Nothing Special   »   [go: up one dir, main page]

Grade 10 STE Electronics Robotics Q4 Module 3 Wk3 ADM

Download as pdf or txt
Download as pdf or txt
You are on page 1of 28

10

Electronics
Quarter 4 – Module 3:
Operation Principle of a Robotic
Motor

DIVISION OF ANGELES CITY


Electronics – Grade 10
Alternative Delivery Mode
Quarter 4 – Module 3: Operation Principle of a Robotic Motor

First Edition, 2021

Republic Act 8293, section 176 states that: No copyright shall subsist in any work of
the Government of the Philippines. However, prior approval of the government agency or office
wherein the work is created shall be necessary for exploitation of such work for profit. Such
agency or office may, among other things, impose as a condition the payment of royalties.

Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names,
trademarks, etc.) included in this module are owned by their respective copyright holders.
Every effort has been exerted to locate and seek permission to use these materials from their
respective copyright owners. The publisher and authors do not represent nor claim ownership
over them.

Published by the Department of Education


Regional Director : May B. Eclar PhD, CESO V
OIC Asst. Regional Director : Rhoda T. Razon EdD, CESO V

Development Team of the Module

Writers: Arnel C. Perez, Ferdinand J. Soriano, Mark Albert T. Pineda


Editors: Marjorie D. Lacson, Nerissa N. Valdez, Eliza M. Roque
Reviewers: Gemima A. Estrabillo, Emily F. Sarmiento, Hermes P. Vargas,
Noel S. Reganit, Adrian P. Tamayo, Krislene Ida N. Mercado,
Jonathan Carrasco, Billy Ray B. Manuel, Marvin R. Leano,
Gemmarie G. Rivas
Illustrator: Lady Diane M. Bonifacio
Layout Artist: Lithos F. Sto. Domingo
Management Team: May B. Eclar PhD, CESO V
Rhoda T. Razon EdD, CESO V
Ma. Irelyn P. Tamayo PhD, CESE
Fernandina P. Otchengco PhD, CESE
Librada M. Rubio PhD
Ma. Editha R. Caparas EdD
Emily F. Sarmiento PhD
Gemima A. Estrabillo PhD
Rochella C. David

Printed in the Philippines by ________________________

Department of Education – Region III – Schools Division of Angeles City

Office Address: Jesus St., Pulungbulu, Angeles City


Telephone: (045) 322-5722; 322-4702 888-0582; 887-6099
E-mail Address: angeles.city@deped.gov.ph
10

Electronics
Quarter 4 – Module 3:
Operation Principle of a Robotic
Motor
Introductory Message
This Self-Learning Module (SLM) is prepared so that you, our dear learners,
can continue your studies and learn while at home. Activities, questions, directions,
exercises, and discussions are carefully stated for you to understand each lesson.
Each SLM is composed of different parts. Each part shall guide you step-by-
step as you discover and understand the lesson prepared for you.
Pre-tests are provided to measure your prior knowledge on lessons in each
SLM. This will tell you if you need to proceed on completing this module or if you
need to ask your facilitator or your teacher’s assistance for better understanding of
the lesson. At the end of each module, you need to answer the post-test to self-check
your learning. Answer keys are provided for each activity and test. We trust that you
will be honest in using these.
In addition to the material in the main text, Notes to the Teacher are also
provided to our facilitators and parents for strategies and reminders on how they can
best help you on your home-based learning.
Please use this module with care. Do not put unnecessary marks on any part
of this SLM. Use a separate sheet of paper in answering the exercises and tests. And
read the instructions carefully before performing each task.
If you have any questions in using this SLM or any difficulty in answering the
tasks in this module, do not hesitate to consult your teacher or facilitator.
Thank you.
What I Need to Know

This module was designed and written with you in mind. It is here to help you
master the Principle Operation of a Robotic Motor. The scope of this module
permits it to be used in many different learning situations. The language used
recognizes the diverse vocabulary level of students. The lessons are arranged to follow
the standard sequence of the course. But the order in which you read them can be
changed to correspond with the textbook you are now using.

