Nothing Special   »   [go: up one dir, main page]

Worked Example1-22m-28SK RCC Precast Girder & Slab-IAHE (16.08.22)

Download as pdf or txt
Download as pdf or txt
You are on page 1of 131

AECOM INDIA PVT.

LTD,
GURGAON, INDIA

Technical Lecture
on
Workout Design Examples of Various Types of
Bridge Superstructure
Design Sample-1
Simply Supported RCC Precast Girder & CIP Deck
Slab Superstructure (22m eff. Span)-28⁰ Skew

REGIONAL DIRECTOR (HIGHWAY & BRIDGES)


AECOM INDIA PVT. LTD, GURGAON, INDIA
16 August 2022
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew

Design of RCC Precast Girder and CIP Deck Slab Superstructure

INDEX
S.No Item Page No

1.0 Introduction, Salient Features of Superstructure and Design Methodology 1 -- 3

2.0 Input Data 4 -- 10

3.0 DESIGN FORCES FOR OUTER RCC GIRDER (LG-1) 11 -- 21

4.0 DESIGN OF OUTER RCC GIRDER (LG-1) 22 -- 52

5.0 DESIGN FORCES FOR INNER RCC GIRDER (LG-3) 53 -- 63

6.0 DESIGN OF INNER RCC GIRDER (LG-3) 64 -- 94

7.0 Design of End Cross Girder Near Expansion Joint Location 95 -- 98

Annexure-A Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis A1-- A11

Annexure-B Staad Input for Transverse Analysis of Deck Slab for DL, SIDL & CWLL B1-- B5
Project Designed by:

Client Checked by:


Job Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Date & Rev.
Name Skew
SALIENT FEATURES OF SUPERSTRUCTURE AND DESIGN METHODOLOGY

SALIENT FEATURES OF SUPERSTRUCTURE AND DESIGN METHODOLOGY

1. DESCRIPTION OF STRUCTURE
* Simply Supported RCC Precast Girder with Cast-in-Situ Concrete Deck type Superstructure

* Span Length ( c/c of bearing ) = 20.50 m (along Skew)

* Total Length of Superstructure = 21.95 m (including overhangs near Exp. Joint)

* Skew Angle = 28.00 deg. Cos  = 0.88


= 0.4887 rad Sin  = 0.47
* Width of Carriageway (without footpath) = 15.00 m

* Width of Carriageway (with footpath) = 11.000 m + 1.5 m wide footpath on outer side

* Overall Deck Width = 16.00 m

* Cross Slope = 2.50 % (Unidirection)

* Nos. of Longitudinal RCC Precast Girders = 5 Nos.

* c/c Distance between Precast Girders = 3.20 m

* Depth of Each Precast Girder = 1.600 m

* Thickness of Cast-in-Situ Deck Slab = 0.220 m

* Overall Depth of Superstructure = 1.820 m

* Type of Bearings at Supports = POT-PTFE BEARINGS


(1)
Project Designed by:

Client Checked by:


Job Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Date & Rev.
Name Skew
SALIENT FEATURES OF SUPERSTRUCTURE AND DESIGN METHODOLOGY

* Type of Expansion Joints = Strip Seal Type

* Width of Crash Barrier on either side = 0.500 m

* Thickness of Wearing coat = 75 mm [CC]

2. MATERIAL
* Grade of Concrete For Precast Girders = M- 40
* Grade of Concrete For Deck Concrete = M- 40

* Grade of H.Y.S.D. Reinforcement = Fe- 500

3. CONSTRUCTION SEQUENCE

* Placing the Girders on the Bearing and = 28th day to 35st day after casting of the girders
Position the I-Girder on permanent bearings.
Place steel shutter on girder top for casting of
RCC deck slab Concrete

* Placing of Deck Slab & Diaphragm Conc. = 35st days after concrete of Girders attaining a strength
of 45 MPa.

* Casting of Crash Barriers, Wearing Coat and = 49nd day to 63th day after casting of Precast Girders
othe deck furnitures
th
Open for traffic after 63 day if bridge is complete in all respect.

(2)
Project Designed by:

Client Checked by:


Job Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Date & Rev.
Name Skew
SALIENT FEATURES OF SUPERSTRUCTURE AND DESIGN METHODOLOGY

4. LOADING
DEAD LOAD ( DL )
* Unit Weight of Precast Concrete Girder 3
= 25 kN/m

* Unit Weight of Reinforced Concrete 3


= 25 kN/m

SUPER IMPOSED DEAD LOAD ( SIDL )


* 75mm thick wearing coat intensity has been taken as 1.8 kN/m2 for CC Wearing Coat
* Weight of crash barrier has been taken as 8.00 kN/m

5. CARRIAGEWAY LIVE LOAD ( CWLL )


Superstructure meant for 3-lane carriageway / 2-lane carriageway with footpath has been designed for governing
effect of CWLL loading as specifeid in IRC:6-2017 with appropriate lane reduction factor and suitable
allowances for impact so placed on the span to produce maximum stresses.
Following CWLL combinations have been considered in the design. The design is then carried
out for the most critical CWLL Combination.
1 Class A One Lane Placed Most Eccentrically
2 Class A Two Lane Placed Most Eccentrically
3 Class A Three Lane Placed Most Eccentrically
4 Class 70 R Wheel One Lane Placed Most Eccentrically
5 Class 70 R Wheel One Lane Placed Most Eccentrically + Class A One
6 SPV-385T Special Loading witout wind
6. TEMPERATURE EFFECT
The climate condition is assumed to be "MODERATE". Temperature gradients given in IRC 6:2017
has also been considered to evaluate the effect on structure due to daily changes in temperature.
(3)
Project Designed by:

Client Checked by:


Job Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Date & Rev.
Name Skew
SALIENT FEATURES OF SUPERSTRUCTURE AND DESIGN METHODOLOGY

Coefficient of thermal expansion =1.2 x 10-5 as per IRC: 6-2017


Poisson's Ratio = 0.15 , Modulus of Elasticity as per Table 9 of IRC : 21-2000

7. STRUCTURAL ANALYSIS
7.1 SECTION PROPERTIES

Uncracked sectional properties have been used for analysis.The effective flange widths for sectional
properties for the longitudinal girders and cross diaphragms have been determined in accordance
with IRC:112-2020.

7.2 LONGITUDINAL ANALYSIS OF THE DECK FOR SIDL & CWLL

Superstructure has been modeled as an equivalent grillage mesh consisting of longitudinal and transverse
members. Analysis of Self weight of girder and green concrete of slab has been carried out by single line
model and the analysis of SIDL and CWLL has been carried out by grillage model. STAAD-Pro Software,
which is widely axxepted for structural analysis,has been used for analysis.
For the design of longitudinal girders , moments and shear forces have been detremined at the crictical
sections. The design of various components has been carried out by design excel sheets.
Diaphragms have been designed for DL+SIDL load in Jack up condition.

7.3 ANALYSIS OF DECK SLAB

Deck slab has been analysed along transverse direction as a continuous beam with overhangs supported on
longitudinal girders and diaphragms. Live load effects shall be taken based on effective width method.

(4)
Project Designed by:

Client Checked by:


Job Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Date & Rev.
Name Skew
SALIENT FEATURES OF SUPERSTRUCTURE AND DESIGN METHODOLOGY

7.5 REFERENCE IRC CODES USED IN DESIGN


IRC:6-2017 Section II, Loads and Stresses
RC:112-2020 Code of Practice of Concrete Road Bridges (Limit State Design)
IRC:83 (Part-III)-2018 Standard specifications and code of practice for road bridges / Section: IX – bearings / Part: III –
POT, POT -cum-PTFE, Pin and metallic guide bearings

(5)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA

Design of RCC Precast Girder and CIP Deck Slab Superstructure


Span Arrangement (c/c of Bearings) 18.100 m (right) = 20.500 m (skew) BASED ON IRC:112-2020, ULS
Deck Overhang beyond cL of either Support 0.640 m (right) = 0.725 m (skew) & SLS DESIGN
Total Length 19.381 m (right) = 21.950 m (skew) SPECIFICATIONS

DATA GIVEN Deck Configuration- for deck without footpath Angle of Skew = 28.0 degree = 0.4887 radian
Length of the Span between cL of Bearings = 18.100 m (right) = 20.500 m (skew)
Total Width of Superstructure = 16.000 m (right) = 18.121 m (skew)
Width of Carriageway = 15.000 m (right) = 16.989 m (skew)
Width of Raised Footpath on either side = 0.000 m (right) = 0.000 m (skew)
Width of Crash Barrier on Inner side = 0.500 m (right) = 0.566 m (skew)
Width of Crash barrier on outer side = 0.500 m (right) = 0.566 m (skew)
Camber = 0.00 %
Thickness of Weaing Coat = 0.075 m
C/C Spacing of Longitudinal I-Girder = 3.200 m (right) = 3.624 m (skew)
Nos. of Longitudinal Girders in each Span = 5
Depth of L- Girder excluding Slab = 1.600 m
Actual Flange width for outer L-Girder = 3.200 m (right) = 3.624 m (skew)
Actual Flange width for inner L-Girder = 3.200 m (right) = 3.624 m (skew)
Nos. of End Diaphragm along Ts-Ts Axis (at each Supp.) = 2
Thickness of End Diaphragm = 0.400 m (right) = 0.453 m (skew)
Length of End Diaphragm = 15.233 m
Depth of End Diaphragm excluding Slab = 1.350 m
Nos. of Intermediate Diaphragm (One at center) = 0
Depth of Inter. Diaphragm excluding Slab = 1.350 m
Thickness of Intermediate Diaphragm = 0.300 m (right) = 0.340 m (skew)
c/c Spacing of Cross Girders = 20.500 m
Uniform Thickness of Deck Slab = 0.220 m
Total Depth of Superstructure at Center = 1.820 m
(6)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Total Depth of Superst. at Outer L-Gir. Position = 1.820 m
Total Depth of Superst. at Inner L-Gir. Position = 1.820 m
Projection of Long. I-Gir. beyond cL of Bearing = 0.353 m (right) = 0.400 m (skew)
Projection of Deck Slab Overhang beyond I-Girder = 0.287 m (right) = 0.325 m (skew)
Overall Length of each Longitudinal I-Girder = 18.807 m (right) = 21.300 m (skew)
Overall Length of each SS Span = 19.381 m (right) = 21.950 m (skew)
Length of End Solid Portion = 1.900 m
Length of web thickening = 1.500 m
Overhang of slab beyond CL of end Support = 0.640 m (right) = 0.725 m (skew)
Overhang of slab beyond Face of End X-Girder = 0.414 m (right) = 0.468 m (skew)
Thk. of Cant. Overhang at Root near Supports = 0.220 m
Thk. of Cant. Overhang at Root between Supports = 0.220 m
Lifting point from the end of I-girder = 0.400 m
Effective Span of I-Girder during erection = 20.500 m
No.of Bearings at each support = 5 No.of Jacks at each support = 4
spacing between bearings = 3.200 m spacing between jacks = 3.200 m

(7)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
ARRANGEMENT OF LONGITUDINAL GIRDERS & CROSS GIRDERS

LG1

28.0
LG2

LG3

LG4

LG5

Load 1
Abbreviations :-
LG1 = Outer Longitudinal Girder LG3 = Inner Longitudinal Girder LG5 = Outer Longitudinal Girder
LG2 = Inner Longitudinal Girder LG4 = Inner Longitudinal Girder

(8)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Sectional Dimensions of Outer Precast Girders & Slab
Section at Support Running Section Varying Sect. near Support
Description 0.0 L Sec - 0.073 L Sec 0.5 L Sec - 0.146 L Sec At 0.110 L Sec
-0.40 m - 1.500 m 10.25 m - 3.000 m 2.25 m from Supp.
Depth of the Precast Girder H 1.600 m 1.600 m 1.600 m
Height of Uniform portion of Bottom Bulb h1 0.000 m 0.250 m 0.250 m
Height of Tapered portion of Bottom Bulb h2 0.000 m 0.150 m 0.075 m
Height of Web of Girder Section h3 1.450 m 0.975 m 1.088 m
Height of Tapered portion of Top Flange h4 0.000 m 0.075 m 0.038 m
Ht. of Uniform portion of Top Flange-Recess h5 0.075 m 0.075 m 0.075 m
Height of the recess for Plank h6 0.075 m 0.075 m 0.075 m
Thickness of Bottom Bulb of the Section b1 0.650 m 0.650 m 0.650 m
Thickness of Web of Girder Section b2 0.650 m 0.300 m 0.475 m
Thickness of Top Flange of the Section b3 0.650 m 0.650 m 0.650 m
Thickness of Top Flange (less recess) b4 0.650 m 0.650 m 0.650 m
Width of Tapered portion of Bottom Bulb b5 0.000 m 0.175 m 0.088 m
Width of Tapered portion of Top Flange b6 0.000 m 0.175 m 0.088 m
Overhang of Deck Slab beyond cL of L-Gir. 1.6000 m 1.6000 m 1.6000 m
Overhang of Deck Slab beyond Top Flange 1.2750 m 1.2750 m 1.2750 m
Deck Slab Portion on inner side beyond cL of L-Gir. 1.6000 m 1.6000 m 1.6000 m
Deck Slab Portion on inner side beyond Top Flange 1.2750 m 1.2750 m 1.2750 m

(9)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Sectional Dimensions of Inner Precast Girders & Slab
Section at Support Running Section Varying Sect. near Support
Description 0.0 L Sec - 0.073 L Sec 0.5 L Sec - 0.146 L Sec At 0.110 L Sec
-0.40 m - 1.500 m 10.25 m - 3.000 m 2.25 m from Supp.
Depth of the Precast Girder H 1.600 m 1.600 m 1.600 m
Height of Uniform portion of Bottom Bulb h1 0.000 m 0.250 m 0.250 m
Height of Tapered portion of Bottom Bulb h2 0.000 m 0.150 m 0.075 m
Height of Web of Girder Section h3 1.450 m 0.975 m 1.088 m
Height of Tapered portion of Top Flange h4 0.000 m 0.075 m 0.038 m
Ht. of Uniform portion of Top Flange-Recess h5 0.075 m 0.075 m 0.075 m
Height of the recess for Plank h6 0.075 m 0.075 m 0.075 m
Thickness of Bottom Bulb of the Section b1 0.650 m 0.650 m 0.650 m
Thickness of Web of Girder Section b2 0.650 m 0.300 m 0.475 m
Thickness of Top Flange of the Section b3 0.650 m 0.650 m 0.650 m
Thickness of Top Flange (less recess) b4 0.650 m 0.650 m 0.650 m
Width of Tapered portion of Bottom Bulb b5 0.000 m 0.175 m 0.088 m
Width of Tapered portion of Top Flange b6 0.000 m 0.175 m 0.088 m
Overhang of Deck Slab beyond cL of L-Gir. 1.6000 m 1.6000 m 1.6000 m
Overhang of Deck Slab beyond Top Flange 1.2750 m 1.2750 m 1.2750 m
Deck Slab Portion on inner side beyond cL of L-Gir. 1.6000 m 1.6000 m 1.6000 m
Deck Slab Portion on inner side beyond Top Flange 1.2750 m 1.2750 m 1.2750 m

(10)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
LOAD COMBINATIONS SLS : Service Limit State ULS : Ultimate Limit State
DESCRIPTION OF COMBINATION STAGE DETAILS OF FORCES IN COMBINATION PURPOSE OF CHECKING
RARE (CHARACTERISTIC) SLS 1 Non-Composite Dlgir (At 28 days) Maximum Stresses
SLS 2 Non-Composite DLgir + DLslab (green wt.) (At 35 days) Maximum Stresses
SLS 3 Composite DLgir + DLslab (At 49 days) Maximum Stresses
SLS 4 Composite DLgir + DLslab + SDL1 + SDL2 + Q (At 63 days) Maximum Stresses
SLS 5 Composite DLgir + DLslab + SDL1 + SDL2 + Q (Long term) Maximum Stresses
FREQUENT SLS 6 Composite DLgir + DLslab + SDL1 + SDL2 + Q (Long term) Deflection
QUASI-PERMANENT SLS 7 Composite DLgir + DLslab + SDL1 + SDL2 + Q (Long term) Crack Width
ULTIMATE(BASIC) ULS 1 Composite Factored (DLgir+DLslab+SDL1+SDL2+Q) (Long term) Structural Strength Check in ULS

Proposed Construction Schedule The construction schedule for typical span is taken as following:
Age of the Girder Activity Strength of Conc. (fcj)
0 Days Casting of Long. I-Girder at Casting Yard with portion of Diaphragm
28 Days Position the Precast-Girder on permanent Bearings 40.00 MPa
28 Days -- 35 Days Position the I-Girder on permanent bearings. Erect temporary shuttering for RCC deck slab. 40.00 MPa
35 Days Casting of Deck Slab along with balance portion of Diaphragms 40.00 MPa
49 Days Average Age of Girder When Composite Action takes place 40.00 MPa
49 Days -- 63 Days Fixing the Kerb+Railing and laying of Wearing Coat 40.00 MPa
63 Days Average Age of Girder When SIDL & CWLL acts on it 40.00 MPa

(11)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Material Specification
1. CONCRETE Type of Cement considered in the Construction = Normal Portland Cement N
1.1 Concrete at Ultimate limit State (ULS) Coefficient used for Cement Type S = 0.25 (Refer Eq. 6.3 of IRC:112)
Value
Notation Precast Cast-in-situ Unit Description
Conc. Girder Concrete
Grade M 40 M 40 Refer Table No:6.5 (IRC:112-2020)
2
fck 40 40 N/mm Characteristic strength of concrete after 28 days in test on cube
fcm 50 50 N/mm2 Mean concrete compressive strength at age '28' days (Refer Table no:6.5 of IRC:112-2020)
2
fctm 3 3 N/mm Mean value of axial tensile strength of concrete for age t > 28 days (Refer Table no:6.5 of IRC:112-2020)
fctk,0.05 2.1 2.1 N/mm 2
Lower characteristic axial tensile strength of Conc.(Table 6.5) below which 5% of test results would be expected to fall for specified Conc.
2
fctk,0.95 3.9 3.9 N/mm Upper characteristic axial tensile strength (Table 6.5)
2
ftkm 3.0 3.0 N/mm Characteristic tensile strength of concrete (Refer Table no:6.5 of IRC:112-2020)
1.5 1.5 Material safety factor for Concrete in Ultimate Limit State (ULS) for Basic and Seismic Combination
γm
1.2 1.2 Material safety factor for Concrete in Ultimate Limit State (ULS) for Accidental Combination
2
f ck (t) 40.00 40.00 N/mm ( at age t > 28 days ) f ck(t) = f cm(t) - 10
2
Ecm 33 33 kN/mm Secant modulus of elasticity of conc. for age t > 28 days (Refer Table No:6.5 of IRC:112-2020)
Ec 33 33 kN/mm2 Short Term modulus of elasticity of concrete E c = 1.00 x E cm to be used for deflection check
 0.2 0.2 The Poisson's ratio for Uncracked Concrete (Refer Cl.6.4.2.5 of IRC:112-2020)
 0 0 Poisson's ratio for Cracked Concrete (Refer Cl.6.4.2.5 of IRC:112-2020)
 25 25 kN/mm 3
Unit Weight of Normal Weight Concrete
 green 26 3
kN/mm Unit Weight of Normal Weight of Green Concrete for Deck Concrete
Stress-Strain Relationship of Concrete at ULS : Considering Rectangular Stress Distribution
εc3 0.0018 0.0018 Compressive strain at peak stress for Rectangle Stress Distribution
εcu3 0.0035 0.0035 Ultimate compressive strain for Rectangle Stress Distribution
η 1.0 1.0 Coefficient to convert to rectangular stress block
λ 0.8 0.8 Coefficient to convert to rectangular stress block
(12)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
0.67 0.67 Coefficient to convert the strength in test to strength in structral member for age t > 28 days
αc
1 1 Coefficient to convert the strength in test to strength in structral member for age t < 28 days
2
17.87 17.87 N/mm Compressive design strength of concrete: fcd = (c x fcu) /m for Basic and Seismic Combination for age t > 28 days
fcd
22.33 22.33 N/mm2 Compressive design strength of concrete: fcd = (c x fcu) / m for Accidental Combination for age t > 28 days

b  cu3  fcd
Ac di

Fcs1
Acs1  cs1
x x Fc

h
d2
As2 d1  s2 Fs2
As1  s1 Fs1
Section (schematic) Strain Stress

1.2 CONCRETE at Serviceability Limit State (SLS)


Value
Notation Precast Cast-in-situ Unit Description
Conc. Girder Concrete
γm 1 1 Material safety factor for Concrete in SLS
ftd 0 0 N/mm2 Tensile design strength is taken into account in serviceability limit state
εc2 0.002 0.002 Yield strain (ec2)
c,max 19.20 19.20 N/mm 2
( at age t > 28 days ) Compressive stress in conc. for Rare Combination of Loads c,max = 0.48 x fck(t)
t,max 3.00 3.00 N/mm 2
( at age t > 28 days ) Tensile stress in conc. for Rare Combination of Loads t,max = (βcc(t)) x f ctm

