Nothing Special   »   [go: up one dir, main page]

Cal1 TD2 (2023 24)

Download as pdf or txt
Download as pdf or txt
You are on page 1of 2

Institute of Technology of Cambodia Calculus I (2023-24)

TD2
(Algebraic and Transcendental Functions)

1. Show that following functions are algebraics:


√ (√
(a) f (x) = 2x + 1 x, x≥0
(b) f (x) = √
3
x2 + 1 − 2, x < 0

2 1
2. Simplify ab for a = ex and b = ln x1/x .
x
2 +2 2 +2
3. Solve the equation: 4x − 9 × 2x +8=0
2 +(log x)2 −10 1
4. Solve the equation: xlog3 x 3 =
x2
5. Solve the inequation: logx 2x2 + x − 1 > logx (2) − 1


6. Solve the system of equation


( 8
logy x − logx y =
3 .
xy = 16

7. Show that for n ≥ 2,


2n−1    X n−1   
X kπ kπ
ln sin = ln sin
k=n+1
2n k=1
2n

8. Determine the set of couples (x, y) ∈ [−π; π]2 verifying the following conditions:
 √ 3
2 cos(x) + 3 sin(y) = 2 −

2

 4 cos(x) + sin(y) = 2 2 − 1

2

9. Solve the following:


 π  π
(a) sin x + − cos 2x + =0 (e) sin x + cos x − cos 2x > 0
3 4 2 2
2 (f) 24 cos x+1
+ 16.24 sin x−3
= 20
(b) 2 cos (x) + 9 cos(x) + 4 = 0.
√ (g) cos4 x + sin4 x = 1
(c) 2 sin x · cos x + 3 cos 2x = 0 x 1
(h) cot −  = cot x
(d) sin(3x − 1) > 0 2 sin x2
 π
10. Find x ∈ 0, such that
2
√ √
3−1 3+1 √
+ =4 2
sin x cos x

11. Prove that the equation cos(sin x) = sin(cos x) does not possess real roots.

12. Show that following identities

Dr. Lin Mongkolsery 1/2


Institute of Technology of Cambodia Calculus I (2023-24)

(a) cosh2 x − sinh2 x = 1 (c) cosh2 a + sinh2 a = cosh(2a)


 n
tanh a + tanh b 1 + tanh x 1 + tanh(nx)
(b) tanh(a + b) = (d) =
1 + tanh a tanh b 1 − tanh x 1 − tanh(nx)

13. Show that for k ∈ Z,


 
1 1 1 1
tanh = 1
− 1

2k 2k 2k−1 tanh 2k−1
2k tanh 2k
n
X 1 1
then deduce the sum k
tanh k
.
k=1
2 2

cosh 3t2

14. (a) Show that 2 cosh t − 1 =
cosh 2t


n
Y
2 cosh 3k x − 1 , where n ∈ N and x ∈ R.
 
(b) Calculate
k=0

15. Calculate or simplify,


n √ √ n  
X k k − (k + 1) k − 1 Y 1
(a) (d) 1+
k=1
k(k + 1) k=0
cos (2k x)
n  n
(−1)k cos3 (3k x)

Y 1 X
(b) 1− 2 (e)
k=2
k k=0
3k
n n  
X X 1
(c) sin(kx) sin((k + 1)x) (f) arctan
k=0 k=0
k 2 + 3k + 3

16. Find the domain of f (x) = sin−1 (log2 x).



17. Find the value of tan−1 2 + tan−1 3 + tan−1 (2 + 3).
     
−1 4 −1 5 −1 63
18. Find the value of sin + sin − sin .
5 13 65
19. Solve the equation:

(a) tan−1 (2x) + tan−1 (3x) =
4
 2   
−1 x − 1 −1 2x 2π
(b) cos + tan =
x2 + 1 x2 − 1 3
20. If cos−1 x + cos−1 y + cos−1 z = π, then prove that x2 + y 2 + z 2 + 2xyz = 1.
21. Prove that r
−1 −1
 x2 + 1
cos tan sin cot x =
x2 + 2
22. Prove that
1 − y2
      
1 −1 2x 1 x+y
tan sin + cos−1 = , xy < 1
2 1 + x2 2 1 + y2 1 − xy

Dr. Lin Mongkolsery 2/2

You might also like