The module will cover the lesson:


● Lesson 1 – Principle Operation of a Robotic Motor

After going through this module, you are expected to:

1. Discuss the principle of operation of the motor used for the robot.

1
What I Know

Directions: Read each question carefully. Choose the letter of the correct answer.
1. Which part is considered as one of the vital components that enable robots to
move?
a. axle
b. motor
c. sensor
d. stator
2. Which part of the motor measures the amount of force that it can produce or
exert?
a. armature
b. commutator
c. speed
d. torque
3. What do you call the central shaft of an electric motor?
a. armature
b. axle
c. rotor
d. terminal
4. What do you call the part of the electric motor that is stationary and does not
move?
a. brushes
b. commutator
c. rotor
d. stator
5. Which part connects the point between the battery and the motor to relay power
to the motor?
a. armature
b. brushes
c. copper coil
d. terminal
6. What unit is used in counting the number of times the axle spins per minute?
a. ACM
b. ECM
c. MAS
d. RPM
7. Which of the following is NOT a part of an electric motor?
a. alternator
b. armature
c. commutator
d. stator

2
8. Which component is found inside the stator of the motor?
a. axle
b. battery
c. copper coils
d. magnets
9. Which part of the motor is located at one end of the coil and made of a metal
ring divided into two equal parts?
a. armature
b. axle
c. battery
d. commutator
10. Which of the following supplies the electric current to the motor?
a. axle
b. battery
c. magnets
d. terminals

3
Lesson The Principle Operation of a
1 Robotic Motor
Electric motors are electromechanical driven machines that actuate motion
by converting electrical energy into mechanical energy. These motion givers are used
in robotics for several reasons. Electric energy is a widely available power source.
These devices can fit in all robot sizes. They are compact and lightweight but provides
a great power conversion ratio, excellent accuracy, and repeatability.
Without movement, robots are just immobile heaps of metal or plastic, or
whatever purpose it is built for. Motors inject life into the robots; some drive them
around while others rotate their joints or lift objects. Thus, deciding the right robot
motor is vital to the success, whether as functional machines or commercial
products.

What’s In

There are two pictures shown below, a hard disc drive and a laser printer head
motor. Identify which one uses a Stepper motor and which uses a Servo motor.
Explain your answer briefly.
Figure1: Hard disc drive

_____________________________________________
_____________________________________________

Source: https://rb.gy/u5nllm

Figure 2: Laser printer head


___________________________________________
____________________________________________

Source: https://rb.gy/bdkrb4

Guide Questions:
1. What is a stepper motor?
2. What is a servo motor?
3. What loop mechanism is missing in a stepper motor?

4
What’s New

Robots rely on motors and sensors to interpret its surrounding. It needs


motors to move and actuate the parts of its body. Whether we are using stepper and
servo motors the concept and principle on how these motors work remain the same.
It begins with their parts and how they function. The different parts of the electric
motor work in unison to enable the motor to function efficiently. Another key factor
of how motors work is the force known as electromagnetism. A force that is produced
by the interaction of electrically charged particles inside the motor. It also harnesses
all the magnetic and electrical forces which can be attractive or repulsive.

Activity 1: Motor-rific!
Directions: In this activity, you will try to identify devices or machines found in your
home that use an electric motor. List them all inside the picture.

Guide Questions:
1. What are three (3) devices or machines that you operate every day based on
your list? Why do you use them daily?
2. In your opinion, what are the advantages of using devices and machines run
by a motor?
3. In your opinion, what are the disadvantages of using devices and machines
run by a motor?