(13)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
2. REINFORCING STEEL
Notation Value Unit Description
Rebar Fe 500 Grade of Steel Reinforcement
2
fyk 500 N/mm Steel characteristic strength

2
Em 200000 N/mm Elastic Modulus.for Steel Bars (Default = 200 KN/mm2) (Refer Cl: 6.2.2 of IRC:112-2020)
1.15 Material safety factor for Steel at Ultimate Limit State ( ULS ) for Basic and Seismic Combination
γs
1 Material safety factor for Steel at Ultimate Limit State ( ULS ) for Accidental Combination
2
434.78 N/mm Design Strength of Steel at ULS for Basic and Seismic Combination
fsd 2
500 N/mm Design Strength of Steel at ULS for Accidental Combination
εsu 0.05 Ultimate strain, depends on the ductility of steel
γm in SLS 1 Material safety factor at Serviceability Limit State
2
fsd in SLS 500 N/mm Design Strength of Steel at SLS
Poisson Ratio 0.25 Poisson Ratio of Steel Reinforcement
3
Unit Weight 78.5 kN/m Unit Weight of Steel
2
fyw 500 N/mm Shear reinforcement steel characteristic strength (should always less than 500 MPa)
2
400 N/mm Shear reinforcement design strength for Basic and Seismic Combination Limited to 0.8 x f yw
fywd 2
400 N/mm Shear reinforcement design strength for Accidental Combination
s 400 N/mm 2
Allowable tensile stress in steel in rare combination of loads in SLS = 0.8 x f ck

3. OTHER REQUIRED INFORMATION FOR CONSTRUCTION


Relative humidity of ambient environment RH = 75 % Average ambient temperature during curing = 25ºC
Curing time (in days) = = 3 Coefficient of Thermal Expansion  1.17E-05 / deg.Celsius
Largest nominal maximum aggregate size = 20 mm

Modular Ratio between Slab and Beam Material n = Ec for Slab = 33000.0 = 1.000
Ec for Beam 33000.0
(14)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
SIDL on Superstructure
16.000 m
Carsh Crash
Barrier
Deck Slab Carriageway Barrier
0.500 15.000 m 0.500 m

L-Girder

1.60 m 3.20 m 3.20 m 3.20 m 3.20 m 1.60 m

Position of SIDL on Super structure

(15)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Computation of Effective Flange Width for Outer Girder As per Cl. 7.6.1.2 of IRC: 112-2017
Dimension Dimension Dimension
B
B B1 B2
(in metre) (in metre) (in metre)
D 3.200 1.275 0.300

Dimension Dimension Dimension


B3 B4 D
(in metre) (in metre) (in metre)

B1 B3 0.175 1.275 0.220


B2 B3 B4
Using Relation

Effective flange width on Cantilever side = Minimum of ( 0.2 x L ), (0.2 bi + 0.1 L) & Length of Cantilever
from the face of web
= Minimum of ( 4.100 ) & ( 2.340 ) & ( 1.450 )

= 1.450 m

(Applying Modular Ratio n = 1.000 ) = 1.450 x 1.000 = 1.450 m

Effective flange width on Other side = Minimum of ( 0.2 x L ), (0.2 bi + 0.1 L) & one-half the clear distance to next web
from the face of web
= Minimum of ( 4.100 ) & ( 2.340 ) & ( 1.450 )

= 1.450 m

(16)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA

(Applying Modular Ratio n = 1.000 ) = 1.450 x 1.000 = 1.450 m

Total Effective Flange Width = 1.450 + 0.300 + 1.450 = 3.200 m

Computation of Effective Flange Width for Inner Girder As per Cl. 7.6.1.2 of IRC: 112-2017
B Dimension Dimension Dimension
B B1 B2
D
(in metre) (in metre) (in metre)
3.200 1.275 0.175

Dimension Dimension Dimension


B3 B4 D
B1 B2 B3 B2 B4
(in metre) (in metre) (in metre)
0.300 1.275 0.220

Effective flange width on Other side = Minimum of ( 0.2 x L ), (0.2 bi + 0.1 L) & one-half the clear distance to next web
from the face of web
= Minimum of ( 4.100 ) & ( 2.340 ) & ( 1.450 )

= 1.450 m

(Applying Modular Ratio n = 1.000 ) = 1.450 x 1.000 = 1.450 m

Total Effective Flange Width 1.450 + 0.300 + 1.450 = 3.200 m


(17)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA

Summary of Effective Section Properties of Outer L-Girder


Section at Support Running Section Varying Sect. near Support
Description 0.0 L Sec - 0.073 L Sec 0.5 L Sec - 0.146 L Sec At 0.110 L Sec
1.0 L Sec - 0.927 L Sec 0.5 L Sec - 0.854 L Sec At 0.890 L Sec
-0.400 m - 1.500 m 10.25 m - 3.000 m 2.250 m from Supp.
Properties of non-composite section: Precast Girder Only
2 2 2
Area of Precast Girder A 1.040 m 0.659 m 0.840 m
c.g. of girder from Top of girder Yt 0.800 m 0.839 m 0.814 m
c.g. of girder from soffit of girder Yb 0.800 m 0.761 m 0.786 m
Overall Depth of Girder D 1.600 m 1.600 m 1.600 m
4 4 4
Moment of Inertia of Section Iz 0.222 m 0.181 m 0.199 m
3 3 3
Section Modulus of Top Zt 0.277 m 0.216 m 0.245 m
3 3 3
Section Modulus of Bottom Zb 0.277 m 0.238 m 0.253 m
3 3 3
First moment of area above and about 0.061 m 0.035 m 0.046 m
N.A of Composite Section
Weight of Girder per metre wg 26.00 kN/m 16.48 kN/m 21.00 kN/m
Notional size (mm) of the Cross Section h0 462.22 mm 278.8 mm 363.93 mm
Coeff. depending on notional size for Shrinkage kh 0.71 0.77 0.73

(18)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Properties of Composite Section: Precast Girder + Deck Slab
2 2 2
Area of Composite Section A 1.744 m 1.363 m 1.544 m
c.g. of Section from Top of Deck Slab Yt 0.653 m 0.569 m 0.613 m
c.g. of Section from soffit Yb 1.167 m 1.251 m 1.207 m
Overall Depth of the Section D 1.820 m 1.820 m 1.820 m
4 4 4
Moment of Inertia of Section Iz 0.572 m 0.491 m 0.529 m
3 3 3
Section Modulus at Top of Slab Zts 0.877 m 0.862 m 0.863 m
3 3 3
Sec. Modulus at Bottom of Slab Zbs 1.323 m 1.406 m 1.347 m
3 3 3
Sec.Modulus of Bottom of Section Zb 0.490 m 0.392 m 0.438 m
3 3 3
First moment of area of Composite Sec. 0.443 m 0.358 m 0.400 m
above & about N.A of Composite Section
Notional size (mm) of the Cross Section h0 509.94 mm 385.6 mm 443.9 mm
Coeff. depending on notional size for Shrinkage kh 0.70 0.73 0.71
Torsional Inertia of Comp. Gir 0.097 m
4
0.020 m
4
0.038 m
4

Torsional Inertia of Deck Slab 0.005 m


4
0.005 m
4
0.005 m
4

hmax x hmin (in metre) 3.200 x 0.220 3.200 x 0.220 3.200 x 0.220
Torsional Inertia of Top Flange 0.001 m
4
0.001 m
4
0.001 m
4

hmax x hmin (in metre) 0.650 x 0.150 0.650 x 0.205 0.650 x 0.182
Torsional Inertia of Web 0.091 m
4
0.007 m
4
0.027 m
4

hmax x hmin (in metre) 1.450 x 0.650 0.975 x 0.300 1.088 x 0.475
Torsional Inertia of Bott. Flange 0.006 m
4
0.005 m
4

hmax x hmin (in metre) 0.650 x 0.360 0.650 x 0.315

(19)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Summary of Effective Section Properties of Inner L-Girder
Section at Support Running Section Varying Sect. near Support
Description 0.0 L Sec - 0.073 L Sec 0.5 L Sec - 0.146 L Sec At 0.110 L Sec
1.0 L Sec - 0.927 L Sec 0.5 L Sec - 0.854 L Sec At 0.890 L Sec
-0.400 m - 1.500 m 10.25 m - 3.000 m 2.250 m from Supp.
Properties of non-composite section: Precast Girder Only
2 2 2
Area of Precast Girder A 1.040 m 0.659 m 0.840 m
c.g. of girder from Top of girder Yt 0.800 m 0.839 m 0.814 m
c.g. of girder from soffit of girder Yb 0.800 m 0.761 m 0.786 m
Overall Depth of Girder D 1.600 m 1.600 m 1.600 m
4 4 4
Moment of Inertia of Section Iz 0.222 m 0.181 m 0.199 m
3 3 3
Section Modulus of Top Zt 0.277 m 0.216 m 0.245 m
3 3 3
Section Modulus of Bottom Zb 0.277 m 0.238 m 0.253 m
3 3 3
First moment of area above and about 0.061 m 0.035 m 0.046 m
N.A of Composite Section
Weight of Girder per metre wg 26.00 kN/m 16.48 kN/m 21.00 kN/m
Notional size (mm) of the Cross Section h0 462.2 mm 278.8 mm 363.93 mm
Coeff. depending on notional size for Shrinkage kh 0.71 0.77 0.73

(20)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Properties of Composite Section: Precast Girder + Deck Slab
2 2 2
Area of Composite Section A 1.744 m 1.363 m 1.544 m
c.g. of Section from Top of Deck Slab Yt 0.653 m 0.569 m 0.613 m
c.g. of Section from soffit Yb 1.167 m 1.251 m 1.207 m
Overall Depth of the Section D 1.820 m 1.820 m 1.820 m
4 4 4
Moment of Inertia of Section Iz 0.572 m 0.491 m 0.529 m
3 3 3
Section Modulus at Top of Slab Zts 0.877 m 0.862 m 0.863 m
3 3 3
Sec. Modulus at Bottom of Slab Zbs 1.323 m 1.406 m 1.347 m
3 3 3
Sec.Modulus of Bottom of Section Zb 0.490 m 0.392 m 0.438 m
3 3 3
First moment of area of Composite Sec. 0.443 m 0.358 m 0.400 m
above & about N.A of Composite Section
Notional size (mm) of the Cross Section h0 509.9 mm 385.6 mm 443.9 mm
Coeff. depending on notional size for Shrinkage kh 0.70 0.73 0.71
Torsional Inertia of Comp. Gir 0.097 m
4
0.020 m
4
0.038 m
4

Torsional Inertia of Deck Slab 0.005 m


4
0.005 m
4
0.005 m
4

hmax x hmin (in metre) 3.200 x 0.220 3.200 x 0.220 3.200 x 0.220
Torsional Inertia of Top Flange 0.001 m
4
0.001 m
4
0.001 m
4

hmax x hmin (in metre) 0.650 x 0.150 0.650 x 0.205 0.650 x 0.182
Torsional Inertia of Web 0.091 m
4
0.007 m
4
0.027 m
4

hmax x hmin (in metre) 1.450 x 0.650 0.975 x 0.300 1.088 x 0.475
Torsional Inertia of Bott. Flange 0.006 m
4
0.005 m
4

hmax x hmin (in metre) 0.650 x 0.360 0.650 x 0.315

(21)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA

Effective Section Properties of Outer L-Girder


Table for Torsional Constant (K1) for b/d ratio
b/d Torsional Rigidity of Deck Slab is taken half as continuous in both direction.
1 1.5 1.750 2.000 3.000 4.000 5.000 6.000 7.000 8 9 10 
0.141 0.196 0.213 0.229 0.263 0.281 0.291 0.299 0.303 0.307 0.31 0.313 0.333
k1
Effective Section Properties of Precast Girder for Non-Composite & Composite Condition
W

Depth of Neutral Axis from top Yt = (A x Y)


(A )
1
2
3
1a MOI of the Section  (Ip) - (A x Yt^2)

Modulus Of Section at Top Zt = MOI


4 Yt

Modulus Of Section at Bottom Zb = MOI


Yb
5
Torsional Rigidity of the Section Ix  ( k1 x b x d^3 )

(22)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Section 1 - At Support
from 0.000 L Sec. to 0.073 L Section
and from 1.000 L Sec. to 0.927 L Section
For RCC Precast Girder
Segment Element Nos. Section Area ( A ) Y from Top A x Y A x (Y^2) Icg (self) Ip
No. Type Width Height ( m^2 ) ( m) ( m^3 ) ( m^4 ) ( m^4 ) ( m^4 )
1 Rect. 1 0.650 0.075 0.049 0.038 0.002 0.000 0.000023 0.000091
1a Rect. 1 0.650 0.075 0.049 0.113 0.005 0.001 0.000023 0.000640
2 Rect. 1 0.650 0.000 0.000 0.150 0.000 0.000 0.000000 0.000000
3 Tri. 2 0.000 0.000 0.000 0.150 0.000 0.000 0.000000 0.000000
4 Rect. 1 0.650 1.450 0.943 0.875 0.825 0.722 0.165134 0.886735
5 Tri. 2 0.000 0.000 0.000 1.600 0.000 0.000 0.000000 0.000000
6 Rect. 2 0.000 0.000 0.000 1.600 0.000 0.000 0.000000 0.000000
SUB TOTAL 1.040 0.832 0.722 0.1652 0.8875

Sectional Properties of Precast RCC Girder Only Perimeter of the Section exposed to drying u = 4.500 m
Area A Yt MOI Zt Yb Zb Notional size (mm) of the Cross Section h0 = 2 Ac / u
(m^2) (m) (m^4) (m^3) (m) (m^3) Non-Composite h0 = 0.462 m
1.040 0.800 0.222 0.277 0.800 0.277
Ax Iz

For composite section


Segment Element Nos. Section Area ( A ) Y from A x Y A x (Y^2) Icg (self) Ip
No. Type Width Height ( m^2 ) Deck Top ( m^3 ) ( m^4 ) ( m^4 ) ( m^4 )
RCC Precast Girder Portion
1.040 1.020 1.061 1.082 0.2219 1.3039
Cast-in-situ RC Slab Portion
7 Rect 1 3.200 0.220 0.704 0.110 0.077 0.009 0.002839 0.011358
SUB TOTAL 0.704 0.077 0.009 0.0028 0.0114
TOTAL 1.744 1.138 1.0905 0.2247 1.3152

Avg. Thickness = 0.704 = 0.220 m Perimeter of the Section exposed to drying u = 6.840 m
(23)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
of Deck Slab 3.200 Notional size (mm) of the Cross Section h0 = 2 Ac / u
Composite h0 = 0.510 m
Avg. Thickness = 0.943 = 0.650 m N.B. Top Flange Surface of the Girder and Exposed deck surface
of Web 1.450 will not be considered in the perimeter

Avg. Thickness = 0.097 = 0.150 m


of Top Flange 0.650 Section Torsional b d k1xbxd^3
Sectional Properties of Composite Section cons. K1 (m) (m) ( m^4 )
Area A Yt MOI Zt Yb Zb Zt' Deck Slab 0.313 3.200 0.220 0.0053
(m^2) (m) (m^4) (m^3) (m) (m^3) (m^3) 2
1.744 0.653 0.572 0.877 1.167 0.490 1.323 Top Flange 0.281 0.650 0.150 0.0006
Ax Iz Web 0.229 1.450 0.650 0.0912
Zt' = Section Modulus at bottom of cast-in-situ slab Torsional Rigidity Ix 0.0971

Calculation of first moment of area of Precast Girder Portion above N.A of Composite Section --- @ N.A. of Composite Section
Centroid of composite section from top of Deck Slab = 0.653 m
Segment Element Nos. Section Area ( A ) Y from Top A x Y
No. Type Width Height ( m^2 ) of Girder (m) ( m^3 )
1 Rect. 1 0.650 0.075 0.049 0.038 0.002
1a Rect. 1 0.650 0.075 0.049 0.113 0.005
2 Rect. 1 0.650 0.000 0.000 0.150 0.000
3 Tri. 2 0.000 0.000 0.000 0.150 0.000
4 Rect. 1 0.650 0.283 0.184 0.291 0.054
SUB TOTAL 0.281 0.061

Ytop from top of Precast Girder = 0.216 m


Ytop from the top of Deck Slab = 0.436 m
Lever arm L.A. = 0.216 m
(Ay) x L.A. = 0.281 x 0.216 = 0.061 m^3

(24)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Calculation of first moment of area of Composite Section above N.A of Composite Section --- @ N.A. of Composite Section
Centroid of composite section from top of Deck Slab = 0.653 m
Segment Element Nos. Section Area ( A ) Y from A x Y
No. Type Width Height ( m^2 ) Deck Top ( m^3 )
RCC Precast Girder Portion
0.281 0.436 0.123
Cast-in-situ RC Slab Portion
7 Rect 1 3.200 0.220 0.704 0.110 0.077
TOTAL 0.985 0.200

Ytop from the top of Deck Slab = 0.203 m


Lever arm L.A. = 0.450 m
(Ay) x L.A. = 0.985 x 0.450 = 0.443 m^3

Section 2 - Mid Span


from 0.500 L Sec. to 0.146 L Section
and from 0.854 L Sec. to 0.500 L Section

For RCC Precast Girder


Segment Element Nos. Section Area ( A ) Y from Top A x Y A x (Y^2) Icg (self) Ip
No. Type Width Height ( m^2 ) ( m) ( m^3 ) ( m^4 ) ( m^4 ) ( m^4 )
1 Rect. 1 0.650 0.075 0.049 0.038 0.002 0.000 0.000023 0.000091
1a Rect. 1 0.650 0.075 0.049 0.113 0.005 0.001 0.000023 0.000640
2 Rect. 1 0.300 0.075 0.023 0.188 0.004 0.001 0.000011 0.000802
3 Tri. 2 0.175 0.075 0.013 0.175 0.002 0.000 0.000004 0.000406
4 Rect. 1 0.300 1.375 0.413 0.913 0.376 0.343 0.064990 0.408461
5 Tri. 2 0.175 0.150 0.026 1.300 0.034 0.044 0.000033 0.044395
6 Rect. 2 0.175 0.250 0.088 1.475 0.129 0.190 0.000456 0.190823
SUB TOTAL 0.659 0.553 0.580 0.0655 0.6456

(25)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Sectional Properties of Precast RCC Girder Only Perimeter of the Section exposed to drying u = 4.731 m
Area A Yt MOI Zt Yb Zb Notional size (mm) of the Cross Section h0 = 2 Ac / u
(m^2) (m) (m^4) (m^3) (m) (m^3) Non-Composite h0 = 0.279 m
0.659 0.839 0.181 0.216 0.761 0.238
Ax Iz

