MS XII Maths PB Set B
MS XII Maths PB Set B
MS XII Maths PB Set B
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
C D A D C B B C A C
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.
B C B C A A D B C D
It is given that function f attains its maximum value on the interval [0, 2] at x =1.
⇒ 4x3 - 124x + a = 0
⇒ 4 - 124 + a = 0
⇒ - 120 + a = 0
dy m
23(a) . y=sin ( msin x )⇒ =cos ( m sin x ) .
−1 −1
dx √1−x2
dy
⇒ √ 1−x =mcos ( msin x )
2 −1
dx
( )
2
d y dy −2 x m
Again diff . w . r . t . x , √ 1−x =−msin ( msin x ) .
2 −1
+
2 √ 1−x √ 1−x 2
2
dx dx 2
1
2
2 d y dy
⇒ ( 1−x ) 2 −x =−m sin ( m sin x )=−m y
2 −1 2
dx dx
2
2 d y dy
⇒ ( 1−x ) 2 −x +m y=0
2
1
dx dx
OR 1
√ 2 x x x
(x x
√ 1−sinx = sin 2 + cos 2 −2 sin 2 cos 2 = cos 2 −sin 2 )
y=tan−1
[ √√
1+ sinx+ √1−sinx
1+ sinx−√ 1−sinx] { }
−1
= tan cot
x
2
y=tan
−1
{( 2 2 )} 2 2 dx = 2
(
tan
π x
− ) π x dy −1
= −
24(a) .
24(b)
25.
Section C
26. f(x) = 3x4 -4x3 -12x2 +5
= 12x (x - 2)(x + 1) 1
2 dy y tan x dy
⇒ + ( sec x ) y=tan x . sec x
2 2
27. Dividing both sides by cos x , + =
dx cos2 x cos 2 x dx
dy 2 2
Comparing with + Py=Q , we get P=sec x , Q=tan x . sec x
dx
∴ I . F .=e∫ =e∫
P dx sec2 xdx tan x
=e 1
28(b)
2
1
29(a).
cos x dx
I =∫ ; p ut sin x=t ⇒ cos x dx=dt 1
(1+sin x )( 2+ sin x)
=∫
dt
(1+t )(2+t)
=∫ (
1 −1
¿
1+t 2+t
)dt =∫
dt
1+t
−∫
dt
2+t
¿ =log
1+t
2+t| |
+c 2
I =log |1+sin
2+sin x |
x
+c Putting t = sin x we obtain
29(b)
30
1.5
1.5
31.(a)
Sol. Given, refrigerator box contains 2 milk chocolates and 4 dark chocolates. 2 chocolates are drawn at
random, we have to find the probability distribution of milk chocolates. Let X denotes the probability
distribution, then X will have the value
4 3 12
0, 1 and 2. Now probability distribution of milk chocolates P (X = 0) i.e., No milk chocolate = X =
6 5 30
2 4
P (X = 1) i.e., One milk chocolate = X X 2=16/30
6 5
2 1 2
P (X = 2) i.e., both milk chocolates= X = 2
6 5 30
Required probability distribution is
X 0 1 2
Here most likely outcome is 16/30. Ie., one chocolates of each types
6 1 9 3 5
P( A)= = ;❑ P (B)= = ; P( A ∩ B)=
12 2 12 4 12
P( A ∩ B) 5 /12 5
P( A /B)= = =
P(B) 9 /12 9
SECTION D
32 Correct Figure 1
4
= ¿¿ 2
3
=12 π 1
[ ][ ][ ]
1 −1 0 2 2 −4 6 0 0
33 : 2 3 4 −4 2 −4 = 0 6 0 = 6I,
0 1 2 2 −1 5 0 0 6
−1 1
i.e AB=6 I so . A = B
6
[ ]
2 2 −4
−1 1
So A = −4 2 −4
6
2 −1 5
[] [ ][ ] [ ] [ ]
x 2 2 −4 3 12 2
1 1
y = −4 2 −4 17 = −6 = −1
6 6
z 2 −1 5 7 24 4
dy 1
34. (a) = 2¿ . 2 2
dx x +1
¿> ¿ ( x2 + 1 )y1 = 2 ¿
2
( x2 + 1 )y2 + 2x.y1 = 2 2
x +1
( x2 +1 )2 y2 + 2x ( x2 +1 ) y1 = 2 1
OR
dy
34. (b) = (cosx) x ( x.logcosx ) ‘ + x sinx.(sinx.logx )’ 2
dx
dy −sinx sinx
= (cosx) x ( 1.logcosx + x ) + x sinx.(cosx.logx + ) 2
dx cosx x
dy sinx
= (cosx) x ( logcosx - xtanx) + x sinx.(cosx.logx + ) 1
dx x
x−2 y −2 z −3
35.(a) The co-ordinates of any point on the line = = = λ (let)
2 3 4
x= 2 λ+ 1 , y= 3 λ+ 2 z= 4 λ+ 3
x−4 y −1 z
The co-ordinates of any point on the line = = = μ (let)
5 2 1
x = 5 μ+ 4 , y=2 μ+1 , z=μ
If both the lines intersect they must have a common point for some value of λ and μ
(2 λ+ 1 , 3 λ+ 2 , 4 λ+ 3) = (5 μ+ 4 , 2 μ+1 , μ )
2 λ+ 1 = 5 μ+ 4 ; 3 λ+ 2 = 2 μ+1 ; 4 λ+ 3 = μ
Getting λ = -1 and μ = -1 (solving first two equations) and it satisfy the third one .
Hence both the line will intersect and Point of Intersection is (-1,-1,-1).
OR
35(b)
36 . 1. 1
2.
2
OR
Domain of f (x)=¿
Range of f (x)=¿
37
38
Let : Represent the event when many workers were not present for the job;
(i) The probability that all the workers are present for the job and work is completed on time
(ii) The probability that many workers are not present given that the construction work is completed on
time