5
What is It

Motors are one of the vital components that enable robots to move. Some
motors connected to wheels help robots to move around. Others are used in making
robotic joints and limbs. Although there are different types of sensors used by robots
to perform various tasks, they still need electric motors to move around.
Motors convert electrical energy to mechanical energy that enabling the robot
to do programmed work. We must understand two concepts to anticipate how much
work a robot can do.
Speed refers to the maximum speed a motor can reach and is measured in
revolutions per minute (RPM). One (1) RPM means that the motor's axle will turn
around a circle once in a minute, which is very slow. Motors powered by direct
current (DC) can have a speed rating of at least 1000 RPMs.
Torque measures how much force that a motor can produce or exert. One way
to show this is if you attach an arm with a weight on it to the motor's axis, see how
much weight the motor can lift. Commonly, speed and torque would have an inverse
relationship, meaning as speed increases, torque decreases. Because of this concept,
there should be a balance between speed and torque when constructing a robot.
Gears can help in converting speed to torque or torque to speed.
In general, motors enable robots to move. Several robotic applications use a
specific motor to accomplish a task. Each type of motor performs different functions.
In selecting the correct electric motor to fit in the robot, consider the following: the
load that a specific motor can handle, the torque needed to move the robot without
being overloaded, the rotations per minute of the motor when it is running.

Source: https://rb.gy/vghbub
Figure 3. The Pictorial Diagram of Internal Components of an Electric Motor.

6
Parts of an Electric Motor
The design of the electric motor has undergone various upgrades yet its’ basic
components remained the same. The basic parts include an armature or a rotor, a
commutator, brushes, an axle, a stator, electrical terminals, and a DC power supply.
Together, these parts utilize the attractive and repulsive forces of electromagnetism,
causing the motor to continuously spin as it receives a steady flow of electric current
from the power supply. The electric motor has two parts: one stationary part called
the stator, and the other is the one that spins. The stator is often a permanent
magnet or a row of magnets lining the edge of the motor casing a round plastic drum.
Inside the stator is the rotor or armature that spins as the motor is running. It is
made of copper wire wound into a coil around an axle. The axle is the central shaft
of the motor. As the electric current flows through the coil, the resulting magnetic
field pushes against the field created by the stator and makes the axle spin.
An electric motor has another vital component, the commutator. It is located
at one end of the coil. It is composed of a metal ring divided into two halves. It
reverses the electrical current in the coil each time the coil rotates half a turn. The
commutator periodically reverses the current between the rotor and the external
circuit or the battery. These will guarantee that the coils' ends do not move in
opposite directions and that the axle spins in one direction only.
At the other end of the motor, we find the brushes and the terminals. They are
at the opposite end from where the rotor exits the motor casing. The brushes relay
the electrical current to the commutator. The terminals are connected to where the
battery is attached. It provides the current that enables the rotor to spin.

How does an Electric Motor work?


The principle on how an electric motor works would begin with the concept of
two magnets, opposite poles attract and like poles repel. The electric motor uses this
concept to create torque or rotational force. It is not the electric current that we would
like to believe, but the magnetic field is the one that generates the force causing the
electric motor to produce motion. Electricity moving through a wire creates a circular
magnetic field with the wire as the source and center of the rotation. When you add
current to it, the stator and armature form a stable magnetic field, and an
electromagnet is pushed or rotated within that field collectively.
Motors work with the principles of electromagnetism. As a magnetic field is
created around the axle, one end becomes electrically positive while the other end
becomes electrically negative. As opposite poles attract one another and like poles
repel, when you surround the axle with another magnet, it will move back and forth
from negative to positive. These will instigate an attractive and repulsive force
causing the axle to rotate, thus causing the motor to work.

7
Source: https://rb.gy/blhcro

Figure 4. How an Electric Motor works.

What’s More

ACTIVITY 1: Motor Memory!


Directions: Identify which term is being described by each statement below. Choose
your answer from the box.

armature axle
battery commutator
gears motor
speed stator
terminal torque

1. It measures how much force a motor can produce or exert.


2. It is the stationary part of the electric motor.
3. It provides a steady flow of electric current to the motor.
4. It is the part of the electric motor that rotates and is located inside the stator.
5. It refers to the maximum speed a motor can reach.
6. It serves as a connecting point between the battery and the motor to relay power
that keeps the motor spinning.
7. It helps in converting speed to torque or torque to speed.
8. It is the central shaft of an electric motor.
9. They are considered as one of the vital components that enable robots to move.
10. It is located at one end of the coil composed of a metal ring divided into two
halves. It reverses the electrical current in the coil each time the coil rotates half
a turn.