For composite section


Segment Element Nos. Section Area ( A ) Y from A x Y A x (Y^2) Icg (self) Ip
No. Type Width Height ( m^2 ) Deck Top ( m^3 ) ( m^4 ) ( m^4 ) ( m^4 )
RCC Precast Girder Portion
1 0.659 1.059 0.698 0.740 0.1811 0.9210
Cast-in-situ RC Slab Portion
7 Rect 1 3.200 0.220 0.704 0.110 0.077 0.009 0.002839 0.011358
SUB TOTAL 0.704 0.077 0.009 0.0028 0.0114

TOTAL 1.363 0.776 0.7484 0.1840 0.9324

Avg. Thickness = 0.704 = 0.220 m Avg. Thickness = 0.133 = 0.205 m


of Deck Slab 3.200 of Top Flange 0.650

Avg. Thickness = 0.413 = 0.300 m Perimeter of the Section exposed to drying u = 7.071 m
of Web 1.375 Notional size (mm) of the Cross Section h0 = 2 Ac / u
Composite h0 = 0.386 m
Avg. Thickness = 0.234 = 0.360 m N.B. Top Flange Surface of the Girder and Exposed deck surface
of bott. Bulb 0.650 will not be considered in the perimeter

(26)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Sectional Properties of Composite Section Section Torsional b d k1xbxd^3
Area A Yt MOI Zt Yb Zb Zt' cons. K1 (m) (m) ( m^4 )
(m^2) (m) (m^4) (m^3) (m) (m^3) (m^3) Top flange 0.313 3.200 0.220 0.0053
1.363 0.569 0.491 0.862 1.251 0.392 1.406 (Deck) 2
Ax Iz Top flange 0.263 0.650 0.205 0.0015
Zt' = Section Modulus at bottom of cast-in-situ slab Web 0.263 0.975 0.300 0.0069
Bott. Flange 0.213 0.650 0.360 0.0064
Torsional Rigidity Ix 0.0202

Calculation of first moment of area of Precast Girder Portion above N.A of Composite Section --- @ N.A. of Composite Section
Centroid of composite section from top of Deck Slab = 0.569 m
Segment Element Nos. Section Area ( A ) Y from Top A x Y
No. Type Width Height ( m^2 ) of Girder (m) ( m^3 )
1 Rect. 1 0.650 0.075 0.049 0.038 0.002
1a Rect. 1 0.650 0.075 0.049 0.113 0.005
2 Rect. 1 0.300 0.075 0.023 0.188 0.004
3 Tri. 2 0.175 0.075 0.013 0.175 0.002
4 Rect. 1 0.300 0.124 0.037 0.287 0.011
SUB TOTAL 0.170 0.025

Ytop from top of Precast Girder = 0.144 m


Ytop from the top of Deck Slab = 0.364 m
Lever arm L.A. = 0.205 m
(Ay) x L.A. = 0.170 x 0.205 = 0.035 m^3

(27)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Calculation of first moment of area of Composite Section above N.A of Composite Section --- @ N.A. of Composite Section
Centroid of composite section from top of Deck Slab = 0.569 m
Segment Element Nos. Section Area ( A ) Y from A x Y
No. Type Width Height ( m^2 ) Deck Top ( m^3 )
RCC Precast Girder Portion
0.170 0.364 0.062
Cast-in-situ RC Slab Portion
7 Rect 1 3.200 0.220 0.704 0.110 0.077
TOTAL 0.874 0.139

Ytop from the top of Deck Slab = 0.159 m


Lever arm L.A. = 0.410 m
(Ay) x L.A. = 0.874 x 0.410 = 0.358 m^3

Section 3 - Near Support


At 0.110 L Sec. & 0.890 L Section

For RCC Precast Girder


Segment Element Nos. Section Area ( A ) Y from Top A x Y A x (Y^2) Icg (self) Ip
No. Type Width Height ( m^2 ) ( m) ( m^3 ) ( m^4 ) ( m^4 ) ( m^4 )
1 Rect. 1 0.650 0.075 0.049 0.038 0.002 0.000 0.000023 0.000091
1a Rect. 1 0.650 0.075 0.049 0.113 0.005 0.001 0.000023 0.000640
2 Rect. 1 0.475 0.038 0.018 0.169 0.003 0.001 0.000002 0.000509
3 Tri. 2 0.088 0.038 0.003 0.163 0.001 0.000 0.000000 0.000087
4 Rect. 1 0.475 1.413 0.671 0.894 0.600 0.536 0.111552 0.647490
5 Tri. 2 0.088 0.075 0.007 1.325 0.009 0.012 0.000002 0.011523
6 Rect. 2 0.088 0.250 0.044 1.475 0.065 0.095 0.000228 0.095411
SUB TOTAL 0.840 0.684 0.644 0.1118 0.7558

(28)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA
Sectional Properties of Precast RCC Girder Only Perimeter of the Section exposed to drying u = 4.615 m
Area A Yt MOI Zt Yb Zb Notional size (mm) of the Cross Section h0 = 2 Ac / u
(m^2) (m) (m^4) (m^3) (m) (m^3) Non-Composite h0 = 0.364 m
0.840 0.814 0.199 0.245 0.786 0.253
Ax Iz

For composite section


Segment Element Nos. Section Area ( A ) Y from A x Y A x (Y^2) Icg (self) Ip
No. Type Width Height ( m^2 ) Deck Top ( m^3 ) ( m^4 ) ( m^4 ) ( m^4 )
RCC Precast Girder Portion
1 0.840 1.034 0.868 0.898 0.1991 1.0972
Cast-in-situ RC Slab Portion
7 Rect 1 3.200 0.220 0.704 0.110 0.077 0.009 0.002839 0.011358
SUB TOTAL 0.704 0.077 0.009 0.0028 0.0114

TOTAL 1.544 0.946 0.9066 0.2020 1.1086

Avg. Thickness = 0.704 = 0.220 m Avg. Thickness = 0.119 = 0.182 m


of Deck Slab 3.200 of Top Flange 0.650

Avg. Thickness = 0.671 = 0.475 m Perimeter of the Section exposed to drying u = 6.955 m
of Web 1.413 Notional size (mm) of the Cross Section h0 = 2 Ac / u
Composite h0 = 0.444 m
Avg. Thickness = 0.205 = 0.315 m
of bott. Bulb 0.650
Section Torsional b d k1xbxd^3
cons. K1 (m) (m) ( m^4 )
Sectional Properties of Composite Section Deck Slab 0.313 3.200 0.220 0.0053
Area A Yt MOI Zt Yb Zb Zt' 2
(m^2) (m) (m^4) (m^3) (m) (m^3) (m^3) Top flange 0.263 0.650 0.182 0.0010
1.544 0.613 0.529 0.863 1.207 0.438 1.347 Web 0.229 1.088 0.475 0.0267
Ax Iz Bott. Flange 0.229 0.650 0.315 0.0046
Zt' = Section Modulus at bottom of cast-in-situ slab Torsional Rigidity Ix 0.0377
(29)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
INPUT DATA

Calculation of first moment of area of Precast Girder Portion above N.A of Composite Section --- @ N.A. of Composite Section
Centroid of composite section from top of Deck Slab = 0.613 m
Segment Element Nos. Section Area ( A ) Y from Top A x Y
No. Type Width Height ( m^2 ) of Girder (m) ( m^3 )
1 Rect. 1 0.650 0.075 0.049 0.038 0.002
1a Rect. 1 0.650 0.075 0.049 0.113 0.005
2 Rect. 1 0.475 0.038 0.018 0.169 0.003
3 Tri. 2 0.088 0.038 0.003 0.163 0.001
4 Rect. 1 0.475 0.205 0.097 0.290 0.028
SUB TOTAL 0.216 0.039

Ytop from top of Precast Girder = 0.181 m


Ytop from the top of Deck Slab = 0.401 m
Lever arm L.A. = 0.212 m
(Ay) x L.A. = 0.216 x 0.212 = 0.046 m^3

Calculation of first moment of area of Composite Section above N.A of Composite Section --- @ N.A. of Composite Section
Centroid of composite section from top of Deck Slab = 0.613 m
Segment Element Nos. Section Area ( A ) Y from A x Y
No. Type Width Height ( m^2 ) Deck Top ( m^3 )
RCC Precast Girder Portion
0.216 0.401 0.087
Cast-in-situ RC Slab Portion
7 Rect 1 3.200 0.220 0.704 0.110 0.077
TOTAL 0.920 0.164

Ytop from the top of Deck Slab = 0.178 m


Lever arm L.A. = 0.434 m
(Ay) x L.A. = 0.920 x 0.434 = 0.400 m^3

(30)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)

DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)


Section Properties
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec
Dist. of Section 'X' from cL of Left Support 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m
Item. No. Description Units Col.- 1 Col.- 2 Col.- 3 Col.- 4 Col.- 5 Col.- 6 Col.- 7
1. Properties of non-composite section: Precast Girder Only
2
1a Area of Precast Girder A m 1.040 1.040 0.659 0.659 0.659 0.659 0.659
1b c.g. of girder from Top of girder Yt m 0.800 0.800 0.839 0.839 0.839 0.839 0.839
1c c.g. of girder from soffit of girder Yb m 0.800 0.800 0.761 0.761 0.761 0.761 0.761
1d Overall Depth of Girder D m 1.60 1.60 1.60 1.60 1.60 1.60 1.60
4
1e Moment of Inertia of Section Iz m 0.2219 0.2219 0.1811 0.1811 0.1811 0.1811 0.1811
1f Section Modulus of Top Zt m3 0.2773 0.2773 0.2158 0.2158 0.2158 0.2158 0.2158
1g Section Modulus of Bottom Zb m3 0.2773 0.2773 0.2381 0.2381 0.2381 0.2381 0.2381
1h First moment of area above and about m3 0.0608 0.0608 0.0350 0.0350 0.0350 0.0350 0.0350
N.A of Composite Section
1i Weight of Girder per metre wg kN/m 26.00 26.00 16.48 16.48 16.48 16.48 16.48
1j. Notional size (mm) of the Cross Section h0 mm 462 462 279 279 279 279 279
1k. Coeff. depending on notional size for Shrinkage kh 0.709 0.709 0.771 0.771 0.771 0.771 0.771

(31)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
2. Properties of Composite Section: Precast Girder + Deck Slab
2
2a Area of Composite Section A m 1.744 1.744 1.363 1.363 1.363 1.363 1.363
2b c.g. of Section from Top of Deck Slab Yt m 0.653 0.653 0.569 0.569 0.569 0.569 0.569
2c c.g. of Section from soffit Yb m 1.167 1.167 1.251 1.251 1.251 1.251 1.251
2d Overall Depth of the Section D m 1.82 1.82 1.82 1.82 1.82 1.82 1.82
4
2e Moment of Inertia of Section Iz m 0.5724 0.5724 0.4908 0.4908 0.4908 0.4908 0.4908
3
2f Section Modulus at Top of Slab Zts m 0.8770 0.8770 0.8624 0.8624 0.8624 0.8624 0.8624
3
2g Sec. Modulus at Bottom of Slab Zbs m 1.3229 1.3229 1.4058 1.4058 1.4058 1.4058 1.4058
3
2h Sec.Modulus of Bottom of Section Zb m 0.4903 0.4903 0.3924 0.3924 0.3924 0.3924 0.3924
3
2i First moment of area of Composite Sec. m 0.4429 0.4429 0.3582 0.3582 0.3582 0.3582 0.3582
above & about N.A of Composite Section
2j. Notional size (mm) of the Cross Section h0 mm 510 510 386 386 386 386 386
1k. Coeff. depending on notional size for Shrinkage kh 0.700 0.700 0.729 0.729 0.729 0.729 0.729

Bending Moments & Shear Forces at Various Sections of Long.-Girder due to Self Weight
Due to Dead Load in between End Blocks 0.659 x 25 = 16.484 kN/m
Due to Dead Load at End Blocks 1.040 x 25 = 26.000 kN/m
Extra Loading due to End Block = 9.516 kN/m

9.516 kN/m
1.900 m 1.500 m 1.500 m 1.900 m
16.484 kN/m

0.400 20.500 m 0.400

Ra Rb
Span Length = 20.500 m

(32)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Due to symmetry of Loading Reaction on either Support
Ra = Rb = 16.484 x 21.300 + 9.516 x 1.90 + 9.516 x 1.500 = 200.775 kN
2 2

Bending Moments at Various Sections of Precast Girder due to [Self Weight]


a) At 0.000 L Section 0.000 m from cL of Support

200.775 x 0.000 - ( 16.484 x 0.400 x 0.200 )


- 9.516 x 0.400 x 0.200
= -2.080 kN-m

b) At 0.073 L-Section 1.500 m from cL of Left Support


200.775 x 1.500 - ( 16.484 x 1.900 x 0.950 )
- 9.516 x 1.900 x ( 1.900 - 0.950 )
= 254.232 kN-m

c) At 0.146 L-Section 3.000 m from cL of Left Support


200.775 x 3.000 - ( 16.484 x 3.400 x 1.700 )
- 9.516 x 1.900 x ( 3.400 - 0.950 )
- 9.516 x 0.750 x ( 3.400 - 1.900 - 0.500 )
= 455.613 kN-m

d) At 0.200 L-Section 4.100 m from cL of Left Support


200.775 x 4.100 - ( 16.484 x 4.500 x 2.250 )
- 9.516 x 1.900 x ( 4.500 - 0.950 )
- 9.516 x 0.750 x ( 4.500 - 1.900 - 0.500 )
= 577.103 kN-m

e) At 0.300 L-Section 6.150 m from cL of Left Support


200.775 x 6.150 - ( 16.484 x 6.550 x 3.275 )
- 9.516 x 1.900 x ( 6.550 - 0.950 )
- 9.516 x 0.750 x ( 6.550 - 1.900 - 0.500 )
= 750.292 kN-m

(33)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
f) At 0.400 L-Section 8.200 m from cL of Left Support
200.775 x 8.200 - ( 16.484 x 8.600 x 4.300 )
- 9.516 x 1.900 x ( 8.600 - 0.950 )
- 9.516 x 0.750 x ( 8.600 - 1.900 - 0.500 )
= 854.206 kN-m

g) At 0.500 L-Section 10.250 m from cL of Right Support


200.775 x 10.250 - ( 16.484 x 10.650 x 5.325 )
- 9.516 x 1.900 x ( 10.650 - 0.950 )
- 9.516 x 0.750 x ( 10.650 - 1.900 - 0.500 )
= 888.843 kN-m

h) At 0.600 L-Section 8.200 m from cL of Right Support


200.775 x 8.200 - ( 16.484 x 8.600 x 4.300 )
- 9.516 x 1.900 x ( 8.600 - 0.950 )
- 9.516 x 0.750 x ( 8.600 - 1.900 - 0.500 )
= 854.206 kN-m

i) At 0.700 L-Section 6.150 m from cL of Right Support


200.775 x 6.150 - ( 16.484 x 6.550 x 3.275
- 9.516 x 1.900 x ( 6.550 - 0.950 )
- 9.516 x 0.750 x ( 6.550 - 1.900 - 0.500
= 750.292 kN-m

j) At 0.800 L-Section 4.100 m from cL of Right Support


200.775 x 4.100 - ( 16.484 x 4.500 x 2.250
- 9.516 x 1.900 x ( 4.500 - 0.950 )
- 9.516 x 0.750 x ( 4.500 - 1.900 - 0.500
= 577.103 kN-m

k) At 0.854 L-Section 3.000 m from cL of Right Support


200.775 x 3.000 - ( 16.484 x 3.400 x 1.700
- 9.516 x 1.900 x ( 3.400 - 0.950 )
- 9.516 x 0.750 x ( 3.400 - 1.900 - 0.500
= 455.613 kN-m

(34)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)

l) At 0.927 L-Section 1.500 m from cL of Right Support


200.775 x 1.500 - ( 16.484 x 1.900 x 0.950 )
- 9.516 x 1.900 x ( 1.900 - 0.950 )
= 254.232 kN-m

m) At 1.000 L-Section 0.000 m from cL of Right Support


200.775 x 0.000 - ( 16.484 x 0.400 x 0.200 )
- 9.516 x 0.400 x 0.200
= -2.080 kN-m

Shear Force at Various Sections of Precast Girder due to Self Weight


a) At 0.000 L-Section 0.00 m from cL of Support
= 200.775 - 16.484 x 0.400 - 9.516 x 0.400

= 190.375 kN

b) At 0.073 L-Section 1.500 m from Support


= 200.775 - 16.484 x 1.900 - 9.516 x 1.900

= 151.375 kN

e) At 0.146 L-Section 3.000 m from Support


= 200.775 - 16.484 x 3.400 - 9.516 x 1.900
- 9.516 x 0.750
= 119.512 kN

d) At 0.200 L-Section 4.100 m from Left Support


= 200.775 - 16.484 x 4.500 - 9.516 x 1.900
- 9.516 x 0.750
= 101.379 kN

(35)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
c) At 0.300 L-Section 6.15 m from Left Support
= 200.775 - 16.484 x 6.550 - 9.516 x 1.900
- 9.516 x 0.750
= 67.586 kN

b) At 0.400 L-Section 8.200 m from Left Support


= 200.775 - 16.484 x 8.600 - 9.516 x 1.900
- 9.516 x 0.750
= 33.793 kN

a) At 0.500 L-Section 10.250 m from cL of Right Support


= 200.775 - 16.484 x 10.650 - 9.516 x 1.900
- 9.516 x 0.750
= 0.000 kN

h) At 0.600 L-Section 8.200 m from cL of Right Support


= 200.775 - 16.484 x 8.600 - 9.516 x 1.900
- 9.516 x 0.750
= 33.793 kN

h) At 0.700 L-Section 6.150 m from cL of Right Support


= 200.775 - 16.484 x 6.550 - 9.516 x 1.900
- 9.516 x 0.750
= 67.586 kN

h) At 0.800 L-Section 4.100 m from cL of Right Support


= 200.775 - 16.484 x 4.500 - 9.516 x 1.900
- 9.516 x 0.750
= 101.379 kN

h) At 0.854 L-Section 3.000 m from cL of Right Support


= 200.775 - 16.484 x 3.400 - 9.516 x 1.900
- 9.516 x 0.750
= 119.512 kN

(36)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
b) At 0.927 L-Section 1.500 m from cL of Right Support
= 200.775 - 16.484 x 1.900 - 9.516 x 1.900

= 151.375 kN

a) At 1.000 L-Section 0.000 m from cL of Right Support


= 200.775 - 16.484 x 0.400 - 9.516 x 0.400

= 190.375 kN

B.M. & S.F. at Various Sections of Long.-Girder due to Weight of Diaphragm cast with Girder
Span Length L = 20.500 m W1 W2 W3
Conc. Load on the Span W1 = 0.000 kN 0.00 kN 0.00 kN 0.00 kN
Dist. of W 1 from Supp. RL a1 = 0.000 m
Conc. Load on the Span W2 = 0.000 kN 10.250 m 10.250 m
Dist. of W 2 from Supp. RL a2 = 10.250 m
Conc. Load on the Span W3 = 0.000 kN
Dist. of W 3 from Supp. RL a3 = 20.500 m 20.5 m
RL R
Reaction at Ends All reactions are in kN
Reaction Due to Conc. Load W 1 Due to Conc. Load W 2 Due to Conc. Load W 3 Resultant
kN Formula used Value Formula used Value Formula used Value Reaction
RL W1 x ( L - a1) 0.000 W2 x ( L - a2) 0.000 W3 x ( L - a3) 0.000 0.000
L L L
RR (W1 x a1) 0.000 (W2 x a2) 0.000 (W3 x a3) 0.000 0.000
L L L

