3114 0.3072 0.3087 0.2917 0.3077 0.3355 0.3637
5 0.3114 0.3072 0.3087 0.2916 0.3077 0.3354 0.3633
6 0.2229 0.2200 0.2207 0.2089 0.2203 0.2404 0.2999
7 0.1522 0.1503 0.1511 0.1433 0.1505 0.1615 0.2555
8 0.1522 0.1503 0.1511 0.1432 0.1505 0.1614 0.1770
9 0.1392 0.1379 0.1379 0.1337 0.1382 0.1609 0.1770
10 0.1107 0.1093 0.1097 0.1040 0.1094 0.1180 0.1687
11 0.0917 0.0907 0.0912 0.0874 0.0908 0.1114 0.1617
12 0.0917 0.0907 0.0912 0.0874 0.0908 0.1056 0.1616
Comparison of time period in
symmetrical model for different support
condition
2.00
Fix at bottom
1.80 Fix at top
hinge
1.60 H&R
FEMA-356 SH
1.40 FEMA-273 SH
ATC-40 SH
1.20 FEMA-356 SM
Time period (sec)
FEMA-273 SM
1.00
ATC-40 SM
0.80 FEMA-356 SS
FEMA-273 SS
0.60 ATC-40 SS
0.40
0.20
0.00
1 2 3 4 5
Mode No
Story deflections in symmetrical building
for hard strata
7.00
6.00
FT
5.00 FB
hINGE
Deflection(mm)
4.00 H &R
ATC-40 SH
3.00 FEMA-273 SH
FEMA-356 SH
2.00
1.00
0.00
Roof 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Ground
Floor level
Story deflections in symmetrical building
for medium strata
10.00
9.00
8.00
FT
7.00 FB
Deflection(mm)
6.00 hINGE
H &R
5.00 ATC-40 SM
FEMA-273 SM
4.00
FEMA-356 SM
3.00
2.00
1.00
0.00
f
d
h
d
t
oo
1s
3r
2n
9t
8t
7t
6t
5t
4t
un
R
ro
G
Floor level
Story deflections in symmetrical building
for soft strata
18.00
FT
FB
16.00
HINGE
14.00 H &R
ATC-40 SS
12.00
FEMA-273 SS
Deflection(mm)
10.00 FEMA-356 SS
8.00
6.00
4.00
2.00
0.00
Roof 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Ground
Floor level
Forces in members for symmetrical
building in hard strata
FT
18 FB
Hinge
16 H&R
ATC-40 SH
14
FEMA-356 SH
B.M/ S.F/Tosion ( kN,m)
FEMA-273 SH
12
10
0
B.M S.F Torsion B.M S.F Torsion
25 Hinge
H&R
20 ATC-40 SM
B.M/S.F/Torsion (kN , m)
FEMA-356 SM
FEMA-273 SM
15
10
0
B.M S.F Torsion B.M S.F Torsion
20 FEMA-356 SS
FEMA-273 SS
15
10
0
B.M S.F Torsion B.M S.F Torsion
2500.00
Axial force (kN)
2000.00
1500.00
1000.00
500.00
0.00
FT FB Hinge H&R ATC- FE FE ATC- FE FE ATC- FE FE
40 SH MA- MA- 40 SM MA- MA- 40 SS MA- MA-
356 273 356 273 356 273
SH SH SM SM SS SS
Support condition
Comparison of B.M and S.F in member 63
for different support condition
160.00
140.00
120.00 FT
FB
B.M and S.F (kN.M , kN)
100.00 Hinge
H&R
ATC-40 SH
80.00
FEMA-356 SH
FEMA-273 SH
60.00
ATC-40 SM
FEMA-356 SM
40.00
FEMA-273 SM
ATC-40 SS
20.00 FEMA-356 SS
FEMA-273 SS
0.00
shear B.M
Response Spectrum Analysis of
Building
• Response spectrum analysis done for three different
types of soil condition.
1.8000 FB
FT
1.6000 H &R
H
ATC-40 SH
1.4000 FEMA-273 SH
FEMA-356 SH
ATC-40 SM
Time period (sec)
1.2000
FEMA-273 SM
FEMA-356 SM
1.0000 ATC-40 SS
FEMA-273 SS
0.8000 FEMA-356 SS
0.6000
0.4000
0.2000
0.0000
1 2 3 4 5
Mode no
Story deflections in semi-symmetrical
building for hard strata
7
FT
6 FB
hINGE
5
H&R
Deflection(mm)
4 ATC-40 SH
FEMA-273 SH
3
FEMA-356 SH
2
0
Roof 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Ground
Floor level
Story deflections in semi-symmetrical
building for medium strata
10.00
9.00
8.00
FT
7.00 FB
hINGE
Deflection(mm)
6.00 H&R
ATC-40 SM
5.00 FEMA-273 SM
FEMA-356 SM
4.00
3.00
2.00
1.00
0.00
Roof 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Ground
Floor level
Story deflections in semi-symmetrical
building for soft strata
18.00
16.00
14.00
12.00
FT
Deflection(mm)
10.00 FB
hINGE
8.00
H&R
ATC-40 SS
6.00
FEMA-273 SS
FEMA-356 SS
4.00
2.00
0.00
Roof 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Ground
Floor level
Forces in members for semi-symmetrical
building in hard strata
35
30
25
B.M/S.F/Torsion (kN,m)
FT
20 FB
Hinge
15 H&R
ATC-40 SH
10 FEMA-356 SH
FEMA-273 SH
5
0
B.M S.F Torsion B.M S.F Torsion
63 (C) 439 ( C )
Forces in members for semi-symmetrical
building in medium strata
50 FT