8
Guide Questions:
1. What are the two (2) parts of an electric motor?
2. What is the function of each part of an electric motor?
3. In your opinion, if one part of the motor stops working, what will happen to the
motor? Explain further.
Assessment 1:

Directions: Read the following questions and choose the correct answer.
1. What energy do motors convert into electrical energy?
a. heat c. mechanical
b. kinetic d. solar
2. Which of the following is the stationary component inside the motor?
a. alternator c. copper wire coil
b. battery d. stator
3. What describes the maximum RPM a motor can reach?
a. acceleration c. speed
b. momentum d. torque
4. What do we call the stationary component inside the motor?
a. axle c. rotor
b. commutator d. stator
5. Which of the following is NOT a component of an electrical motor?
a. commutator c. rotor
b. electrical terminals d. thermostat

Activity 2: What’s my part?


Directions: The picture below (figure 6) shows a cross-section of an electric motor.
Write the name of each component on the line provided after the number.

Source: https://rb.gy/nkqvl
Figure 5: A cross-section of an electric motor.

Guide Questions:
1. What are the stationary parts of a motor? Why are they not moving?
2. What are the moving parts of the motor? Why are they moving??
3. In your opinion, can electric motors work underwater? Explain further.

9
Activity 3. What do you see?
Directions: Write the word that corresponds to each letter as a missing word to
complete the sentences. Use the word bank to help you fill in the
statements.

WORD BANK:
a. armature i. electromagnetism
b. axle j. electromagnetic field
c. battery k. magnets
d. commutator l. repulsive
e. copper wire m. stationary
f. DC power n. stator
g. direction o. terminals
h. electrical current

How does an electric motor work?


An electric motor that is used in robot construction has the following parts
namely, an (1)_________also called a rotor, a commutator, brushes, an axle, a
(2)__________ that is comprised of magnets, electrical (3)_________, and a (4)_________
supply. An electric motor uses (5)__________ to create a steady flow of attractive and
(6)_________ forces. It is the force that causes the motor to spin. Each part has an
important role to play to ensure that the motor will run smoothly.
One part that is (7)___________ in its position is called the stator. The stator is
most often a row of (8)___________lining the edge of the motor casing. The casing is
usually a round plastic drum. Inside the stator is the rotor or armature. It is the one
that spins inside the stator. It is made of (9)__________ wound into a coil around a
central shaft called an (10)__________.
The commutator, situated at one end of the coil, is composed of a metal ring
divided into two halves. When the electric current enters the motor, the charges of
the current (positive and negative) is being reversed back and forth by the
(11)_________ each time the coil rotates half a turn. The commutator also reverses
the current between the armature (rotor) and the (12)_________to ensure that the
ends of the coils do not move in opposite directions thus, keeping the axle spinning
in one (13)__________only.
At the other end of the motor, we find the brushes and the terminals. The
brushes relay the (14)__________ to the commutator. The terminals of the motor are
connected to the battery. The electric current supplied by a battery flows through the
coil. It produces a (15)__________ that pushes against the magnets in the stator.

Guide Questions:
1. Do you think that motors can run without electricity? Why do you think so?
2. Do you think that robots can move without motors? Why do you think so?
3. How important are magnets in an electric motor?

10
Assessment 3: Fix me up!

Directions: Arrange the following steps into the correct sequence to describe how an
electric motor works.
A B C D

Practical motors The pair of forces An electric If the current-


have several creates a turning current in a carrying wire is
loops on an influence or magnetic field bent into a loop,
armature to torque to rotate will experience a then the two
provide a more the coil. force. sides of the loop
uniform torque which are at right
and the magnetic angles to the
field is produced magnetic field
by an will experience
electromagnet forces in opposite
arrangement directions.
called the field
coils.