(37)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Span Moment at any Section distant X from Left end
At 0.000 L-Sec. Span Moment ( at X = 0.000 m) from Left Supp. = 0.000 kN-m Mx = RL * X
At 0.073 L-Sec. Span Moment ( at X = 1.500 m) from Left Supp. = 0.000 kN-m Mx = RL * X
At 0.146 L-Sec. Span Moment ( at X = 3.000 m) from Left Supp. = 0.000 kN-m Mx = RL * X
At 0.200 L-Sec. Span Moment ( at X = 4.100 m) from Left Supp. = 0.000 kN-m Mx = RL * X
At 0.300 L-Sec. Span Moment ( at X = 6.150 m) from Left Supp. = 0.000 kN-m Mx = RL * X
At 0.400 L-Sec. Span Moment ( at X = 8.200 m) from Left Supp. = 0.000 kN-m Mx = RL * X
At 0.500 L-Sec. Span Moment ( at X = 10.250 m) from Right Supp. = 0.000 kN-m Mx = RL * X
At 0.600 L-Sec. Span Moment ( at X = 8.200 m) from Right Supp. = 0.000 kN-m Mx = RR * (L - X)
At 0.700 L-Sec. Span Moment ( at X = 6.150 m) from Right Supp. = 0.000 kN-m Mx = RR * (L - X)
At 0.800 L-Sec. Span Moment ( at X = 4.100 m) from Right Supp. = 0.000 kN-m Mx = RR * (L - X)
At 0.854 L-Sec. Span Moment ( at X = 3.000 m) from Right Supp. = 0.000 kN-m Mx = RR * (L - X)
At 0.927 L-Sec. Span Moment ( at X = 1.500 m) from Right Supp. = 0.000 kN-m Mx = RR * (L - X)
At 1.000 L-Sec. Span Moment ( at X = 0.000 m) from Right Supp. = 0.000 kN-m Mx = RR * (L - X)

Shear Force at any Section distant X from Left end


At 0.000 L-Sec. Shear Force ( at X = 0.000 m) from Left Supp. = 0.000 kN Sx = RL
At 0.073 L-Sec. Shear Force ( at X = 1.500 m) from Left Supp. = 0.000 kN Sx = RL
At 0.146 L-Sec. Shear Force ( at X = 3.000 m) from Left Supp. = 0.000 kN Sx = RL
At 0.200 L-Sec. Shear Force ( at X = 4.100 m) from Left Supp. = 0.000 kN Sx = RL
At 0.300 L-Sec. Shear Force ( at X = 6.150 m) from Left Supp. = 0.000 kN Sx = RL
At 0.400 L-Sec. Shear Force ( at X = 8.200 m) from Left Supp. = 0.000 kN Sx = RL
At 0.500 L-Sec. Shear Force ( at X = 10.250 m) from Right Supp. = 0.000 kN Sx = RL
At 0.600 L-Sec. Shear Force ( at X = 8.200 m) from Right Supp. = 0.000 kN Sx = RR
At 0.700 L-Sec. Shear Force ( at X = 6.150 m) from Right Supp. = 0.000 kN Sx = RR
At 0.800 L-Sec. Shear Force ( at X = 4.100 m) from Right Supp. = 0.000 kN Sx = RR
At 0.854 L-Sec. Shear Force ( at X = 3.000 m) from Right Supp. = 0.000 kN Sx = RR
At 0.927 L-Sec. Shear Force ( at X = 1.500 m) from Right Supp. = 0.000 kN Sx = RR
At 1.000 L-Sec. Shear Force ( at X = 0.000 m) from Right Supp. = 0.000 kN Sx = RR
(38)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)

BM / SF at Various Sections of Precast Long.-Girder due to Weight of Shuttering


Weight of Precast Panel Shuttering = 0.450 kN/m 0.450 kN/m
c/L of Symmetry

0.400 10.2500 m

Ra Span Length = 20.500 m

Due to symmetry of Loading Reaction on either Support


Ra = Rb = 0.45 x 21.300 = 4.793 kN
2
BM at Various Sections of Precast Girder due to Weight of Permanent Shuttering
a) At 0.000 L-Section 0.00 m from Left Support
= 4.793 x 0.000 - 0.450 x 0.400 x 0.400 = -0.04 kN-m
2.000
b) At 0.073 L-Section 1.50 m from Left Support
= 4.793 x 1.500 - 0.450 x 1.900 x 1.900 = 6.38 kN-m
2.000
c) At 0.146 L-Section 3.00 m from Supp.
= 4.793 x 3.000 - 0.450 x 3.400 x 3.400 = 11.78 kN-m
2.000
d) At 0.200 L-Section 4.10 m from Left Support
= 4.793 x 4.100 - 0.450 x 4.500 x 4.500 = 15.09 kN-m
2.000
e) At 0.300 L-Section 6.150 m from Left Support
= 4.793 x 6.150 - 0.450 x 6.550 x 6.550 = 19.82 kN-m
2.000
f) At 0.400 L-Section 8.200 m from Left Support
= 4.793 x 8.200 - 0.450 x 8.600 x 8.600 = 22.66 kN-m
2.000

(39)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
g) At 0.500 L-Section 10.250 m from Right Supp.
= 4.793 x 10.250 - 0.450 x 10.650 x 10.650 = 23.60 kN-m
2.000
h) At 0.600 L-Section 8.200 m from Right Supp.
= 4.793 x 8.200 - 0.450 x 8.600 x 8.600 = 22.66 kN-m
2.000
i) At 0.700 L-Section 6.150 m from Right Supp.
= 4.793 x 6.150 - 0.450 x 6.550 x 6.550 = 19.82 kN-m
2.000
j) At 0.800 L-Section 4.100 m from Right Supp.
= 4.793 x 4.100 - 0.450 x 4.500 x 4.500 = 15.09 kN-m
2.000
k) At 0.854 L-Section 3.000 m from Right Supp.
= 4.793 x 3.000 - 0.450 x 3.400 x 3.400 = 11.78 kN-m
2.000
l) At 0.927 L-Section 1.500 m from Right Supp.
= 4.793 x 1.500 - 0.450 x 1.900 x 1.900 = 6.38 kN-m
2.000
m) At 1.000 L-Section 0.000 m from Right Supp.
= 4.793 x 0.000 - 0.450 x 0.400 x 0.400 = -0.04 kN-m
2.000

Shear Force at Various Sections of Precast Girder due to Weight of Shuttering


a) At 0.00 L Sec 0.00 m from Left Support = 4.793 - 0.45 x 0.400 = 4.6125 kN

b) At 0.07 L Sec 1.50 m from Left Support = 4.793 - 0.5 x 1.900 = 3.9375 kN

c) At 0.15 L Sec 3.00 m from Left Support = 4.793 - 0.45 x 3.400 = 3.2625 kN

d) At 0.20 L Sec 4.10 m from Left Support = 4.793 - 0.45 x 4.500 = 2.7675 kN

e) At 0.30 L Sec 6.15 m from Left Support = 4.793 - 0.45 x 6.550 = 1.8450 kN

f) At 0.40 L Sec 8.20 m from Left Support = 4.793 - 0.45 x 8.600 = 0.9225 kN

g) At 0.50 L Sec 10.25 m from Right Supp. = 4.793 - 0.45 x 10.650 = 0.0000 kN

(40)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)

h) At 0.60 L Sec 8.20 m from Right Supp. = 4.793 - 0.5 x 8.600 = 0.9225 kN

i) At 0.70 L Sec 6.15 m from Right Supp. = 4.793 - 0.5 x 6.550 = 1.8450 kN

j) At 0.80 L Sec 4.10 m from Right Supp. = 4.793 - 0.5 x 4.500 = 2.7675 kN

k) At 0.85 L Sec 3.00 m from Right Supp. = 4.793 - 0.5 x 3.400 = 3.2625 kN

l) At 0.93 L Sec 1.50 m from Right Supp. = 4.793 - 0.5 x 1.900 = 3.9375 kN

m) At 1.00 L Sec 0.00 m from Right Supp. = 4.793 - 0.5 x 0.400 = 4.6125 kN

BM / SF at Various Sections of Precast Long.-Girder due to Green Weight of Slab Conc.


Green Weight of Slab Concrete ( @ 26 kN/m^3) = 18.304 kN/m (Including Temporary Live Load)
Temporary Live Load on the Deck (@ 2.0 kN/m^2) = 6.400 kN/m W1 : From End Diaphragm W2 : From Intermediate Diaphragm
TOTAL = 24.704 kN/m 24.704 kN/m
W1 W2

0.400 10.250 m

Ra Span Length = 20.500 m


c/L of Symmetry
Conc. Load on the Span W1 = 31.191 kN Conc. Load on the Span W2 = 23.393 kN
Dist. of W 1 from Supp. RL a1 = 0.000 m Dist. of W 2 from Supp. RL a2 = 10.250 m
Due to symmetry of Loading Reaction on either Support
Ra = Rb = 24.704 x 21.3 + 31.191 + 11.697 = 305.985 kN
2
BM at Various Sections of Precast Girder due to Green Weight of Slab Concrete
a) At 0.000 L-Section 0.00 m from Supp.
= 305.985 x 0.000 - 24.704 x 0.400 x 0.4 - 31.191 x 0.000 = -1.98 kN-m
2.0
b) At 0.073 L-Section 1.50 m from Supp.
= 305.985 x 1.500 - 24.704 x 1.900 x 1.9 - 31.191 x 1.500 = 367.60 kN-m
2.0

(41)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
c) At 0.146 L-Section 3.000 m from Supp.
= 305.985 x 3.000 - 24.704 x 3.400 x 3.4 - 31.191 x 3.000 = 681.59 kN-m
2.0
d) At 0.200 L-Section 4.100 m from Supp.
= 305.985 x 4.100 - 24.704 x 4.500 x 4.500 - 31.191 x 4.100 = 876.53 kN-m
2.0
e) At 0.300 L-Section 6.150 m from Supp.
= 305.985 x 6.150 - 24.704 x 6.550 x 6.550 - 31.191 x 6.150 = 1160.05 kN-m
2.0
f) At 0.400 L-Section 8.200 m from Supp.
= 305.985 x 8.200 - 24.704 x 8.600 x 8.600 - 31.191 x 8.200 = 1339.76 kN-m
2.0
g) At 0.500 L-Section 10.250 m from Left Supp.
= 305.985 x 10.250 - 24.704 x 10.650 x 10.650 - 31.191 x 10.250 = 1415.65 kN-m
2.0
h) At 0.600 L-Section 8.200 m from Right Supp.
= 305.985 x 8.200 - 24.704 x 8.600 x 8.600 - 31.191 x 8.200 = 1339.76 kN-m
2.0
i) At 0.700 L-Section 6.150 m from Right Supp.
= 305.985 x 6.150 - 24.704 x 6.550 x 6.550 - 31.191 x 6.150 = 1160.05 kN-m
2.0
j) At 0.800 L-Section 4.100 m from Right Supp.
= 305.985 x 4.100 - 24.704 x 4.500 x 4.500 - 31.191 x 4.100 = 876.53 kN-m
2.0
k) At 0.854 L-Section 3.000 m from Right Supp.
= 305.985 x 3.000 - 24.704 x 3.400 x 3.400 - 31.191 x 3.000 = 681.59 kN-m
2.0
l) At 0.927 L-Section 1.500 m from Right Supp.
= 305.985 x 1.500 - 24.704 x 1.900 x 1.900 - 31.191 x 1.500 = 367.60 kN-m
2.0
m) At 1.000 L-Section 0.000 m from Right Supp.
= 305.985 x 0.000 - 24.704 x 0.400 x 0.400 - 31.191 x 0.000 = -1.98 kN-m
2.0

(42)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Shear Force at Various Sections of Precast Girder due to Green Weight of Slab Concrete
a) At 0.00 L Sec 0.00 m from Left Supp. = 305.985 - 24.70 x 0.400 - 31.191 = 264.913 kN

b) At 0.07 L Sec 1.50 m from Left Supp. = 305.985 - 24.70 x 1.900 - 31.191 = 227.857 kN

c) At 0.15 L Sec 3.00 m from Left Supp. = 305.985 - 24.70 x 3.400 - 31.191 = 190.801 kN

d) At 0.20 L Sec 4.10 m from Left Supp. = 305.985 - 24.70 x 4.500 - 31.191 = 163.626 kN

e) At 0.30 L Sec 6.15 m from Left Supp. = 305.985 - 24.70 x 6.550 - 31.191 = 112.983 kN

f) At 0.40 L Sec 8.20 m from Left Supp. = 305.985 - 24.70 x 8.600 - 31.191 = 62.340 kN

g) At 0.50 L Sec 10.25 m from Left Supp. = 305.985 - 24.70 x 10.650 - 31.191 = 11.697 kN

h) At 0.60 L Sec 8.20 m from Right Supp. = 305.985 - 24.70 x 8.600 - 31.191 = 62.340 kN

i) At 0.70 L Sec 6.15 m from Right Supp. = 305.985 - 24.70 x 6.550 - 31.191 = 112.983 kN

j) At 0.80 L Sec 4.10 m from Right Supp. = 305.985 - 24.70 x 4.500 - 31.191 = 163.626 kN

k) At 0.85 L Sec 3.00 m from Right Supp. = 305.985 - 24.70 x 3.400 - 31.191 = 190.801 kN

l) At 0.93 L Sec 1.50 m from Right Supp. = 305.985 - 24.70 x 1.900 - 31.191 = 227.857 kN

m) At 1.00 L Sec 0.00 m from Right Supp. = 305.985 - 24.70 x 0.400 - 31.191 = 264.913 kN

(43)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Summary of B.M. & S.F. for Long.-Girder
Due to Wt. of Green Conc.
Due to Self Wt. of Precast Due to weight of Slab+
Due to weight of Shuttering Due to Removal of Shuttering of Slab+Diaphragm+Temp.
Girder & Diaphragm Diaphragm during Service
Section Distance of (Non Composite) (Composite) LL
w.r.t. to left Section from Bending Shear Bending Shear Bending Shear Bending Shear Bending Shear
temporary cL of Left Moment Force Moment Force Moment Force Moment Force Moment Force
Support Bearing kN-m kN kN-m kN kN-m kN kN-m kN kN-m kN

0.000 L Sec 0.000 m -2.080 190.375 -0.036 4.613 0.000 0.000 -1.976 264.913 -1.920 257.363
0.073 L Sec 1.500 m 254.232 151.375 6.377 3.938 0.000 0.000 367.601 227.857 357.125 221.363
0.146 L Sec 3.000 m 455.613 119.512 11.777 3.263 0.000 0.000 681.594 190.801 662.170 185.363
0.200 L Sec 4.100 m 577.103 101.379 15.093 2.768 0.000 0.000 876.528 163.626 851.550 158.963
0.300 L Sec 6.150 m 750.292 67.586 19.821 1.845 0.000 0.000 1160.053 112.983 1126.994 109.763
0.400 L Sec 8.200 m 854.206 33.793 22.658 0.923 0.000 0.000 1339.759 62.340 1301.579 60.563
0.500 L Sec 10.250 m 888.843 0.000 23.603 0.000 0.000 0.000 1415.646 11.697 1375.304 11.363
0.600 L Sec 12.300 m 854.206 33.793 22.658 0.923 0.000 0.000 1339.759 62.340 1301.579 60.563
0.700 L Sec 14.350 m 750.292 67.586 19.821 1.845 0.000 0.000 1160.053 112.983 1126.994 109.763
0.800 L Sec 16.400 m 577.103 101.379 15.093 2.768 0.000 0.000 876.528 163.626 851.550 158.963
0.854 L Sec 17.500 m 455.613 119.512 11.777 3.263 0.000 0.000 681.594 190.801 662.170 185.363
0.927 L Sec 19.000 m 254.232 151.375 6.377 3.938 0.000 0.000 367.601 227.857 357.125 221.363
1.000 L Sec 20.500 m -2.080 190.375 -0.036 4.613 0.000 0.000 -1.976 264.913 -1.920 257.363

(44)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Summary of Design B. M. & S. F. at Different Sections for Long. Girder (With Composite)
(+ve) sign indicates Sagging Bending Moment EFFECTIVE SPAN = 20.50 m
(-ve) sign indicates Hogging Bending Moment
Effect of SDL1 (SIDL Effect of SDL2 (Dead Load Effect of Shifting of Due to Footpath Live Load Effect of Vertical Wind
Excluding Surfacing) of Surfacing-Wearing Coat) Support [Q5] [Q9]
Section Distance of Node No.
w.r.t. to left Section from from Bending Shear Bending Shear Bending Shear Bending Shear Bending Shear
Support Left Permanant Grillage Moment Force Moment Force Moment Force Moment Force Moment Force
Support MZ FY MZ FY MZ FY MZ FY MZ FY
(metre) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN)
0.000 L Sec 0.00 6.614 79.796 -1.129 51.773 0.000 0.000 0.000 0.000 0.850 37.549
0.073 L Sec 1.50 126.309 79.796 75.550 49.782 0.000 0.000 0.000 0.000 55.163 36.221
0.146 L Sec 3.00 221.551 68.363 140.217 42.046 0.000 0.000 0.000 0.000 101.911 30.637
0.200 L Sec 4.10 278.231 57.425 180.215 35.177 0.000 0.000 0.000 0.000 130.607 25.631
0.300 L Sec 6.15 369.529 46.409 237.404 26.484 0.000 0.000 0.000 0.000 172.341 19.432
0.400 L Sec 8.20 419.914 28.215 271.906 15.351 0.000 0.000 0.000 0.000 197.179 11.314
0.500 L Sec 10.25 433.749 9.921 283.754 4.274 0.000 0.000 0.000 0.000 205.566 3.227
0.600 L Sec 12.30 409.923 27.248 272.786 15.370 0.000 0.000 0.000 0.000 197.304 11.297
0.700 L Sec 14.35 348.064 46.711 238.882 26.791 0.000 0.000 0.000 0.000 172.281 19.656
0.800 L Sec 16.40 246.047 58.436 181.239 35.888 0.000 0.000 0.000 0.000 130.147 26.170
0.854 L Sec 17.50 175.636 69.050 141.174 42.703 0.000 0.000 0.000 0.000 100.629 31.114
0.927 L Sec 19.00 65.814 80.388 75.670 50.541 0.000 0.000 0.000 0.000 52.864 36.759
1.000 L Sec 20.50 -62.366 80.388 -1.617 52.533 0.000 0.000 0.000 0.000 3.557 38.087

(45)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)

SUMMARY OF DESIGN MOMENT & SHEAR FORCE DUE TO CWLL for Long. Girder (COMPOSITE)
CWLL responses are without impact (STAAD OUTPUT)
Section Distance of Node No. Class-A (2-Lanes) Class 70R Wheeled Cl.70R W +Cl.A (1L) Cl.A (1L)+Cl.70R W
w.r.t. to left Section from from Maximum Corresponding Maximum Corresponding Maximum Corresponding Maximum Corresponding
permanant Left Permanant Grillage Bending Shear Bending Shear Bending Shear Bending Shear
Support Support Moment Force Moment Force Moment Force Moment Force
MZ FY MZ FY MZ FY MZ FY
(metre) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN)
Lane Reduction Fac. = 1.00 Lane Reduction Fac. = 1.00 Lane Reduction Fac. = 0.90 Lane Reduction Fac. = 0.90
0.000 L Sec 0.00 -45.516 275.191 -96.659 338.398
0.073 L Sec 1.50 412.207 275.191 466.326 338.398
0.146 L Sec 3.00 747.998 243.226 878.519 299.687
0.200 L Sec 4.10 960.788 214.721 1134.610 271.803
0.300 L Sec 6.15 1272.833 182.102 1483.589 231.348
0.400 L Sec 8.20 1421.801 137.931 1712.977 181.910
0.500 L Sec 10.25 1436.138 94.649 1818.483 134.074
0.600 L Sec 12.30 1418.061 131.988 1743.996 179.191
0.700 L Sec 14.35 1272.484 179.473 1529.200 228.894
0.800 L Sec 16.40 980.785 220.277 1212.487 293.773
0.854 L Sec 17.50 762.833 254.904 965.082 321.225
0.927 L Sec 19.00 412.900 282.770 546.435 358.984
1.000 L Sec 20.50 73.917 284.183 109.073 358.984