FB
45
Hinge
40
H&R
35 ATC-40 SM
B.M/S.F/torsion (kN ,m)
FEMA-356 SM
30
FEMA-273 SM
25
20
15
10
0
B.M S.F Torsion B.M S.F Torsion
60
50
FT
B.M/S.F/Torsion (kN,m)
FB
40 Hinge
H&R
30 ATC-40 SS
EFMA-356 SS
FEMA-273 SS
20
10
0
B.M S.F Torsion B.M S.F Torsion
63 (C) 439( C )
unsymmetrical model
Design data for the building
Type of structure Reinforced concrete
structure (G + 9)
Zone III
Response reduction factor 5
Importance factor 1
Soil condition Hard, Medium, soft
Floor to floor height 3m
Depth of foundation 2m
Depth of slab 160mm
External wall 230mm
Internal wall 150mm
Shear wall 200mm
Grade of concrete M20, M25,M30
Mathematical model of unsymmetrical building
Effect of support condition in static
analysis in shell element model
2500.00
Axial
2000.00
Axial force (kN)
1500.00
1000.00
500.00
0.00
FT FB Hinge H&R ATC- FE FE ATC- FE FE ATC- FE FE
40 SH MA- MA- 40 SM MA- MA- 40 SS MA- MA-
356 273 356 273 356 273
SH SH SM SM SS SS
Support condition
Comparison of B.M and S.F in member 33
for different support condition
120.00
100.00
FT
FB
B.M and S.F (kN.M , kN)
80.00
Hinge
H&R
ATC-40 SH
60.00
FEMA-356 SH
FEMA-273 SH
ATC-40 SM
40.00 FEMA-356 SM
FEMA-273 SM
ATC-40 SS
20.00 FEMA-356 SS
FEMA-273 SS
0.00
shear B.M
Response Spectrum Analysis of
Building
• Response spectrum analysis done for three different
types of soil condition.
Fix at bottom
Fix at top
2.0000 H& R
Hinge
1.8000
ATC-40 SH
1.6000 FEMA-273 SH
FEMA-356 SH
1.4000
ATC-40 SM
Time period (sec)
1.2000 FEMA-273 SM
1.0000 FEMA-356 SM
ATC-40 SS
0.8000 FEMA-273 SS
0.6000 FEMA-356 SS
0.4000
0.2000
0.0000
1 2 3 4 5
Mode no
Story deflections in Unsymmetrical
building for hard strata
7.00
6.00
FT
5.00 FB
HINGE
Deflection(mm)
4.00 H& R
ATC-40 SH
3.00 FEMA-273 SH
FEMA-356
2.00
1.00
0.00
f
d
h
d
t
oo
1s
3r
2n
9t
8t
7t
6t
5t
4t
un
R
ro
G
Floor level
Story deflections in Unsymmetrical
building for medium strata
12.00
FT
10.00 FB
HINGE
H&R
8.00
Deflection(mm)
ATC-40 SM
FEMA-273 SM
6.00
FEMA-356 SM
4.00
2.00
0.00
f
d
h
d
oo
1s
3r
2n
9t
8t
7t
6t
5t
4t
un
R
ro
G
Floor level
Story deflections in unsymmetrical
building for soft strata
18.00
16.00
14.00 FT
FB
12.00 HINGE
H&R
Deflection(mm)
ATC-40 SS
10.00
FEMA-273 SS
FEMA-356 SS
8.00
6.00
4.00
2.00
0.00
Floor level
Forces in members for Unsymmetrical
building in hard strata
25
FT
FB
20
Hinge
B .M /S.F /T o rsio n (kN ,m )
H&R
15 ATC-40 SH
FEMA-356 SH
FEMA-273 SH
10
0
B.M S.F Torsion B.M S.F Tors ion
33(C) 223 ( C )
Forces in members for unsymmetrical
building in medium strata
35
30
25
B.M/S.F/Torsion (kN,m)
FT
20 FB
Hinge
15
H&R
10 ATC-40 SM
FEMA-356
5 SM
FEMA-273
SM
0
B.M S.F Torsion B.M S.F Torsion
33(C) 223 ( C)
Forces in members for unsymmetrical
building in soft strata
45
40
35
FT
B.M/S.F/Torsion (kN,m)
30 FB
Hinge
25
H&R
20
ATC-40 SS
15 FEMA-356 SS
FEMA-273 SS
10
0
B.M S.F Torsion B.M S.F Torsion
33(C) 223 ( C )
Appling forces in principal direction
2
Ix Iy Ix Iy
I max I xy
min 2 2
2 I xy
tan 2
Ix Iy
Unsymmetrical building with shear wall.
Member Forces
Member No:213
Combination
s Axial V2 V3 Torsion M2 M3
Combinations
F11 F22 F12 M11 M22 M12
Max Principal 21.36 106.79 51.74 3.21 16.04 1.59
SRSS 21.36 106.79 51.74 3.20 16.04 1.59
100+30+30 19.22 96.10 50.51 2.96 14.78 1.47
100-30+30 9.50 47.52 30.63 1.60 8.02 0.81
100-30-30 8.40 41.96 28.71 1.60 8.02 0.81
100+30-30 18.12 90.54 48.59 2.96 14.78 1.47
-100+30+30 -8.40 -41.96 -28.71 -1.60 -8.02 -0.81
-100-30+30 -18.12 -90.54 -48.59 -2.96 -14.78 -1.47
-100-30-30 -19.22 -96.10 -50.81 -2.96 -14.78 -1.47
-100+30-30 -9.50 -47.52 -30.63 -1.60 -8.02 -0.81
L-Shape building.
Member Forces
Member No:02
• Kim H.S, Lee D.G (2003) “Analysis of shear wall with openings
using super elements” Engineering Structures, Vol -25, p-p981-
991.