The correct sequence is ___________à __________ à ___________ à _____________

What I Have Learned

Activity: Lets’ fix it!


Directions: Read the following situations and explain why the motor of the robot
stopped working.

1.The robot is traveling at high speed on sandy soil under the hot Sun for 30
minutes.
2.The robot is crossing a bridge when it got wet due to a rogue wave.
3.The robot is working on a live power line when suddenly it broke and came in
contact with the metal part of the robot.

11
What I Can Do

Activity 1: Improvised electric motor!

Building an electric motor.


Electric motors are electromechanical devices that convert electrical energy to
mechanical energy. Motors change voltage and current to torque. They are
commonly used as actuators in robot projects. They assist robots in performing
programmed movements and help them interact with their environment.
Building a simple electric motor using the materials found in our homes can
help you better comprehend the principles behind it.

Figure 6: An Improvised Electric Motor.

Materials needed:
-Copper wire, 24 inches long and 20-26 standard wire gauge(swg)
-Large paper clips, metallic (2pcs.)
-Battery, size D or C
-Tape (electric or masking)
-Magnet, ¼ inch (0.6 cm) diameter
-Sandpaper, fine-grit
-Cap of a large felt-tip marker or any cylinder, ½ inch (1.3 cm) in diameter
-Wire cutter

12
Prepping the copper wire….

STEP 1: From one end of the copper wire, measure about 1.6 inches (4 cm), and
from that point onward, wind the copper wire twelve (12) times around the
marker cap. Cut the magnet wire with the scissors, leaving about 1.6 inches
(4 cm) free (uncoiled) at each end.

Figure 7: Coiled loops of wire.


Note:

The copper wire must be neatly and evenly coiled. If it is not, the weight may
not be evenly distributed, making it difficult for the electromagnet coil to rotate in
the final motor setup. Make sure the loops are touching each other, always parallel
to one another.

STEP 2: Thread each free end of the copper wire through the coil’s loops in the 3
o'clock and 9 o'clock positions, as shown. (like in a clock hand)

Figure 8 and 9: Finished coiled loops of wire.

Note:

The copper wire is protected with an electrically insulating enamel coating.


This electrical insulation needs to be removed from the axel’s ends to create electrical
contact between the axle and the axle support (In this case, the large paper clips).

13
STEP 3: Fold sandpaper in half. Be sure to make the rough sides facing each other,
to make a "sandpaper sandwich." Strip the insulation of one end of the
copper wire by putting the end inside the sandpaper sandwich. Press the
sandpaper sandwich and gently rub it over the wire back and forth to remove
the coating on all sides of the wire. The wire is stripped when you can see
the copper wire end turn pale in color.

Figure 10. Removing the coating of the wire using sandpaper.

STEP 4: Using the sandpaper sandwich, strip ONLY the top half of the insulation off
the end of the copper wire. Place one end of the wire on a piece of cardboard
(to protect the table underneath) at the edge of a table. Hold the copper coil
in an upright position and gently rub the sandpaper over the wire to remove
the top half of the insulating material from the wire.

Figure 11: Stripping wire using sandpaper.

14
Figure 12: Stripped ends of a copper wire coil.

Note:
After removing the enamel coating, the ends of your copper wire coil should
look like this, as shown in the figure above.

Building the Axle Supports….

STEP 5: Bend the inner part of each of your two paperclips open to create the
structure, as shown below. To do this, gently lift the shorter end of the
paperclip and slowly move it upward (like a clock hand), counterclockwise
over the longer piece, until it reaches the 12 o'clock position, with the
original longer section still in the 6 o'clock position. The paperclip should
now look like an elongated number 3 with a tiny, more or less circular, hole
in the middle.

A B C D E

Figure 13: Procedure on how to bend the paperclip as axle support.