(46)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Section Distance of Node No. Class-A (2-Lanes) Class 70R Wheeled Cl.70R W +Cl.A (1L) Cl.A (1L)+Cl.70R W
w.r.t. to left Section from from Maximum Corresponding Maximum Corres. Maximum Corresponding Maximum Corres.
permanant Left Permanant Grillage Shear Bending Shear Bending Shear Bending Shear Bending
Support Support Force Moment Force Moment Force Moment Force Moment
FY MZ FY MZ FY MZ FY MZ
(metre) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m)
Lane Reduction Fac. = 1.00 Lane Reduction Fac. = 1.00 Lane Reduction Fac. = 0.90 Lane Reduction Fac. = 0.90
0.000 L Sec 0.00 0 275.191 -45.516 338.398 -96.659
0.073 L Sec 1.50 0 275.191 412.207 338.398 466.326
0.146 L Sec 3.00 0 243.226 747.998 299.687 878.519
0.200 L Sec 4.10 214.721 960.788 271.803 1134.610
0.300 L Sec 6.15 0 182.102 1272.833 231.348 1483.589
0.400 L Sec 8.20 0 137.931 1421.801 181.910 1712.977
0.500 L Sec 10.25 0 94.649 1436.138 134.074 1818.483
0.600 L Sec 12.30 0 131.988 1418.061 179.191 1743.996
0.700 L Sec 14.35 0 179.473 1272.484 228.894 1529.200
0.800 L Sec 16.40 220.277 980.785 293.773 1212.487
0.854 L Sec 17.50 0 254.904 762.833 321.225 965.082
0.927 L Sec 19.00 0 282.770 412.900 358.984 546.435
1.000 L Sec 20.50 0 284.183 73.917 358.984 109.073

(47)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
CWLL Responses with Impact
(+ve) sign indicates Sagging Bending Moment (-ve) sign indicates Hogging Bending Moment
Section Distance of Node No. Governing B.M. Governing S.F.
w.r.t. to left Section from from CWLL B.M. Corres. S.F. CWLL S.F. Corres. B.M.
Left Permanant Grillage with Impact with Impact with Impact with Impact
Support Support Ml Vl Vl Ml
(metre) (kN-m) (kN) (kN) (kN-m)
0.000 L Sec 0.00 0 0.000 395.862 395.862 0.000 Impact Factor for Class A Loading = 1.170
0.073 L Sec 1.50 0 545.513 395.862 395.862 545.513
0.146 L Sec 3.00 0 1027.701 350.577 350.577 1027.701 Impact Factor for Cl. 70R(W) Loading = 1.170
0.200 L Sec 4.10 1327.280 317.958 317.958 1327.280
0.300 L Sec 6.15 0 1735.519 270.634 270.634 1735.519
0.400 L Sec 8.20 0 2003.860 212.800 212.800 2003.860
0.500 L Sec 10.25 0 2127.282 156.841 156.841 2127.282
0.600 L Sec 12.30 0 2040.146 209.620 209.620 2040.146
0.700 L Sec 14.35 0 1788.875 267.763 267.763 1788.875
0.800 L Sec 16.40 1418.381 343.659 343.659 1418.381
0.854 L Sec 17.50 0 1128.964 375.773 375.773 1128.964
0.927 L Sec 19.00 0 639.226 419.944 419.944 639.226
1.000 L Sec 20.50 0 127.595 419.944 419.944 127.595

(48)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
SUMMARY OF TORSION MOMENT DUE TO PERMANENT LOAD and CORRESPONDING GOVERNING SHEAR FORCE
Section Distance of Node No. EFFECT OF DL of GIRDER EFFECT OF DL of SLAB EFFECT OF SIDL-1 EFFECT OF SIDL-2 EFFECT OF FPLL
w.r.t. to left Section from from Design Corres. Design Corres. Design Corres. Design Corres. Design Corres.
Left Permanant Grillage Torsion Shear Torsion Shear Torsion Shear Torsion Shear Torsion Shear
Support Support Moment Force Moment Force Moment Force Moment Force Moment Force
(metre) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN)
0.000 L Sec 0.00 0.000 190.375 0.000 257.363 62.011 79.796 1.243 51.773 0.000 0.000
0.073 L Sec 1.50 0.000 151.375 0.000 221.363 62.011 79.796 1.609 49.782 0.000 0.000
0.146 L Sec 3.00 0.000 119.512 0.000 185.363 45.221 68.363 1.807 42.046 0.000 0.000
0.200 L Sec 4.10 0.000 101.379 0.000 158.963 30.506 57.425 1.946 35.177 0.000 0.000
0.300 L Sec 6.15 0.000 67.586 0.000 109.763 20.444 46.409 2.215 26.484 0.000 0.000
0.400 L Sec 8.20 0.000 33.793 0.000 60.563 9.662 28.215 2.307 15.351 0.000 0.000
0.500 L Sec 10.25 0.000 0.000 0.000 11.363 6.536 9.921 2.307 4.274 0.000 0.000
0.600 L Sec 12.30 0.000 33.793 0.000 60.563 14.748 27.248 2.246 15.370 0.000 0.000
0.700 L Sec 14.35 0.000 67.586 0.000 109.763 26.139 46.711 2.060 26.791 0.000 0.000
0.800 L Sec 16.40 0.000 101.379 0.000 158.963 37.273 58.436 1.994 35.888 0.000 0.000
0.854 L Sec 17.50 0.000 119.512 0.000 185.363 52.345 69.050 2.035 42.703 0.000 0.000
0.927 L Sec 19.00 0.000 151.375 0.000 221.363 69.534 80.388 2.267 50.541 0.000 0.000
1.000 L Sec 20.50 0.000 190.375 0.000 257.363 69.534 80.388 2.267 52.533 0.000 0.000

(49)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
SUMMARY OF TORSION MOMENT DUE TO CWLL and CORRESPONDING GOVERNING SHEAR FORCE
Distance of EFFECT OF CL.A-2L EFFECT OF CL.70RW Cl.70R W +Cl.A (1L) Cl.A (1L)+Cl.70R W GOVERN. EFFECT OF LL
Section Section from Node No. Design Corres. Design Corres. Design Corres. Design Corres. Design Corres.
w.r.t. to left Left Permanant from Torsion Shear Torsion Shear Torsion Shear Torsion Shear Torsion Shear
Support Support Grillage Moment Force Moment Force Moment Force Moment Force Moment Force
(kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN) (kN-m) (kN)
(metre)
Lane Reduction Fac. = 1.00 Lane Reduction Fac. = 1.00 Lane Reduction Fac. = 0.90 Lane Reduction Fac. = 0.90 With Impact & Lane Reduction Fac.
0.000 L Sec 0.00 0 68.431 275.191 110.186 338.398 128.897 395.862
0.073 L Sec 1.50 0 68.431 275.191 110.186 338.398 128.897 395.862
0.146 L Sec 3.00 0 55.718 243.226 89.801 299.687 105.050 350.577
0.200 L Sec 4.10 0 42.594 214.721 73.402 271.803 85.866 317.958
0.300 L Sec 6.15 0 35.613 182.102 62.174 231.348 72.732 270.634
0.400 L Sec 8.20 0 27.913 137.931 49.877 181.910 58.347 212.800
0.500 L Sec 10.25 0 21.072 94.649 38.531 134.074 45.074 156.841
0.600 L Sec 12.30 0 23.974 131.988 32.513 179.191 38.034 209.620
0.700 L Sec 14.35 0 28.904 179.473 46.311 228.894 54.175 267.763
0.800 L Sec 16.40 0 38.678 220.277 63.471 293.773 74.249 343.659
0.854 L Sec 17.50 0 55.501 254.904 87.823 321.225 102.736 375.773
0.927 L Sec 19.00 0 69.909 282.770 107.201 358.984 125.405 419.944
1.000 L Sec 20.50 0 69.909 284.183 107.201 358.984 125.405 419.944

(50)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Flexural Responses of SPV 385 Tonne Vehicle
(+ve) sign indicates Sagging Bending Moment (-ve) sign indicates Hogging Bending Moment
Section Distance of Node No. Governing BM Governing S.F. Design Corres.
w.r.t. to left Section from from Maximum Corresponding Maximum Corresponding Torsion Shear
Left Permanant Grillage Bending Mom. Shear Force Shear Force Bending Mom. Moment Force
Support Support MZ FY Fy Mz MT FT
(metre) (kN-m) (kN) (kN) (kN-m) (kN-m) (kN)
0.000 L Sec 0.00 63.367 13.120 13.120 63.367 58.325 13.120
0.073 L Sec 1.50 87.609 13.120 13.120 87.609 58.325 13.120
0.146 L Sec 3.00 108.279 9.943 9.943 108.279 50.601 9.943
0.200 L Sec 4.10 119.290 6.485 6.485 119.290 40.665 6.485
0.300 L Sec 6.15 127.343 5.086 5.086 127.343 33.654 5.086
0.400 L Sec 8.20 130.903 4.557 4.557 130.903 22.511 4.557
0.500 L Sec 10.25 134.102 5.030 5.030 134.102 10.451 5.030
0.600 L Sec 12.30 138.573 7.464 7.464 138.573 16.663 7.464
0.700 L Sec 14.35 142.932 9.748 9.748 142.932 31.332 9.748
0.800 L Sec 16.40 146.045 9.748 9.748 146.045 41.141 9.748
0.854 L Sec 17.50 145.998 8.319 8.319 145.998 54.442 8.319
0.927 L Sec 19.00 144.803 8.487 8.487 144.803 64.610 8.487
1.000 L Sec 20.50 135.939 8.487 8.487 135.939 64.610 8.487

(51)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Effect of Temperature Gradient [TG]
characteristic strength of Concrete (fck) = 40.000 N/mm^2 Modulus of elasticity of conc. Ec = 33000.000 N/mm^2
Coefficient of Thermal Expansion  1.17E-05 / deg.Celsius
Moment of Inertia of Section Icg = 0.49080 m^4 Overall Depth of the Comp. Section D = 1.820 m
Sectional Area of Composite Section A = 1.363 m^2 Distance of c.g. from Deck Top Yna = 0.569 m

Equivalent Idealized Section of Long. Girder


Segment-I
seg-I d1 Area of Segment = 0.7040 m^2
Depth of Segment = 0.220 m
seg-II
d2 Equivalent Length of Seg = 3.200 m
Segment-II
seg-III
d3 Area of Segment = 0.0975 m^2
Depth of Segment = 0.150 m
seg-IV
Equivalent Length of Seg = 0.650 m
cg. of Section Segment-III
Area of Segment = 0.0356 m^2
d4 Depth of Segment = 0.075 m
Equivalent Length of Seg = 0.475 m
H Segment-IV
Area of Segment = 0.2925 m^2
Depth of Segment = 0.975 m
Equivalent Length of Seg = 0.300 m
Segment-V
Area of Segment = 0.0713 m^2
Depth of Segment = 0.150 m
seg-V d5 Equivalent Length of Seg = 0.475 m
Segment-VI
Area of Segment = 0.1625 m^2
seg-VI d6 Depth of Segment = 0.250 m
Equivalent Length of Seg = 0.650 m

(52)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Dimension Width of Sec-1 Depth of Sec-1 Width of Sec-2 Depth of Sec-2 Width of Sec-4 Depth of Sec-3 Width of Sec-4 Depth of Sec-4 Width of Sec-5 Depth of Sec-5 Width of Sec-6 Depth of Sec-6
H W1 d1 W2 d2 W3 d3 W4 d4 W5 d5 W6 d6
(in m) (in m) (in m) (in m) (in m) (in m) (in m) (in m) (in m) (in m) (in m) (in m) (in m)
1.820 3.200 0.220 0.650 0.150 0.475 0.075 0.300 0.975 0.475 0.150 0.650 0.250

CASE-1 Positive Temperature Difference Case


Refer Fig. 10 of IRC:6-2017 for Temterature Gradient throughout the Depth T1
h1 = 0.3 x h ( i.e. 0.546 ) or 0.150 m
{ Whichever is smaller } h1
HENCE h1 = 0.150 m T2

h2 = 0.3 x h ( i.e. 0.546 ) or 0.250 m


{ Whichever is smaller } h2
HENCE h2 = 0.250 m

h3 = 0.3 x h ( i.e. 0.546 ) or 0.150 m


{ Whichever is smaller }
HENCE h3 = 0.150 m

T1 = 17.8 degC
T2 = 4.0 degC
T3 = 2.1 degC

SEGMENT Width Depth Cum. Depth


in metre in metre in metre
Segment - I 3.200 0.220 0.220
Segment - II 0.650 0.150 0.370
Segment - III 0.475 0.075 0.445 h3
Segment - IV 0.300 0.975 1.420 T3
Segment - V 0.475 0.150 1.570 Positive Temperature Difference
Segment - VI 0.650 0.250 1.820

(53)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Temperature Strain at any fiber   x 
Stresses at any fiber fy =  x Ec

Total Temperature Stress at a depth Y from Top


(+ve) for compression  fy - Ft / A - (Y - Yna) x Mt / Icg
(-ve) for tension

Segment Cum.Depth Cum.Depth Value of Value of With reference to Top Fiber Stress df
of Temp at top of at bottom Temp. at Top Temp. at Bottom of the Section dY df dY
Gradient Segment of Segment of Segment of Segment Y-start f1 Y-end f2
in metre in metre deg C deg C in metre Mpa in metre Mpa in metre MPa
0.150 0.000 0.150 17.800 4.000 0.000 6.873 0.150 1.544 0.150 -5.328 -35.521
0.250 0.150 0.400 4.000 0.000 0.150 1.544 0.400 0.000 0.250 -1.544 -6.178
1.270 0.400 1.670 0.000 0.000 0.400 0.000 1.670 0.000 1.270 0.000 0.000
0.150 1.670 1.820 0.000 2.100 1.670 0.000 1.820 0.811 0.150 0.811 5.405

Depth of Temp. Average Depth of Width of Force due Depth of Ft Moment due Total Temp.
SEGMENT Fiber from Stress at Temp. the Strip the Strip to temp. from Top to temp. Stress at a
Top Depth Y Stress stress Yt - Yna stress depth Y
Y fy fy avg D W Ft Yt Mt 
(m) (MPa) (MPa) (m) (m) (kN) (m) (m) (kN-m) (MPa)
0.000 6.8726 3.802
4.2085 0.1500 3.2000 2020.08 0.0592 -0.5099 -1030.129
Segment - I 0.150 1.5444 -1.185
1.3282 0.0700 3.2000 297.51 0.1831 -0.3860 -114.846
0.220 1.1120 -1.458
Segment - II 0.220 1.1120 -1.458
0.6486 0.1500 0.6500 63.2432 0.2771 -0.2920 -18.466
0.370 0.1853 -2.044

(54)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
0.370 0.1853 -2.044
0.0927 0.0300 0.4750 1.32 0.3800 -0.1891 -0.250
Segment - III 0.400 0.0000 -2.161
0.0000 0.0450 0.4750 0.00
0.445 0.0000 -2.059
Segment - IV 0.445 0.0000 -2.059
upto cg. of section 0.0000 0.1241 0.3000 0.0000
0.569 0.0000 -1.776
Segment - IV 0.569 0.0000 -1.776
Below cg. of section 0.0000 0.8509 0.3000 0.0000
1.420 0.0000 0.159
Segment - V 1.420 0.0000 0.159
0.0000 0.1500 0.4750 0.0000
1.570 0.0000 0.500
1.570 0.0000 0.500
0.0000 0.1000 0.6500 0.00
Segment - VI 1.670 0.0000 0.727
0.4054 0.1500 0.6500 39.53 1.7700 1.2009 47.467
1.820 0.8108 1.879
Sum 2421.6790 -1116.223

Ft / A = 2421.679 = 1776.238 kN/m^2 Mt / Icg = -1116.223 = -2274.289 kN/m^3


1.363 0.491

(55)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
CASE-2 Reverse Temperature Difference Case
Refer Fig. 10 of IRC:6-2017 for Temterature Gradient throughout the Depth T1

h1 = 0.2 x h ( i.e. 0.364 ) or 0.250 m h1


or h4 { Whichever is smaller }
HENCE h1 = h4 = 0.250 m

h2 = 0.25 x h ( i.e. 0.455 ) or 0.250 m


or h3 { Whichever is smaller } T2
HENCE h2 = h3 = 0.250 m h2

T1 = -10.6 degC
T2 = -0.7 degC
T3 = -0.8 degC
T4 = -6.6 degC

Width Depth Cum. Depth


in metre in metre in metre h3
Segment - I 3.200 0.220 0.220 T3
Segment - II 0.650 0.150 0.370
Segment - III 0.475 0.075 0.445
Segment - IV 0.300 0.975 1.420 h4
Segment - V 0.475 0.150 1.570
Segment - VI 0.650 0.250 1.820
T4
Temperature Strain at any fiber   x  Reverse Temperature Difference
Stresses at any fiber f =  x Ec

Total Temperature Stress at a depth Y from Top

(+ve) for compression  fy - Ft / A - (Y - Yna) x Mt / Icg


(-ve) for tension

(56)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Segment Cum.Depth Cum.Depth Value of Value of With reference to Top Fiber Stress df
of Temp at top of at bottom Temp. at Top Temp. at Bottom of the Section dY df dY
Gradient Segment of Segment of Segment of Segment Y-start f1 Y-end f2
in metre in metre deg C deg C in metre Mpa in metre Mpa in metre MPa
0.250 0.000 0.250 -10.600 -0.700 0.000 -4.093 0.250 -0.270 0.250 3.822 15.290
0.250 0.250 0.500 -0.700 0.000 0.250 -0.270 0.500 0.000 0.250 0.270 1.081
0.820 0.500 1.320 0.000 0.000 0.500 0.000 1.320 0.000 0.820 0.000 0.000
0.250 1.320 1.570 0.000 -0.800 1.320 0.000 1.570 -0.309 0.250 -0.309 -1.236
0.250 1.570 1.820 -0.800 -6.600 1.570 -0.309 1.820 -2.548 0.250 -2.239 -8.958

Depth of Temp. Average Depth of Width of Force due Depth of Ft Moment due Total Temp.
SEGMENT Fiber from Stress at Temp. the Strip the Strip to temp. from Top to temp. Stress at a
Top Depth Y Stress stress Yt - Yna stress depth Y
Y fy fy avg D W Ft Yt Mt 
(m) (MPa) (MPa) (m) (m) (kN) (m) (m) (kN-m) (MPa)
0.000 -4.0927 -2.0100
Segment - I -2.4108 0.2200 3.2000 -1697.209 0.0844 -0.4847 822.637
0.220 -0.7290 1.1090
0.220 -0.7290 1.1090
-0.4996 0.0300 0.6500 -9.742 0.2327 -0.3364 3.278
Segment - II 0.250 -0.2703 1.5343
-0.2054 0.1200 0.6500 -16.022 0.3037 -0.2654 4.253
0.370 -0.1405 1.5306
0.370 -0.1405 1.5306
Segment - II -0.1000 0.0750 0.4750 -3.562 0.4024 -0.1667 0.594
0.445 -0.0595 1.5283

(57)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Segment - IV 0.445 -0.0595 1.5283
upto cg. of section -0.0297 0.0550 0.3000 -0.491 0.4633 -0.1058 0.052
0.500 0.0000 1.5265
0.0000 0.0691 0.3000 0.000
0.569 0.0000 1.4497
Segment - IV 0.569 0.0000 1.4497
below cg. of section 0.0000 0.7509 0.3000 0.000
1.320 0.0000 0.6144
-0.0618 0.1000 0.3000 -1.853 1.3867 0.8175 -1.515
1.420 -0.1236 0.3797
1.420 -0.1236 0.3797
Segment - V -0.2162 0.1500 0.4750 -15.405 1.5057 0.9366 -14.429
1.570 -0.3089 0.0275
-0.3089 0.0000 0.4750 0.000
1.570 -0.3089 0.0275
Segment - VI 1.570 -0.3089 0.0275
-1.4286 0.2500 0.6500 -232.143 1.7277 1.1585 -268.946
1.820 -2.5483 -2.4900
Sum -1976.428 545.924

