Nothing Special   »   [go: up one dir, main page]

EE230Project Muhammad&Chad

Download as pdf or txt
Download as pdf or txt
You are on page 1of 56

EE230 – Final Project

1.9 GHz CP PLL Design


(using 45nm CMOS Technology)

Muhammad Aldacher
Chad Santos
Overview
1) Project Target
2) Matlab Simulations
3) VerilogA Simulations
4) PLL Circuits
a. PFD
b. Charge Pump
c. Loop Filter
d. VCO
i. LC tank
ii. Current-Starved Ring
e. Divider
5) System Simulations
6) Corner Simulations
7) Summary
(1)
Project Target
Target

𝑃𝑜𝑤𝑒𝑟
𝐹𝑂𝑀 = 10 log 𝐽𝑖𝑡𝑡𝑒𝑟 2 . < −220 𝑑𝐵
1 𝑚𝑊
PLL Block Diagram
(2)
Matlab Simulations
System Parameters
Parameter Value
FREF 30 MHz
FOUT 1.9 GHz
MDivider 64
ICP 100 uA
KVCO 600 MHz/V
RP 6.5 KΩ
CP 100 pF
C2 10 pF
Open-Loop Bode Plots
Closed-Loop Bode Plots
Bode Plot Parameters

Parameter Value

Zero fz 0.245 MHz

Unity-Gain BW fugb 0.871 MHz

Pole fp3 2.693 MHz

Max Phase Margin PMMax 56.44°


Phase Margin PM 56.38°
Closed-Loop BW BW 1.41 MHz
(3)
VerilogA Simulations
Test Bench
Waveforms
Ref

Fb

Freq_Fb

Up

Dn

Vcontrol

VCO_out

Freq_out
(4)
PLL Circuits
1- PFD
2- Charge Pump
2- Charge Pump

OpAmp
3- Loop Filter
PFD/CP
Vcontrol

Dn

Up_Bar

Ref

Feedback

Reference lagging by 1ns


PFD/CP
Vcontrol

Dn

Up_Bar

Ref

Feedback

Reference leading by 1ns


4- VCO
a) LC VCO
LC Oscillator

VCO_Out

VCO_Freq
LC Oscillator

VCO_Freq
sweep

Vcontrol Tuning Range


LC Oscillator

Phase
Noise

Phase Noise at 1MHz Offset


4- VCO
b) Current Starved Ring VCO

Inverter stages
Current Starved Ring Oscillator

VCO_Out

VCO_Freq
Current Starved Ring Oscillator

VCO_Freq
sweep

Vcontrol Tuning Range


Current Starved Ring Oscillator

Phase
Noise

Phase Noise at 1MHz Offset


5- Divider
➢Divide-by-64
(6 Divide-by-2 blocks)

CMOS TSPC
5- Divider
a) TSPC Flipflop
5- Divider
b) CMOS Flipflop
(5)
PLL System Simulations
Test Bench
A. Using LC VCO
Waveforms
Ref

Fb

Freq_Fb

Up

Dn

Vcontrol

VCO_out

Freq_out
RMS Jitter
RMS Jitter

RMS Jitter = 1.5431 ps


(integrated from 1KHz to 1GHz)
Pk-Pk Jitter
PkPk Jitter
@diff. BERs
(integ. From
1K to 1G)
Eye Diagram Jitter
Eye Diagram Jitter
B. Using Current-Starved Ring
VCO
Waveforms
Ref

Fb

Freq_Fb

Up

Dn

Vcontrol

VCO_out

Freq_out
RMS Jitter
RMS Jitter

RMS Jitter = 18.9632 ps


(integrated from 1KHz to 1GHz)
Pk-Pk Jitter
PkPk Jitter
@diff. BERs
(integ. From
1K to 1G)
Comparison
PLL with LC VCO PLL with Ring VCO

Tuning Range 1.68 GHz – 2.02 GHz 0.5 GHz – 3 GHz

Locking Time < 2.1 us < 1.5 us

P dissipation 1.26175 mW 1.21701 mW

RMS Jitter 1.5421 ps 18.9632 ps

FOM -235.23 dB -213.59 dB


(6)
Corner Simulations
All Corners

Freq_out

Freq_Fb
Nominal
TT, 27°, 1 VDD

Freq_out

Freq_Fb
FF, 125°, 0.9 VDD

Freq_out

Freq_Fb
FF, 125°, 1.1 VDD

Freq_out

Freq_Fb
FF, -40°, 0.9 VDD

Freq_out

Freq_Fb
FF, -40°, 1.1 VDD

Freq_out

Freq_Fb
SS, 125°, 0.9 VDD

Freq_out

Freq_Fb
SS, 125°, 1.1 VDD

Freq_out

Freq_Fb
SS, -40°, 0.9 VDD

Freq_out

Freq_Fb
SS, -40°, 1.1 VDD

Freq_out

Freq_Fb
(7) Summary
• Our work shows a comparison between a CP-PLL using
a Ring VCO & another using an LC VCO:
– The Ring VCO gives a higher KVCO, which affects the PLL’s
stability & gives a higher jitter than that in the LC VCO.
– Using the LC VCO, we were able to achieve a low RMS jitter
with a reasonable power dissipation, achieving the
required FOM.

• In our corners’ analysis:


– The range of the output frequency after the PLL locks is
between 1.916 GHz & 1.946 GHz.
– The range of the feedback frequency after the PLL locks is
between 30.015 MHz & 30.077 MHz.

You might also like