15
STEP 6: Secure the paperclip to the positive end (longer end) of the battery with tape
to build the axle support. The arrow indicates it is about to be folded over to
cover the paperclip and battery top. Check that the electrical contact is
created between the battery and the axle support (paperclip).

Figure 14: Fixing the paperclip with tape as axle support.


STEP 7: Secure the other paperclip to the negative end (flat side) of the battery. Note
that electrical contact is created between the axle support (paperclip) and
the battery terminal.

Figure 15: Fixing the terminals of the battery.

16
Source:https://rb.gy/r3yupz

Figure 16: Finished support system.


Now, it’s time to assemble your electric motor …

STEP 8: While the battery is balanced between the pages of an open booklet and the
attached axle supports are facing upward, place the magnet at the top center
of the battery halfway between the paperclips. Insert each axle end (copper
coil end) into the small loop of the axle support. The copper coil should be
spinning to indicate that your electric motor is running.

Figure 17: Assembled electric motor.


In case your motor does not work, don’t worry! It only needs some fine-tuning.
a) Adjust the axle supports so the axle is horizontally balanced.
b) Give the coil a few turns to make sure it can spin freely and does not rub against
the magnet.
c) Turn your coil 180 degrees or the other way around as maybe the uncoated side
of the axle was facing up, not touching the axle support. Contact of the bare
wire with the axle support will create an electrical connection and allow current
to flow.

17
Guide Questions:

1. What are the factors that help to do the task easily?


2. How did you overcome the challenges in doing the improvised electric motor?
3. If you would have the opportunity to change or add any material to increase
the efficiency of your motor, what material would that be and why?

Your improvised electric motor will be scored using the rubric below.

Indicator 5 4 3 2
Structural Rigid and Somewhat Fairly rigid Loosely rigid
Durability strong in its rigid and and strong in and strong in
constructio strong in its its its
n construction construction construction
Materials Used of the Failed use one Failed to use Failed to use
used materials (1) of two (2) three (3)
required. materials materials materials
required required required
Motor The coil The coil The coil The coil did
Efficiency needed to needed to be needed to be not spin.
be spun spun 3x before spun 6x before
once before it started it started
it started spinning. spinning.
spinning.

18
Assessment

Directions: Read each question carefully. Choose the letter of the correct answer.
1. Which of the following measures how much force a motor can produce or exert?
a. speed
b. stator
c. rotor
d. torque
2. What are the name of the stationary part and the spinning component of an
electric motor?
a. commutator and rotor
b. stator and armature
c. terminals and axle
d. magnets and battery
3. Which part converts electrical energy to mechanical energy that enables the robot
to do work?
a. stator
b. battery
c. motor
d. current
4. Which part of the motor relays the electrical current from the battery to the
commutator?
a. brushes
b. rotor
c. stator
d. magnets
5. What force is induced when a current passes through a copper coil, causing
the motor to run?
a. electropower
b. electromagnetism
c. electrobattery
d. electrocharges
6. What unit is used to count the number of times the axle makes one complete
rotation in a minute?
a. ACM
b. ECM
c. MAS
d. RPM
7. Which of the following is NOT a part of an electric motor?
a. alternator
b. armature
c. commutator
d. stator

19
8. Which of the following parts is found inside the stator of the motor?
a. axle
b. battery
c. copper coils
d. magnets
9. What part of the motor is situated at one end of the coil and is composed of
a metal ring divided into two halves?
a. armature
b. axle
c. battery
d. commutator
10. Which of the following refers to the central shaft of the motor where the copper
wires are wound?
a. axle
b. battery
c. magnets
d. terminals

20
Additional Activities

Activity: Motor Challenge!


Directions: After building your improvised electric motor, now is the time to test it by
performing this activity.

Materials needed:
Improvised Electric motor
Copper wire (24 inches and 20-26 swg)
Battery, 3 pcs.