Ft / A = -1976.428 = -1449.658 kN/m^2 Mt / Icg = 545.924 = 1112.312 kN/m^3


1.363 0.491

(58)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Calculation for Differential Shrinkage Effect (Modified by Creep)
The differential shrinkage strain between th cast-insitu deck slab and precast girder causes the stresses in the precast girder & deck slab. The equivalent
force, that causes the stresses in the girder, is calculated from the basic principles. The force is equal to product of modulus of concrete, area of
flange and differential strain. The shrinkage strains for deck slab and precast girder have been worked out and modified with creep of concrete

Modulus of Elast. of Conc. Eslab = 33000.00 N/mm^2


Differential shrinkage strain  = -5.7E-05 ( At 35 days ) When in-situ deck is cast on the girder
Creep Coefficient φ(,t0) = 1.669 Creep Reduction Factor  = (1 - e(-φ))/φ = 4.863E-01
Ado = Refer Cl. 6.3.5 of IRC:112-2020
Effective Area of Deck Slab 0.704 m^2
Moment of Inertia of Composite Sec. Icg = 4.9E+11 mm^4
Area of Composite Section Ac = 1.4E+06 mm^2 Distance of top of slab from cg. of Section = 569.120 mm
Total Depth of the Section D = 1820.0 mm Distance of Bottom of slab from cg of Section = 349.120 mm
Thickness of Deck Slab Ds = 220.0 mm Distance of Bottom of girder from cg of Section = 1250.880 mm

Stresses in Outer Girder due to Differential Shrinkage Effect:


Step(1) Calculate Restrained Shrinkage Stress Restraining Force F = Eslab x A x x ( acting at the cg. of Deck Slab )

Restraining Force for Girder


Fo = 33000.00 x 704000.0 x -0.00006 x 0.486 = -647969.47 N
Restraining Moment for Girder
Mo = -647969 x ( 569 - 110.00 ) = -2.97E+08 N-mm

fo_r = 33000.00 x -0.00006 x 0.486 = -0.920 MPa

(59)
Project Designed by:

Client Checked by:


Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN FORCES FOR OUTER LONG. GIRDER (LG1)
Step(2) Calculate Balancing Stresses Balancing Stress at any Section = Direct Stress + Bending Stress
fo_b = Fo + Mo x y
-0.100
1800 0.00
Ae Icg
Balancing Stress at Top of Deck Slab = 0.820 MPa -0.2341600 0.687

Height from Soffit (mm)


Balancing Stress at Bottom of Deck Slab = 0.687 MPa
1400
Balancing Stress at Top of Girder = 0.687 MPa
1200
0.475
Balancing Stress at N.A. = 0.475 MPa
Balancing Stress at Bottom of Girder = -0.283 MPa
1000

Step(3) Calculate Final Stresses at Various Levels of Section 800

600
Total Stress at Top of Deck Slab = -0.920 + 0.820 = -0.100 MPa
Total Stress at Bottom of Deck Slab = -0.920 + 0.687 = -0.234 MPa 400

Total Stress at Top of Girder = 0.000 + 0.687 = 0.687 MPa 200


Total Stress at N.A. = 0.000 + 0.475 = 0.475 MPa -0.283
Total Stress at Bottom of Girder = 0.000 + -0.283 = -0.283 MPa 0 0.00
-3 -2 -1 0 1 2 3
Height from Soffit (mm) 1820 1820 1600 1600Final Stresses
1251 (MPa)
0 0
Final Stresses (MPa) 0.00 -0.100 -0.234 0.687 0.475 -0.283 0.00

(60)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

DESIGN OF OUTER LONG. GIRDER (LG1)


Section Properties
1. Properties of non-composite section: Precast Girder Only
1a Area of Precast Girder A m2 1.040 1.040 0.659 0.659 0.659 0.659 0.659 0.659 0.659 0.659 0.659 1.040 1.040
1b c.g. of girder from Top of girder Yt m 0.800 0.800 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.800 0.800
1c c.g. of girder from soffit of girder Yb m 0.800 0.800 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.800 0.800
1d Overall Depth of Girder D m 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60
1e Moment of Inertia of Section Iz m4 0.2219 0.2219 0.1811 0.1811 0.1811 0.1811 0.1811 0.1811 0.1811 0.1811 0.1811 0.2219 0.2219
1f Section Modulus of Top Zt m3 0.2773 0.2773 0.2158 0.2158 0.2158 0.2158 0.2158 0.2158 0.2158 0.2158 0.2158 0.2773 0.2773
1g Section Modulus of Bottom Zb m3 0.2773 0.2773 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2381 0.2773 0.2773
1h First moment of area above and about m3 0.0608 0.0608 0.0350 0.0350 0.0350 0.0350 0.0350 0.0350 0.0350 0.0350 0.0350 0.0608 0.0608
N.A of Composite Section
1i Weight of Girder per metre wg kN/m 26.00 26.00 16.48 16.48 16.48 16.48 16.48 16.48 16.48 16.48 16.48 26.00 26.00
1j. Notional size (mm) of the Cross Section h0 mm 462 462 279 279 279 279 279 279 279 279 279 462 462
1k. Coeff. depending on notional size for Shrinkage kh 0.709 0.709 0.771 0.771 0.771 0.771 0.771 0.771 0.771 0.771 0.771 0.709 0.709
2. Properties of Composite Section: Precast Girder + Deck Slab
2a Area of Composite Section A m2 1.744 1.744 1.363 1.363 1.363 1.363 1.363 1.363 1.363 1.363 1.363 1.744 1.744
2b c.g. of Section from Top of Deck Slab Yt m 0.653 0.653 0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.653 0.653
2c c.g. of Section from soffit Yb m 1.167 1.167 1.251 1.251 1.251 1.251 1.251 1.251 1.251 1.251 1.251 1.167 1.167
2d Overall Depth of the Section D m 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82
2e Moment of Inertia of Section Iz m4 0.5724 0.5724 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.5724 0.5724
2f Section Modulus at Top of Slab Zts m3 0.8770 0.8770 0.8624 0.8624 0.8624 0.8624 0.8624 0.8624 0.8624 0.8624 0.8624 0.8770 0.8770
2g Sec. Modulus at Bottom of Slab Zbs m3 1.3229 1.3229 1.4058 1.4058 1.4058 1.4058 1.4058 1.4058 1.4058 1.4058 1.4058 1.3229 1.3229
2h Sec.Modulus of Bottom of Section Zb m3 0.4903 0.4903 0.3924 0.3924 0.3924 0.3924 0.3924 0.3924 0.3924 0.3924 0.3924 0.4903 0.4903
2i First moment of area of Composite Sec. m3 0.4429 0.4429 0.3582 0.3582 0.3582 0.3582 0.3582 0.3582 0.3582 0.3582 0.3582 0.4429 0.4429
above & about N.A of Composite Section
2j. Notional size (mm) of the Cross Section h0 mm 510 510 386 386 386 386 386 386 386 386 386 510 510
1k. Coeff. depending on notional size for Shrinkage kh 0.700 0.700 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.700 0.700

(61)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

Classification of Characteristic Actions used for Superstructure Design (Marked in Red Colour)
Permanent Action (G) Variable Action (Q) Accidental Action (A) / Seismic Action (AE)
Symbol Action Designation & Description Symbol Action Designation & Description Symbol Action Designation & Description
G1 DL : Dead Load of Structural Componenets Q1 QL : Vehicular Live laod A1 Vc : Vehicle collision on elements of bridge structure
G2 SDL1 : SIDL excluding Surfacing Q2 Qim : Impact factor due to CWLL A2 Barge impact or impact due to floating
G3 SDL2 : Dead Load of Surfacing (Wearing Coat) Q3 Fa : Tractive Effect of Vehicle bodies in water current
G4 GS : Snow Load Q4 Fb : Braking Effect of the Vehicle A3 Vehicular Impact on Crash Barriers.
G5 Wfill : Weight of the backfill Q5 Qs : Pedestrian Live Load A4 AE : Seismic Action
G6 SE : Settlement Effect Q6 Fcf : Centrifugal Force of Vehicle i. Inertial loads due to self-mass
G7 CR : Creep Effect Q7 Fcp : Earth pressure surharge Effect due to Live Load generated in bridge structure.
G8 SH : Shrinkage Effect Q8 Fde : Temperature effects due to restraints to free structural ii. Inertial loads due to mass of CWLL
G9 P : Prestressing Force deformation iii. Hydrodynamic forces generated on
G10 FS : Secondary Effect Q9 W : Wind Load on the Structure submerged part under water.
G11 Fep : Active Earth Pressure Effect due to Backfill Q10 Gb : Buoyancy Effect iv. Dynamic Earth Increment
G12 DSH : Differential Shrinkage Q11 Fwc : Water Current Force
Q12 Fwp : Wave Pressure

LOAD COMBINATIONS SLS : Service Limit State ULS : Ultimate Limit State
DESCRIPTION OF COMBINATION STAGE DETAILS OF FORCES IN COMBINATION COMBINATIONS WITH LOAD FACTORS PURPOSE OF CHECKING
RARE (CHARACTERISTIC) SLS 1 Non-Composite DLgir 1.00 x G1 (At 28 days) Maximum Stresses
SLS 2 Non-Composite DLgir + DLslab (green wt.) 1.00 x G1 (At 35 days) Maximum Stresses
SLS 3 Composite DLgir + DLslab + DSH 1.00 x G1 + 1.00 x G12 (At 49 days) Maximum Stresses
SLS 4 Composite DLgir + DLslab + SDL1 + SDL2 + DSH + Q 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q1 + 1.00 x Q2 + 0.60 x Q8 (At 63 days) Maximum Stresses
SLS 5 Composite DLgir + DLslab + SDL1 + SDL2 + DSH + Q 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q1 + 1.00 x Q2 + 0.60 x Q8 (Long term) Maximum Stresses

FREQUENT SLS 8 Composite DLgir + DLslab + SDL1 + SDL2 + DSH + Q 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 0.75 x Q1 + 0.75 x Q2 + 0.50 x Q8 (Long term) Deflection

QUASI-PERMANENT SLS 9 Composite DLgir + DLslab + SDL1 + SDL2 + DSH + Q 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 0.50 x Q8 (Long term) Crack Width

ULTIMATE(BASIC) ULS 1 Composite Factored (DLgir+DLslab+SDL1+SDL2+Q) 1.35 x G1 + 1.35 x G2 + 1.75 x G3 + 1.50 x Q1 + 1.50 x Q2 (Long term) Str. Strength Check in ULS

(62)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

Summary of Bending Moment & Shear Force due to Different Loadings


1. Due to Self Weight of Girder & Diaphragm (Applied on Non-Composite Section) (G1,1)
1a Bending Moment (M) kN-m 0.000 254.232 455.613 577.103 750.29 854.21 888.84 854.21 750.29 577.103 455.613 254.232 0.000
1b Shear Force (V) kN 190.375 151.375 119.512 101.379 67.586 33.793 0.000 33.793 67.586 101.379 119.512 151.375 190.375

2. Due to Weight of Shuttering (Applied on Non-Composite Section) (G1,2)


2a Bending Moment (M) kN-m 0.000 6.377 11.777 15.093 19.821 22.658 23.603 22.658 19.821 15.093 11.777 6.377 0.000
2b Shear Force (V) kN 4.613 3.938 3.263 2.768 1.845 0.923 0.000 0.923 1.845 2.768 3.263 3.938 4.613

3. Due to Removal of Shuttering (Applied on Composite Section when structure is continuous on temporary bearings) (G1,2)
3a Bending Moment (M) kN-m 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3b Shear Force (V) kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4. Due to Wt. of Green Conc. of Slab+Temporary Live Load (Applied on Non-Composite Section)(G1,3)
4a Bending Moment (M) kN-m 0.000 367.601 681.594 876.53 1160.05 1339.76 1415.65 1339.76 1160.05 876.53 681.594 367.601 0.000
4b Shear Force (V) kN 264.913 227.857 190.801 163.626 112.983 62.340 11.697 62.340 112.983 163.626 190.801 227.857 264.913

5. Due to Wt. of Slab during Service (Applied on Non-Composite Section) (G1,3)


5a Bending Moment (M) kN-m 0.00 367.60 681.59 876.53 1160.05 1339.76 1415.65 1339.76 1160.05 876.53 681.59 367.60 0.00
5b Shear Force (V) kN 264.91 227.86 190.80 163.63 112.98 62.34 11.70 62.34 112.98 163.63 190.80 227.86 264.91

6. Due to Shifting of Supports (Applied on Continuous Composite Section) (G1,4)


6a Bending Moment (M) kN-m 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6b Shear Force (V) kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7. Due to Super Imposed Dead Load SDL1(Applied on Composite Section) (G2)


7a Bending Moment (M) kN-m 0.000 126.309 221.551 278.231 369.529 419.914 433.749 409.923 348.064 246.047 175.636 65.814 0.000
7b Shear Force (V) kN 79.796 79.796 68.363 57.425 46.409 28.215 9.921 27.248 46.711 58.436 69.050 80.388 80.388

8. Due to Super Imposed Dead Load SDL2(Applied on Composite Section) (G3)


8a Bending Moment (M) kN-m 0.000 75.550 140.217 180.215 237.404 271.906 283.754 272.786 238.882 181.239 141.174 75.670 0.000
8b Shear Force (V) kN 51.773 49.782 42.046 35.177 26.484 15.351 4.274 15.370 26.791 35.888 42.703 50.541 52.533

(63)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

9. Due to Footpath Live Load (Applied on Composite Section) (Q5)


9a Bending Moment (M) kN-m 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9b Shear Force (V) kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10. Due to Vertical Effect of Wind Load (Applied on Composite Section) -- [Q9] For Downward Wind Case
10a Bending Moment (M) kN-m 0.850 55.163 101.911 130.607 172.341 197.179 205.566 197.304 172.281 130.147 100.629 52.864 3.557
10b Shear Force (V) kN 37.549 36.221 30.637 25.631 19.432 11.314 3.227 11.297 19.656 26.170 31.114 36.759 38.087

11. Due to Carriageway Live Load (with Impact) (Applied on Composite Section) (Q1+Q2)
11a Governing Sagging Moment (M) kN-m 0.00 545.51 1027.70 1327.28 1735.52 2003.86 2127.28 2040.15 1788.88 1418.38 1128.96 639.23 127.59
11b Corresponding Shear Force (V) kN 395.86 395.86 350.58 317.96 270.63 212.80 156.84 209.62 267.76 343.66 375.77 419.94 419.94
11c Governing Shear Force (V) kN-m 395.86 395.86 350.58 317.96 270.63 212.80 156.84 209.62 267.76 343.66 375.77 419.94 419.94
11d Corresponding Moment (M) kN 0.00 545.51 1027.70 1327.28 1735.52 2003.86 2127.28 2040.15 1788.88 1418.38 1128.96 639.23 127.59

12. Due to SPV 385 Tonne Live Load (Applied on Composite Section) (Q3)
12a Governing Sagging Moment (M) kN-m 63.37 87.61 108.28 119.29 127.34 130.90 134.10 138.57 142.93 146.05 146.00 144.80 135.94
12b Corresponding Shear Force (V) kN 13.12 13.12 9.94 6.49 5.09 4.56 5.03 7.46 9.75 9.75 8.32 8.49 8.49
12c Governing Shear Force (V) kN-m 13.12 13.12 9.94 6.49 5.09 4.56 5.03 7.46 9.75 9.75 8.32 8.49 8.49
12d Corresponding Moment (M) kN 63.37 87.61 108.28 119.29 127.34 130.90 134.10 138.57 142.93 146.05 146.00 144.80 135.94

Summary of Stresses in Concrete (due to Temperature Gradient & Differential Shrinkage)


13. Stresses due to Positive Temp. Difference (Case-1) (Q8,1)
13a At Top of Deck Slab ft_slab MPa 3.802 3.802 3.802 3.802 3.802 3.802 3.802 3.802 3.802 3.802 3.802 3.802 3.802
13b At Bottom of Deck Slab fb_slab MPa -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458
13c At Top of Precast Girder ft_girder MPa -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458 -1.458
13d At Bott. of Precast Gir. fb_girder MPa 1.879 1.879 1.879 1.879 1.879 1.879 1.879 1.879 1.879 1.879 1.879 1.879 1.879
14. Stresses due to Reverse Temp. Difference (Case-2) (Q8,2)
14a At Top of Deck Slab ft_slab MPa -2.010 -2.010 -2.010 -2.010 -2.010 -2.010 -2.010 -2.010 -2.010 -2.010 -2.010 -2.010 -2.010
14b At Bottom of Deck Slab fb_slab MPa 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109
14c At Top of Precast Girder ft_girder MPa 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109
14d At Bott. of Precast Gir. fb_girder MPa -2.490 -2.490 -2.490 -2.490 -2.490 -2.490 -2.490 -2.490 -2.490 -2.490 -2.490 -2.490 -2.490
15. Stresses due to Differential Shrinkage (G12)
15a At Top of Deck Slab ft_slab MPa -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100
15b At Bottom of Deck Slab fb_slab MPa -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234 -0.234
15c At Top of Precast Girder ft_girder MPa 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.687
15d At Bott. of Precast Gir. fb_girder MPa -0.283 -0.283 -0.283 -0.283 -0.283 -0.283 -0.283 -0.283 -0.283 -0.283 -0.283 -0.283 -0.283

(64)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

SHRINKAGE MODEL (microstrain) (Refer Cl: 6.4.2.6 of IRC:112-2020)


Total Shrinkage Strain εcs = εcd + εca εcd = Drying Shrinkage Strain
Drying Shrinkage Strain (Refer Annexue A2.6 of IRC:112-2020) εca = Autogenous Shrinkage Strain
Basic Drying Shrinkage Strain εcd.0 Where,
ts = 3 Age of concrete (in days) at start of Drying after Curing
αds1 = 4.00 coefficient which depends on the type of cement
αds2 = 0.12 coefficient which depends on the type of cement
εcd.0 = 275.9 εcd =  dst,ts x kh x εcd.0 (Refer eq. 6.14) βRH 0.896 (Refer Eq. A2-27)
Autogenous Shrinkage Strain εca =  ast,ts x εca()
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Item. No. Description Unit ↓ Col.- 1 Col.- 2 Col.- 3 Col.- 4 Col.- 5 Col.- 6 Col.- 7 Col.- 8 Col.- 9 Col.- 10 Col.- 11 Col.- 12 Col.- 13
Coeff. for drying SH strain βds(t,ts) 0.0515 0.0515 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0515 0.0515
At age t Drying Shrinkage Strain cd  9.9 9.9 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 9.9 9.9
( 28 days ) Coeff. for autogenous SH strain βas(t,ts) 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Girder only Autogenous Shrinkage Strain ca  35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91
Total Shrinkage Strain cs  45.85 45.85 51.24 51.24 51.24 51.24 51.24 51.24 51.24 51.24 51.24 45.85 45.85
Coeff. for drying SH strain βds(t,ts) 0.0650 0.0650 0.0955 0.0955 0.0955 0.0955 0.0955 0.0955 0.0955 0.0955 0.0955 0.0650 0.0650
At age t Drying Shrinkage Strain cd  12.5 12.5 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 12.5 12.5
( 35 days ) Coeff. for autogenous SH strain βas(t,ts) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Girder+Slab Autogenous Shrinkage Strain ca  38.15 38.15 38.15 38.15 38.15 38.15 38.15 38.15 38.15 38.15 38.15 38.15 38.15
Total Shrinkage Strain cs  50.70 50.70 57.36 57.36 57.36 57.36 57.36 57.36 57.36 57.36 57.36 50.70 50.70
Coeff. for drying SH strain βds(t,ts) 0.0908 0.0908 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.1318 0.0908 0.0908
At age t Drying Shrinkage Strain cd  17.5 17.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 17.5 17.5
( 49 days ) Coeff. for autogenous SH strain βas(t,ts) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Girder+Slab Autogenous Shrinkage Strain ca  41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44
Total Shrinkage Strain cs  58.97 58.97 67.94 67.94 67.94 67.94 67.94 67.94 67.94 67.94 67.94 58.97 58.97
Coeff. for drying SH strain βds(t,ts) 0.1152 0.1152 0.1653 0.1653 0.1653 0.1653 0.1653 0.1653 0.1653 0.1653 0.1653 0.1152 0.1152
At age t Drying Shrinkage Strain cd  22.3 22.3 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 22.3 22.3
( 63 days ) Coeff. for autogenous SH strain βas(t,ts) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Girder+Slab Autogenous Shrinkage Strain ca  43.76 43.76 43.76 43.76 43.76 43.76 43.76 43.76 43.76 43.76 43.76 43.76 43.76
Total Shrinkage Strain cs  66.01 66.01 76.99 76.99 76.99 76.99 76.99 76.99 76.99 76.99 76.99 66.01 66.01
Coeff. for drying SH strain βds(t,ts) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
At age t Drying Shrinkage Strain cd  193.1 193.1 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 193.1 193.1
Infinite days Coeff. for autogenous SH strain βas(t,ts) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Girder+Slab Autogenous Shrinkage Strain ca  55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00
Total Shrinkage Strain cs  248.12 248.12 256.01 256.01 256.01 256.01 256.01 256.01 256.01 256.01 256.01 248.12 248.12
Differential Shrinkage Strain ( upto 28 days )  45.85 45.85 51.24 51.24 51.24 51.24 51.24 51.24 51.24 51.24 51.24 45.85 45.85
Differential Shrinkage Strain ( from 28 to 35 days )  4.84 4.84 6.12 6.12 6.12 6.12 6.12 6.12 6.12 6.12 6.12 4.84 4.84
Differential Shrinkage Strain ( from 35 to 49 days )  8.27 8.27 10.58 10.58 10.58 10.58 10.58 10.58 10.58 10.58 10.58 8.27 8.27
Differential Shrinkage Strain ( from 49 to 63 days )  7.04 7.04 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05 7.04 7.04
Differential Shrinkage Strain ( from 63 to infinity )  182.11 182.11 179.02 179.02 179.02 179.02 179.02 179.02 179.02 179.02 179.02 182.11 182.11

