Nothing Special   »   [go: up one dir, main page]

Pre Cal Long Quiz 2

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 10

KAYA

MO
YAN!
Identify the conic of 

A: Parabola

Convert the polar equation to rectangular form. 

A:

Convert the polar equation to rectangular form.

A: X2 + 4y – 4 = 0

Convert the rectangular equation to polar form. Assume a > 0.


y=4
A: R = 4 csc θ

Convert the polar equation to rectangular form.

A: (x2 + y2)2 = 6x2y – 2y3

Plot the point given in polar coordinates and find two additional polar representations of the point,
using -2π < θ < 2π. 

(0,−7π60,−7π6)

A:
Write the expression as the sine, cosine, or tangent of an angle.
sin 3 cos 1.2 - cos 3 sin 1.2
sin 1.8
Answer:

Solve the equation for exact solutions over the interval [0, 2π]. 

A:

Find a polar equation of the conic with its focus at the pole.
Conic: Hyperbola, Eccentricity: e = 2, Directrix: x = 1

A:

Convert the polar equation to rectangular form. 

A:

Find the exact value of the trigonometric function given that  sinu=513sinu=513 and
cos .v=−35v=−35  (Both are in Quadrant II.) Note that answers in fractions must be
entered like so: 4/5, 1/2, 3/4, -(5/10)
sin (u + v)
A: -(63/65)

Give all exact solutions over the interval [00, 3600].


sin2θ=2cos2θ
A: 45° + 360°n, 90° + 360°n, 225° + 360°n, 270° + 360°n, where n is any integer

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as
appropriate. 

A:

A point in polar coordinates is given. Convert the point to rectangular coordinates.


A: (0, 3)

Convert the rectangular equation to polar form. Assume a > 0. 


y2 - 8x - 16 = 0

A:

Find the exact value of the trigonometric function given that and
(Both u and v are in Quadrant III.) Note that answers in fractions must be entered like so: 4/5, 1/2,
3/4, -(5/10)
cos (u + v)
A: 3/5

Give all exact solutions over the interval [00, 3600].

A: 0° + 360°n, 30° + 360°n,150° + 360°n, 180° + 360°n, where n is any integer

Solve each equation for exact solutions over the interval [0 0, 3600]. 
(tanθ−1)(cosθ−1)=0
A: {00, 450, 2250}

Convert the polar equation to rectangular form. 


r=4

A:

Convert the polar equation to rectangular form.


A: X2 + 4y – 4 = 0

Identify the conic of 


A: ellipse

Solve the equation for exact solutions over the interval [0, 2π]. 

A:

Give all exact solutions over the interval [00, 3600].


csc2θ2=2secθ
A: 60° + 360°n, 300° + 360°n, where n is any integer.

Find a polar equation of the conic with its focus at the pole.
Conic: Parabola, Vertex or vertices: (1, -π/2)

A:

Convert the rectangular equation to polar form. Assume a > 0. 


X2 + y2 = a2

A:

Find a polar equation of the conic with its focus at the pole.
Conic: Ellipse, Vertex or vertices: (2, 0), (10, π)

A:

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as
appropriate. 

A:
Convert the rectangular equation to polar form. Assume a > 0. 
3x - y + 2 = 0

A:

Convert the polar equation to rectangular form.

A: y = 4

Solve the equation for exact solutions over the interval [0, 2π]. 

A:

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as
appropriate. 

A:

Convert the polar equation to rectangular form.

A: X2 + y2 – x2/3 = 0

Convert the rectangular equation to polar form. Assume a > 0. 


x2 + y2 - 2ax = 0

A:

Find a polar equation of the conic with its focus at the pole.
Conic: Parabola, Eccentricity: e = 1, Directrix: x = -1

A:
Find the exact value of each expression.
a. cos (120° + 45°)                            b. cos120° + cos45°

A:

Solve the equation for exact solutions over the interval [0, 2π]. 

A:

Convert the polar equation to rectangular form.

A: 4x2 – 5y2 – 36y – 36 = 0

Identify the conic of 


A: parabola

Convert the polar equation to rectangular form. 

A:

Convert the rectangular equation to polar form. Assume a > 0. 


Xy = 16
A:

Write the expression as the sine, cosine, or tangent of an angle. 

A: tan 3x
Solve each equation for exact solutions over the interval [0 0, 3600]. 

A: {300, 2100, 2400, 3000}

Convert the rectangular equation to polar form. Assume a > 0.


x = 10
R = 10 sec θ

Find the exact value of the cosine of the angle by using a sum or difference formula. 
195° = 225° - 30°

A:

Solve the equation for exact solutions over the interval [0, 2π]. 
tan 4x = 0

A:

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as
appropriate. 

A: .9 + 2nπ, 2.3 + 2nπ, 3.6 + 2nπ, 5.8 + 2nπ, where n is any integer

Solve each equation for exact solutions over the interval [0 0, 3600]. 

A:  {900, 2100, 3300}

Solve the equation for exact solutions over the interval [0, 2π]. 

A:
Plot the point given in polar coordinates and find two additional polar representations of the point,
using -2π < θ < 2π. 

A:

Convert the rectangular equation to polar form. Assume a > 0.


x2 + y2 = 9 
A: R = 3

Plot the point given in polar coordinates and find two additional polar representations of the point,
using -2π < θ < 2π. 

A:

Plot the point given in polar coordinates and find two additional polar representations of the point,
using -2π < θ < 2π. 
A:

Find a polar equation of the conic with its focus at the pole.
Conic: Parabola, Vertex or vertices: (5, π)

A:

A point in polar coordinates is given. Convert the point to rectangular coordinates.

A:

You might also like