Procedure:
Step 1: Connect all the materials of the motor so that it would be working.
Step 2: When the motor is working correctly, count how many times the coil spun
in one (1) minute. Record your observation in the table below.
Step 3: Repeat step 2 but this time add another battery to the motor. Remember to
make the necessary adjustments to the coil because the battery will make
your motor longer. The copper coil is still wound up twelve (12) times. When
you are done with the construction, set your electric motor again and count
how many times the coil spun for one (1) minute. Record your observation
below.
Step 4: This time add another battery to the setup. Your motor now is connected to
3 batteries. Repeat step 3 and count how many times the coil spun in 1
minute. Record your observation.

Data table of your activity.


Number of Battery Number of times the coil
spun in one (1) minute.
1 battery

2 batteries

3 batteries

Guide Questions:
1. How many batteries did the copper coil spun the most? Why do you think so?
2. How many batteries did the copper coil spun the least? Why do you think so?
3. In your observation, does adding two (2) or three (3) batteries to our homemade
motor affect the number of times the coil spun? Explain further.
4. Write your conclusion based on your observation?

21
22
What I Know What’s In Guide Question ( Activity 1-Motor
1.b Hard drive disc-stepper Memory!)
2.d motor, it can be controlled Answers may vary
3.b in low speeds. Assessment 1:
4.d 1.c
5.d Laser printer head-servo 2.d
6.d motor, it needs high speed 3.c
7.a and high torque.
4.d
8.d Guide Questions:
9.d 1.Answer may vary 5.d
10.b 2.Answer may vary Activity 2: What’s my Part!
3. Feedback loop 1. Magnet
2. Brushes
mechanism 3. Axle/output shaft
4. Coil/Copper wire
5. Commutator
Assessment 3: Fix me up! 6. Armature/rotor
The correct sequence is C D B A
Guide Questions (Activity 2)
What I Have Learned 1. Magnet, brushes, stator, terminal-bec.
1. Due to the hot temperature, the motor they either hold the motor in place or where
overheated, ran out of battery, others. the electricity is being conducted.
2. The motor got wet and shorted out, others. 2. Axle, armature,rotor, commutator, copper
3. The motor got electrocuted, others. coil- bec. they are attracted to the shaft as it
spins.
What I can do: 3. Answers may vary
Guide Question: Activity 3: What do you see!
Answer may vary 1. a 11.d
2.n 12.c
Assessment
3.o 13.g
1. d
4.f 14.h
2. b
3. c 5.i 15.j
4. a 6.l Guide Questions
5. b 7.m (Activity 3)
6. d 8.k Answer may vary
7. a 9.e
8. d 10.b
9. d
10. a
Additional Activities: Activity 1:Motor-rific!
Answer may vary 1.Answers may vary
What’s More
Activity 1-Motor Memory! Guide Questions:
1. Torque Answers may vary
2. Stator
3. Battery
4. Armature
5. Speed
6. Terminal
7. Gears
8. Axle
9. Motor
10. commutator
Answer Key
References

Brian, Marshall, “How Electric Motors work”, howstuffworks.com, accessed Jan 10,
2021, https://electronics.howstuffworks.com/motor.htm

Build a simple motor, Home Science Tools, accessed Jan 18, 2021,
https://www.homesciencetools.com/article/build-motor-project/

De Brabandere, Sabine, PhD, Science Buddies, Build a simple electric motor,


sciencebuddies.org, accessed Jan 18, 2021, https://
www.sciencebuddies.org/science-fair-projects/project-
ideas/Elec_p051/electricity-electronics/build-a-simple-electric-motor

Finding the right robot motor, rozum.com accessed 25/01/21,


https://rozum.com/find-robot-motor/

Gottlieb, Jeremy and Anderson, David Leech, “Motors”, accessed Jan 8, 2021,
https://mind.ilstu.edu/curriculum/medical_robotics/motors.html

Hai Prasaath K, “Choosing motors for robots”, accessed Jan 8,2021,


https://www.engineersgarage.com/egblog/choosing-motor-for-robots/

Parts of a motor, Sciencing .com, accessed Jan 10, 2021,


https://sciencing.com/parts-motor-5426656.html

23
24

You might also like