(65)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

CREEP MODEL (microstrain) (Refer Cl: 6.4.2.7 of IRC:112-2020)


Total Creep Strain εcc α = 0.00 coefficient which depends on the type of cement
Type of Cement Used Normal Portland Cement α1 = 0.911 coefficient (Refer eq. A2-24 of IRC:112-2020)
Creep Coefficient t,t0 (Refer Annexue A2.5 of IRC:112-2020) α2 = 0.974 coefficient (Refer eq. A2-24 of IRC:112-2020)
Where, t = Age of the conc. in days at the moment considered α3 = 0.935 coefficient (Refer eq. A2-24 of IRC:112-2020)
Factor to allow for the effect of concrete strength on the
t0 = Age of the concrete at loading in days β(fcm) = 2.656 In eq. A2-22 & Eq. A2-23 fck will be changed to 45 MPa
notional creep coefficient (Refer eq. A2-18 of IRC:112-
t - t0 = Non adjusted duration of loading in days 2020)

Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Item. No. Description Unit ↓ Col.- 1 Col.- 2 Col.- 3 Col.- 4 Col.- 5 Col.- 6 Col.- 7 Col.- 8 Col.- 9 Col.- 10 Col.- 11 Col.- 12 Col.- 13

Girder Only coefficient (Refer eq. A2-16 & 17) RH 1.31 1.31 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.31 1.31
From age t coefficient (Refer eq. A2-22 & 23) βH 1129.72 1129.72 915.28 915.28 915.28 915.28 915.28 915.28 915.28 915.28 915.28 1129.72 1129.72
( 28 days ) Temperature adjusted Conc. Age t0,T days 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14
to Age of Concrete at Loading t0 days 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14 35.14
Infinity Factor (Refer eq. A2-19) β(t0) 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678 0.4678
Creep Coefficient φ(,t0) 1.631 1.631 1.669 1.669 1.669 1.669 1.669 1.669 1.669 1.669 1.669 1.631 1.631
Creep Coefficient, φ(t,t0) for ( (t,t0) from 28 to 35 days) 0.354 0.354 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.354 0.354
Refer eq.
A2-21 0.026 0.027 0.021 0.039 0.039 0.039 0.039 0.039 0.039 0.021 0.027 0.026
Weighted Value of Creep Coefficient, φ(t,t0) 0.379
Creep Coefficient, φ(t,t0) for ( (t,t0) from 28 to 49 days) 0.491 0.491 0.534 0.534 0.534 0.534 0.534 0.534 0.534 0.534 0.534 0.491 0.491
Refer eq.
A2-21 0.036 0.037 0.029 0.053 0.053 0.053 0.053 0.053 0.053 0.029 0.037 0.036
Weighted Value of Creep Coefficient, φ(t,t0) 0.525
Creep Coefficient, φ(t,t0) for ( (t,t0) from 28 to 63 days) 0.570 0.570 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.570 0.570
Refer eq.
A2-21 0.042 0.044 0.033 0.062 0.062 0.062 0.062 0.062 0.062 0.033 0.044 0.042
Weighted Value of Creep Coefficient, φ(t,t0) 0.609
Creep Coefficient, φ(t,t0) for ( (t,t0) from 28 to Infinity) 1.631 1.631 1.669 1.669 1.669 1.669 1.669 1.669 1.669 1.669 1.669 1.631 1.631
Refer eq.
A2-21 0.119 0.121 0.090 0.167 0.167 0.167 0.167 0.167 0.167 0.090 0.121 0.119
Weighted Value of Creep Coefficient, φ(t,t0) 1.661

(66)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

CHECK FOR ULTIMATE MOMENT Ac


b
di
 cu3  fcd

Fcs1
ULS MOMENT CHECK FOR ULS-1 (At infinity days ) (FOR BASIC LOAD COMBINATION WITH WIND-DOWNWARD) Acs1
x
 cs1
x Fc
Load Case TYPE OF LOAD CONSIDERED IN LOAD COMBINATION Dead Laod SIDL1 SIDL2 CWLL/SPV CWLL-Impact FPLL Wind(↓)
Case-I ULS Load Combination with IRC CWLL with Impact 1.35 x G1 + 1.35 x G2 + 1.75 x G3 + 1.50 x Q1 + 1.50 x Q2 1.15 x Q5 + 0.90 x Q9 h

Case-II ULS Load Combination with SPV 385T Vehicle 1.35 x G1 + 1.35 x G2 + 1.75 x G3 + 1.15 x Q3 d2
As2 d1  s2 Fs2
As1  s1 Fs1
Stress-Strain Relationship of Concrete at ULS : Considering Rectangular Stress Distribution Section (s chematic) Strain Stress
εc3 0.0018 0.0018 Compressive strain at peak stress for Rectangle Stress Distribution
εcu3 0.0035 0.0035 Ultimate compressive strain for Rectangle Stress Distribution
η 1.0 1.0 Coefficient to convert to rectangular stress block
λ 0.8 0.8 Coefficient to convert to rectangular stress block
0.67 0.67 Coefficient to convert the strength in test to strength in structral member for age t > 28 days
αc
1 1 Coefficient to convert the strength in test to strength in structral member for age t < 28 days
17.87 17.87 N/mm2 Compressive design strength of concrete: fcd = (c x fcu) /m for Basic and Seismic Combination for age t > 28 days
fcd
22.33 22.33 N/mm2 Compressive design strength of concrete: fcd = (c x fcu) / m for Accidental Combination for age t > 28 days

Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Ult. Design Moment (with IRC CWLL+Impact) kN-m 0.77 2010.12 3712.98 4761.86 6251.67 7187.82 7569.12 7230.42 6305.26 4856.44 3803.40 2067.16 194.59
Ult. Design Moment (with SPV 385T) kN-m 72.87 1242.95 2204.22 2790.57 3639.73 4155.11 4347.41 4151.98 3631.27 2779.69 2187.29 1227.27 156.33
Governing ULS Design Moment MEd kN-m 72.87 2010.12 3712.98 4761.86 6251.67 7187.82 7569.12 7230.42 6305.26 4856.44 3803.40 2067.16 194.59
Overall Depth of the Section D m 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820
Width of Web bw mm 650 650.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 650.0 650.0
Width of Deck Slab Bf mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
Thickness of Top Flange (Top Slab) Tf mm 220 220 220 220 220 220 220 220 220 220 220 220 220
Position from
Area of Tension Reinforcement nearest face Clear cover to outermost steel = 40 mm
(mm)
Provide 32 mm dia. in Ist Layer 68 mm Nos. of Bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars
Provide 32 mm dia. in IInd Layer 132 mm Nos. of Bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars 6 bars
Provide 32 mm dia. in IIIrd Layer 196 mm Nos. of Bars 0 bars 0 bars 0 bars 0 bars 6 bars 6 bars 6 bars 6 bars 6 bars 0 bars 0 bars 0 bars 0 bars
Provide 32 mm dia. in IVth Layer 260 mm Nos. of Bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars
Provide 32 mm dia. in Vth Layer 324 mm Nos. of Bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars 0 bars
Total Area of main longitudinal Reinf. As mm2 9651 9651 9651 9651 14476 14476 14476 14476 14476 9651 9651 9651 9651
cg. of group of Reinforcing bars from Soffit Y,reinf mm 100 100 100 100 132 132 132 132 132 100 100 100 100
Eff. Depth to centroid of Reinf. d,eff = D - Y,reinf. mm 1720 1720 1720 1720 1688 1688 1688 1688 1688 1720 1720 1720 1720
Steel force at design ultimate yield Fs = As x fyk / s N 4196075 4196075 4196075 4196075 6294113 6294113 6294113 6294113 6294113 4196075 4196075 4196075 4196075

(67)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

Assuming steel yields first


Depth of Concrete Compression Block λx mm 73 73 73 73 110 110 110 110 110 73 73 73 73
(Assuming N.A. in Top Flange) x = Fs / ( bf x  x fcd) O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.
Conc. strain at level of steel reinf. () εcu3*(d-x)/x 0.062 0.062 0.062 0.062 0.039 0.039 0.039 0.039 0.039 0.062 0.062 0.062 0.062
Yield strain of Steel Reinforcement (s,yield) (fyk /s)/(Es) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Check for Yielding of Reinf. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields. Reinf. yields.
Moment capacity of Section MRd kN-m 7063.3 7063.3 7063.3 7063.3 10278.0 10278.0 10278.0 10278.0 10278.0 7063.3 7063.3 7063.3 7063.3
MRd = Fs x (Dp - x/2) > MEd > MEd > MEd > MEd > MEd > MEd > MEd > MEd > MEd > MEd > MEd > MEd > MEd
O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.
MINIMUM REINFORCEMENT REQUIREMENTS As,min : Min. area of reinforcing steel within the tensile zone
(Refer Cl:12.3.3(2) of IRC:112-2020) Coefficient, k 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
fct,eff = fctm = MPa 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Coefficient kc 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400
x Ist crack mm 729.405 729.405 606.040 606.040 655.634 655.634 655.634 655.634 655.634 606.040 606.040 729.405 729.405
Area, Act mm2 708887 708887 364188 364188 349310 349310 349310 349310 349310 364188 364188 708887 708887
Ult. Tensile strength of Long. Reinforcement ct = fyk MPa 500 500 500 500 500 500 500 500 500 500 500 500 500
a) Min. Area of Reinf. For Crack Control As,min mm2 1105.86 1105.86 568.13 568.13 544.92 544.92 544.92 544.92 544.92 568.13 568.13 1105.86 1105.86
As,min = ( kc x k x fct,eff x Act / ct ) (Refer Cl:12.3.3(2) of IRC:112)
b) Min. Long.Area of Reinf. As,min mm2 1744.08 1744.08 804.96 804.96 789.98 789.98 789.98 789.98 789.98 804.96 804.96 1744.08 1744.08
As,min = 0.0013 bt x d x fctm / fyk > 0.0013 bt x d (Refer Cl:16.5.1.1 of IRC:112)
0.0013 bt x d x fctm / fyk mm2 1744.08 1744.08 804.96 804.96 789.98 789.98 789.98 789.98 789.98 804.96 804.96 1744.08 1744.08
0.0013 bt x d mm2 1453 1453 671 671 658 658 658 658 658 671 671 1453 1453
Check for Minimum Reinf. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(68)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

CHECK FOR ULTIMATE SHEAR


ULS SHEAR CHECK FOR ULS-1 (At infinity days ) (FOR BASIC LOAD COMBINATION WITH WIND-DOWNWARD)
Load Case TYPE OF LOAD CONSIDERED IN LOAD COMBINATION Dead Laod SIDL1 SIDL2 CWLL/SPV CWLL-Impact FPLL Wind(↓)
Case-I ULS Load Combination with IRC CWLL with Impact 1.35 x G1 + 1.35 x G2 + 1.75 x G3 + 1.50 x Q1 + 1.50 x Q2 1.15 x Q5 + 0.90 x Q9
Case-II ULS Load Combination with SPV 385T Vehicle 1.35 x G1 + 1.35 x G2 + 1.75 x G3 + 1.15 x Q3
Section under consideration Unit ↓ 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Ult. Shear Force (CWLL+Impact) VEd1 kN 1440.55 1333.20 1138.23 996.85 776.21 524.12 274.83 518.06 773.05 1038.49 1178.53 1371.93 1479.29
Ult. Shear Force (SPV 385T) VEd2 kN 828.05 721.89 596.23 504.30 358.62 199.97 42.45 202.05 364.92 510.66 596.44 718.69 824.85
Ultimate Design Shear Force VEd kN 1440.55 1333.20 1138.23 996.85 776.21 524.12 274.83 518.06 773.05 1038.49 1178.53 1371.93 1479.29
Axial Force force NEd kN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Smallest width of cross-section in tensile area b mm 650.00 650.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 650.00 650.00
Eff. Depth to centroid of main R/f d mm 1720.00 1720.00 1720.00 1720.00 1688.00 1688.00 1688.00 1688.00 1688.00 1720.00 1720.00 1720.00 1720.00
Characteristic strength of concrete fck MPa 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00
Design value of conc. compression Strength fcd MPa 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87
Mean Comp. Stress in Concrete at cg. of Sec. cp MPa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cp = NEd / Ac < 0.2 fcd
Shear capacity without Design Shear Reinforcement Refer Cl. 10.3.2 of IRC: 112-2020
0.33
Shear Resistance without Shear Reinforcement VRd,c = [ 0.12 K (80 x 1 x fck )^ + 0.15 cp ] x bw x d
Allowance for size effect K = 1 + (200/d) < 2.0 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34
Reinforcement ratio 1 = Asl /(bw x d) < 0.02 0.009 0.009 0.019 0.019 0.020 0.020 0.020 0.020 0.020 0.019 0.019 0.009 0.009
VRd,c kN 537.86 537.86 320.40 320.40 322.24 322.24 322.24 322.24 322.24 320.40 320.40 537.86 537.86
min = 0.031 (K)^3/2 x (fck)^1/2 (ref. eq. 10.3 of IRC:112) 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.30 0.30 0.30 0.30
As per Eq. 10.1 of IRC;112-2020 VRd,c(min) kN 340.39 340.39 157.10 157.10 154.73 154.73 154.73 154.73 154.73 157.10 157.10 340.39 340.39
VRd,c(min) = ( min +0.15 x cp ) x bw x d
Hence, adopted for VRd,c for Checking VRd,c kN 537.86 537.86 320.40 320.40 322.24 322.24 322.24 322.24 322.24 320.40 320.40 537.86 537.86
< VEd < VEd < VEd < VEd < VEd < VEd > VEd < VEd < VEd < VEd < VEd < VEd < VEd
Check for Requirement for Shear Reinforcement Required Required Required Required Required Required Not Reqd. Required Required Required Required Required Required

(69)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

Shear Reinforcement Provided


Dia of Shear Stirrups  mm 12 12 12 10 10 10 10 10 10 10 12 12 12
Numbers of Legs of Link Reinf Nos. 4 legged 4 legged 4 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 4 legged 4 legged 4 legged
Spacing of Link Reinf. Provided mm @200 mm c/c @200 mm c/c @190 mm c/c @140 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @120 mm c/c @190 mm c/c @200 mm c/c @200 mm c/c

Area of Shear Reinforcement Asw mm2 452 452 452 157 157 157 157 157 157 157 452 452 452
Smallest width of cross-section in tensile area b mm 650.00 650.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 650.00 650.00
Overall depth of Composite Girder D mm 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820
Depth of from comp. fiber dt mm 1720 1720 1720 1720 1688 1688 1688 1688 1688 1720 1720 1720 1720
Yield Strength of Shear Stirrups fyv MPa 500 500 500 500 500 500 500 500 500 500 500 500 500
Using Vertical Links for Shear Reinf.  = /2 Cot () 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Shear Reinf. Design Strength fywd MPa 400.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00
Strength Reduction Factor (ref eq 10.6 of IRC:112)  0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Strength Reduction Factor (Cl. 10.3.1 of IRC:112)  0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Allowance for the state of stress in compression chord cw Using Eq. 10.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Effective Design Shear Force VEd kN 1440.55 1333.20 1138.23 996.85 776.21 524.12 274.83 518.06 773.05 1038.49 1178.53 1371.93 1479.29
Inner Lever Arm z mm 1548.00 1548.00 1548.00 1548.00 1519.20 1519.20 1519.20 1519.20 1519.20 1548.00 1548.00 1548.00 1548.00
Consider Conc. Strut Angle be  cotθ + tanθ Using Eq. 10.8 2.42 2.20 2.00 2.42 5.48 8.12 2.58 2.57 5.50 2.32 2.01 2.28 2.35
cotØmin/max 1 ←max / min → 2.5 taking VRd,s
 is the smallest angle before Hence, cotθ equal to VRd,max 1.88 1.56 1.07 1.89 2.50 2.50 2.11 2.09 2.50 1.75 1.11 1.69 1.80
concrete crushing starts. Hence, θ deg. 27.95 32.63 42.99 27.93 21.80 21.80 25.40 25.59 21.80 29.78 42.08 30.59 29.12
VRd,max kN 3889.49 4266.23 2162.64 1794.32 1467.35 1467.35 1648.98 1657.79 1467.35 1869.28 2156.71 4115.79 3994.08
> VEd > VEd > VEd > VEd > VEd > VEd > VEd > VEd > VEd > VEd > VEd > VEd > VEd
Check for ULS Shear Resistance O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K..
Required spacing of Shear Reinf. s,reqd mm 366.51 328.16 264.05 184.06 307.44 455.31 731.35 384.71 308.69 163.65 263.28 345.34 339.92
s = Asw x z x fywd x cotVEd) …. Eq. 10.7
Requirement of Minimum Shear Reinforcement
Min.Shear Reinf. Ratio (0.072 x (fck)0.5/fyw) w,min Using Eq. 10.20 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
Max.Spacing of Shear Reinf.=0.75d (1+cot) sl,max mm 1290.00 1290.00 1290.00 1290.00 1266.00 1266.00 1266.00 1266.00 1266.00 1290.00 1290.00 1290.00 1290.00

(70)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

CHECK FOR ULTIMATE TORSION ( Refer Clause 10.5.1 of IRC:112-2020 )

ULS TORSION CHECK FOR ULS-1 (At infinity days ) (FOR BASIC LOAD COMBINATION)
Load Case TYPE OF LOAD CONSIDERED IN LOAD COMBINATION Dead Laod SIDL1 SIDL2 CWLL/SPV CWLL-Impact FPLL Wind(↓) Clear cover to outermost steel = 40 mm
Case-I ULS Load Combination with IRC CWLL with Impact 1.35 x G1 + 1.35 x G2 + 1.75 x G3 + 1.50 x Q1 + 1.50 x Q2 1.15 x Q5 + 0.90 x Q9
Case-II ULS Load Combination with SPV 385T Vehicle 1.35 x G1 + 1.35 x G2 + 1.75 x G3 + 1.15 x Q3

DESCRIPTION SYMBOL UNITS 0.00L Sec 0.07L Sec 0.15L Sec 0.20L Sec 0.30L Sec 0.40L Sec 0.50L Sec 0.60L Sec 0.70L Sec 0.80L Sec 0.85L Sec 0.93L Sec 1.00L Sec

Ult. Torsion Moment (with CWLL) TEd1 (kN-m) 280.74 281.38 222.46 173.82 141.55 105.93 82.05 82.65 122.28 167.65 224.70 289.81 289.81
Co-existing ULS Shear Force VEd1 (kN) 1430.36 1324.43 1130.89 990.55 771.86 521.72 274.38 515.66 768.70 1032.20 1171.19 1363.17 1469.10
Ult. Shear Force (with SPV 385T) TEd2 (kN-m) 152.96 153.60 122.40 91.35 70.18 42.97 24.88 43.00 74.92 101.12 136.84 172.14 172.14
Co-existing ULS Moment VEd2 (kN) 817.86 713.13 588.89 498.00 354.27 197.58 42.00 199.65 360.58 504.36 589.10 709.93 814.66
Ultimate Design Torsion Moment TEd (kN-m) 280.74 281.38 222.46 173.82 141.55 105.93 82.05 82.65 122.28 167.65 224.70 289.81 289.81
Corres. Ultimate Design Shear Force VEd (kN) 1430.36 1324.43 1130.89 990.55 771.86 521.72 274.38 515.66 768.70 1032.20 1171.19 1363.17 1469.10
STEP-1 Elastic Torsional Inertia of Each Constituent of the Composite Precast Girder with Deck Slab
Torsional Inertia of Composite Girder Ix (m4) 0.097 0.097 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.097 0.097
Torsional Inertia of Deck Slab Ix1 (m4) 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Torsional Inertia of Top Flange Ix2 (m4) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Torsional Inertia of Web Ix3 (m4) 0.091 0.091 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.091 0.091
Torsional Inertia of Bottom Flange Ix4 (m4) 0.000 0.000 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.000 0.000
Allowance for state of stress in compression chord, cw cw Using Eq.10.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Strength Reduction Factor (Eq. 10.6 of IRC:112)  0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Smallest Angle of Compressive Strut (before Conc. Crushing)  deg. 27.95 32.63 42.99 27.93 21.80 21.80 25.40 25.59 21.80 29.78 42.08 30.59 29.12
For Deck Slab
ULS Design Torsion Moment shared by Deck Slab TEd,1 (kN-m) 15.41 15.45 58.83 45.97 37.44 28.02 21.70 21.86 32.34 44.34 59.42 15.91 15.91
Larger dimension of Section Zi hmax (m) 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20
Smaller dimension of Section hmin (m) 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
Total Area of Section defined by Exterior Perimeter A (m2) 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70
Exterior Perimeter of the Section u (m) 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84
Notional Thickness A/u (m) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
2 x (Eff. Cover to Long. Reinf) (m) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Max. [ A/u, 2 x (Eff. Cover to Long. Reinf) ] tef,i (m) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Area of Section excluding eff. Cover Ak (m2) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Perimeter of the Area Ak uk (m) 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34
Design Torsional Moment Resistance TRd,max (kN-m) 283.09 310.51 341.04 282.96 235.78 235.78 264.96 266.38 235.78 294.78 340.10 299.56 290.70
TRd,max = 2 x  x cw x fcd x Ak x tef,i x sin x cos Eq. 10.48 of IC:112-2020 > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i
Check for Torsional Strength of the Section Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass

(71)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

Torsion Reinforcement (Cl.10.5.2 of IRC:112-2020)

Transverse (Link) Reinf. 2 legged @ 300 mm c/c Bar Dia. mm 10 10 10 10 10 10 10 10 10 10 10 10 10


Longitudinal Reinf. 2 x 22 Nos Bar Dia. mm 12 12 12 12 12 12 12 12 12 12 12 12 12
Reqd. Vertical Torsion Reinf. (Asv / Sv)required mm^2/m 34.6 41.9 232.1 103.2 63.4 47.4 43.6 44.3 54.8 107.4 227.1 39.8 37.5
Asv / Sv > TEd/[2.0 x Ak x fyd x cot] Provided mm^2/m 523.6 523.6 523.6 523.6 523.6 523.6 523.6 523.6 523.6 523.6 523.6 523.6 523.6

Reqd. Long. Torsion Reinf. Asl_reqd mm^2 780.1 647.9 1695.1 2328.7 2513.3 1880.9 1227.0 1225.6 2171.1 2080.4 1767.6 722.6 766.9
Asv > Ted x cot x uk /[2.0 x Ak x fyd ] Asl_provided mm^2 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3 4976.3
For Top Flange of Girder
ULS Design Torsion Moment shared by Top Flange TEd,2 (kN-m) 1.78 1.79 16.20 12.66 10.31 7.72 5.98 6.02 8.91 12.21 16.37 1.84 1.84
Larger dimension of Section Zi hmax (m) 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Smaller dimension of Section hmin (m) 0.15 0.15 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.15 0.15
Total Area of Section defined by Exterior Perimeter A (m2) 0.10 0.10 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.10 0.10
Exterior Perimeter of the Section u (m) 1.60 1.60 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.60 1.60
Notional Thickness A/u (m) 0.06 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.06
2 x (Eff. Cover to Long. Reinf) (m) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Max. [ A/u, 2 x (Eff. Cover to Long. Reinf) ] tef,i (m) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Area of Section excluding eff. Cover Ak (m2) 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02
Perimeter of the Area Ak uk (m) 1.12 1.12 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.12 1.12
Design Torsional Moment Resistance TRd,max (kN-m) 14.75 16.18 50.24 41.68 34.73 34.73 39.03 39.24 34.73 43.42 50.10 15.61 15.15
TRd,max = 2 x  x cw x fcd x Ak x tef,i x sin x cos Eq. 10.48 of IC:112-2020 > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i
Check for Torsional Strength of the Section Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
Torsion Reinf. Of Top Flange (Cl.10.5.2 of IRC:112-2020)

Transverse (Link) Reinf. 2 legged @ 300 mm c/c Bar Dia. mm 10 10 10 10 10 10 10 10 10 10 10 10 10


Longitudinal Reinf. 2 x 7 Nos Bar Dia. mm 10 10 10 10 10 10 10 10 10 10 10 10 10
Reqd. Vertical Torsion Reinf. (Asv / Sv)required mm^2/m 74.31 89.88 419.98 186.64 114.69 85.83 78.93 80.18 99.07 194.34 410.89 85.49 80.55
Asv / Sv > TEd/[2.0 x Ak x fyd x cot] Provided mm^2/m 523.60 523.60 523.60 523.60 523.60 523.60 523.60 523.60 523.60 523.60 523.60 523.60 523.60

Reqd. Long. Torsion Reinf. Asl_reqd mm^2 295.7 245.6 594.5 816.7 881.4 659.6 430.3 429.8 761.4 729.6 619.9 273.9 290.7
Asv > Ted x cot x uk /[2.0 x Ak x fyd ] Asl_provided mm^2 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6

(72)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

For Web of Girder


ULS Design Torsion Moment shared by Web TEd,3 (kN-m) 263.55 264.15 76.39 59.68 48.60 36.37 28.17 28.38 41.99 57.56 77.15 272.06 272.06
Larger dimension of Section Zi hmax (m) 1.45 1.45 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.45 1.45
Smaller dimension of Section hmin (m) 0.65 0.65 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.65 0.65
Total Area of Section defined by Exterior Perimeter A (m2) 0.94 0.94 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.94 0.94
Exterior Perimeter of the Section u (m) 4.20 4.20 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 4.20 4.20
Notional Thickness A/u (m) 0.22 0.22 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.22 0.22
2 x (Eff. Cover to Long. Reinf) (m) 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13
Max. [ A/u, 2 x (Eff. Cover to Long. Reinf) ] tef,i (m) 0.22 0.22 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.22 0.22
Area of Section excluding eff. Cover Ak (m2) 0.52 0.52 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.52 0.52
Perimeter of the Area Ak uk (m) 3.30 3.30 2.04 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.04 3.30 3.30
Design Torsional Moment Resistance TRd,max (kN-m) 904.93 992.58 173.68 142.71 118.92 118.92 133.64 134.35 118.92 148.67 173.20 957.58 929.26
TRd,max = 2 x  x cw x fcd x Ak x tef,i x sin x cos Eq. 10.48 of IC:112-2020 > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i
Check for Torsional Strength of the Section Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
Check for Maximum Resistance for Combined Torsion & Shear
TEd / TRd,max + VEd / VRd,max < 1 0.6616 0.5786 0.9661 0.9738 0.9377 0.6631 0.3775 0.5237 0.8799 0.9427 0.9919 0.6174 0.6631
(Eq. 10.47 of IRC:112-2020)
CHECK FOR WEB Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
Torsion Reinforcement for Web (Cl.10.5.2 of IRC:112-2020) Note : Torsion Reinforcement of the Web will be combined with the Shear Reinforcement
Rebar Size of Transverse (Link) Reinf for Torsion mm 12 12 12 10 10 10 10 10 10 10 12 12 12
Numbers of Legs of Link Reinf Nos. 4 legged 4 legged 4 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 4 legged 4 legged 4 legged
Area of Trans. Torsional Reinforcement Asw mm^2 452.39 452.39 452.39 157.08 157.08 157.08 157.08 157.08 157.08 157.08 452.39 452.39 452.39
Reqd. Spacing of Trans. Torsion Reinf. (Svt) reqd mm 1350.09 1116.16 740.57 611.26 994.75 1329.20 1445.49 1422.88 1151.52 587.03 756.95 1173.57 1245.54
Asv / Sv > TEd/[2.0 x Ak x fyd x cot]

Reqd. Spacing of Trans. Shear Reinf. (Svs) reqd mm 300.00 300.00 264.05 184.06 300.00 300.00 300.00 300.00 300.00 163.65 263.28 300.00 300.00
Combined Reqd. Spacing of Shear+Torsion Reinf. mm 245.46 236.45 194.65 141.46 230.49 244.76 248.44 247.76 238.00 127.97 195.34 238.92 241.77
Adopted Spacing of (Shear+Torsion) Reinf. Provided mm @200 mm @200 mm @190 mm @140 mm @200 mm @200 mm @200 mm @200 mm @200 mm @120 mm @190 mm @200 mm @200 mm

Reqd. Longitudinal Torsion Reinf. Asl_reqd mm^2 3931.24 3264.93 1433.13 1892.92 2042.94 1528.90 997.38 996.22 1764.81 1691.07 1494.42 3641.59 3864.92
Asl > Ted x cot x uk /[2.0 x Ak x fyd ]
Asl_reqd for each face of the Web mm^2 1459 1212 596 782 844 632 412 411 729 698 621 1351 1434
Longitudinal Tor. Reinf. Size of the Reinforcement Bar Dia. mm 12 12 12 10 10 10 10 10 10 10 12 12 12
Nos. of Rows of Long. Tor. Reinf. 2 2 2 2 2 2 2 2 2 2 2 2 2
Nos. of Long. Tor. Bars in one Row 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos 7 Nos
Asl_provided mm^2 1583.4 1583.4 1583.4 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1099.6 1583.4 1583.4 1583.4

(73)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

For Bottom Bulb of Girder


ULS Design Torsion Moment shared by Bottom Flange TEd,4 (kN-m) 71.04 55.51 45.20 33.83 26.20 26.39 39.05 53.54 71.75
Larger dimension of Section Zi hmax (m) 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Smaller dimension of Section hmin (m) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
Total Area of Section defined by Exterior Perimeter A (m2) 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
Exterior Perimeter of the Section u (m) 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02
Notional Thickness A/u (m) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
2 x (Eff. Cover to Long. Reinf) (m) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Max. [ A/u, 2 x (Eff. Cover to Long. Reinf) ] tef,i (m) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Area of Section excluding eff. Cover Ak (m2) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Perimeter of the Area Ak uk (m) 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36
Design Torsional Moment Resistance TRd,max (kN-m) 145.21 120.48 100.39 100.39 112.82 113.42 100.39 125.52 144.81
TRd,max = 2 x  x cw x fcd x Ak x tef,i x sin x cos Eq. 10.48 of IC:112-2020 > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i > TEd,i
Check for Torsional Strength of the Section Pass Pass Pass Pass Pass Pass Pass Pass Pass
Torsion Reinf. for Bottom Flange (Cl.10.5.2 of IRC:112-2020)

Transverse (Link) Reinf. 2 legged @ 150 mm c/c Bar Dia. mm 10 10 10 10 10 10 10 10 10


Longitudinal Reinf. 1 x 6 Nos Bar Dia. mm 32 32 32 32 32 32 32 32 32
Reqd. Vertical Torsion Reinf. (Asv / Sv)required mm^2/m 870.56 386.88 237.73 177.91 163.60 166.20 205.37 402.85 851.72
Asv / Sv > TEd/[2.0 x Ak x fyd x cot] Provided mm^2/m 1047.20 1047.20 1047.20 1047.20 1047.20 1047.20 1047.20 1047.20 1047.20

Reqd. Long. Torsion Reinf. Asl_reqd mm^2 1366.18 1876.79 2025.53 1515.87 988.88 987.73 1749.76 1676.65 1424.60
Asv > Ted x cot x uk /[2.0 x Ak x fyd ] Asl_provided mm^2 4825.49 4825.49 4825.49 4825.49 4825.49 4825.49 4825.49 4825.49 4825.49

(74)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

DESIGN OF SHEAR CONNECTORS for Interface Shear between Deck & Top Flange of Precast Girder
Shear Connectors between cast-in-situ deck slab and precast girder are designed to restrain the separation at the interface of two different Refer Cl. 10.3.4 of IRC:112-2020
concrete. The size and spacing of Shear Connectors are evaluated for long. shear per unit length at the interface of precast girder and slab.

Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Description Units
Effective Design Shear Force VEd (in kN) 1440.55 1333.20 1138.23 996.85 776.21 524.12 274.83 518.06 773.05 1038.49 1178.53 1371.93 1479.29
Total Width of the Flange at Interface bf (in mm) 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00 3200.00
Thickness of the Top Flange at Interface hf (in mm) 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00
Design value of the shear stress at the interface
Width of the Girder Flange at Interface bi (in mm) 650.00 650.00 650.00 650.00 650.00 650.00 650.00 650.00 650.00 650.00 650.00 650.00 650.00
Lever arm of the composite Section z = (Dp-x/2) (in mm) 1683.30 1683.30 1683.30 1683.30 1632.96 1632.96 1632.96 1632.96 1632.96 1683.30 1683.30 1683.30 1683.30
Proportion of longitudinal tensile force carried in top slab  F1 / (F1+F2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Where, Compression Force in Top Slab F1 kN 4196 4196 4196 4196 6294 6294 6294 6294 6294 4196 4196 4196 4196
Where, Comp. Force in Precast Gir. above N.A. F2 kN 0 0 0 0 0 0 0 0 0 0 0 0 0
Design value of interface shear stress vEdi (N/mm^2) 1.32 1.22 1.04 0.91 0.73 0.49 0.26 0.49 0.73 0.95 1.08 1.25 1.35
vEdi =  VEd / ( z bi) …. Cl. 10.3.4
Design Shear Resistance at the Interface vRdi = n  fyd [ sin + cos ]
Area of the interface Ai (mm^2/m) 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0 650000.0
Angle of reinforcement to interface ) deg, 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0
minimum coexisting normal stress < 0.6 fcd n) N/mm^2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Factors dependent on interface roughness  0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Assuming smooth surface as per Cl. 10.3.4
Max. Value of Interface stress = 0.5 .fcd vRdi, max N/mm^2 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
> vEdi > vEdi > vEdi > vEdi > vEdi > vEdi > vEdi > vEdi > vEdi > vEdi > vEdi > vEdi > vEdi
Check for Interface Shear Stress O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K.. O.K..
Dia of Shear Connectos crossing the Joint  mm 12 12 12 12 12 12 12 12 12 12 12 12 12
Numbers of Legs of Shear Connectors Nos. 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged 4 legged
Spacing of Shear Connectos Provided s_provided mm @120 mm c/c @130 mm c/c @160 mm c/c @180 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @170 mm c/c @150 mm c/c @130 mm c/c @120 mm c/c
Area of Shear Connector crossing the joint As mm2 452 452 452 452 452 452 452 452 452 452 452 452 452
Equating VEdi to VRdi for minimum Reinf. Ratio ( vRdi N/mm^2 1.32 1.22 1.04 0.91 0.73 0.49 0.26 0.49 0.73 0.95 1.08 1.25 1.35
vRdi = n  fyd [ sin + cos ] ,reqd) 0.005 0.005 0.004 0.004 0.003 0.002 0.001 0.002 0.003 0.004 0.004 0.005 0.006
,min = 0.15% of interface area min,reqd) 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
Max. Spacing of Links using ( = As/Ai) s_reqd mm 126.87 137.09 160.57 183.34 228.41 338.27 463.99 342.23 229.35 175.99 155.08 133.22 123.55

(75)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

Shear in the Flange Portion [Refer Cl. 10.3.5 of IRC:112-2020]


Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec

Description Units
Ultimate Design Flexural Moment MEd kN-m 72.87 2010.12 3712.98 4761.86 6251.67 7187.82 7569.12 7230.42 6305.26 4856.44 3803.40 2067.16 194.59
Average Length between Sections x) (in m) 0.750 0.750 0.550 1.025 1.025 1.025 1.025 1.025 1.025 0.550 0.750 0.750
Thickness of the Top Flange at Interface hf (in mm) 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00
Lever Arm 0.9 x dt z mm 1548.00 1548.00 1548.00 1548.00 1519.20 1519.20 1519.20 1519.20 1548.00 1548.00 1548.00 1548.00
Design value of conc. compression Strength fcd MPa 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87
Design value of conc. tensile Strength fctd = fctk,0.05/ m MPa 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
Change of Normal Force in the Flange over 'x' Fd kN 625.73 550.02 338.79 481.21 308.11 125.49 111.48 304.49 467.97 340.13 560.80 604.83
Fd = MEd / z) / 2
Long. Shear Stress at Junction of Flange & Web vEd N/mm^2 3.79 3.33 2.80 2.13 1.37 0.56 0.49 1.35 2.08 2.81 3.40 3.67
vEd = Fd / (hf x x)
Condition vEd < 0.4 fctd for no trans. Reinf. in Flange Cl. 10.3.5 (4) Required Required Required Required Required Not Reqd. Not Reqd. Required Required Required Required Required
Strength Reduction Factor (ref eq 10.6 of IRC:112)  0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
To prevent the crushing of Compression struts in the Flange vEd <  fcd sinf cosf
Consider Conc. Strut Angle be  sinθf . cosθf 0.41 0.36 0.30 0.23 0.15 0.06 0.05 0.14 0.22 0.30 0.36 0.39
cotØmin/max 1 ←max / min → 2

 is the smallest angle before Hence, cotθ 1.15 1.34 1.62 2.00 2.00 2.00 2.00 2.00 2.00 1.62 1.31 1.20
concrete crushing starts. Hence, θ deg. 41.05 36.80 31.65 26.57 26.57 26.57 26.57 26.57 26.57 31.76 37.41 39.89
Dia of Transverse bars crossing the Joint  mm 10 10 10 10 10 10 10 10 10 10 10 10
Numbers of Legs of Trans. Bars in Flange Nos. 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged 2 legged
Spacing of Shear Transverse Bars s_provided mm @80 mm c/c @110 mm c/c @160 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @200 mm c/c @160 mm c/c @100 mm c/c @90 mm c/c

Area of Trans. Bars crossing the Section As mm 2


157 157 157 157 157 157 157 157 157 157 157 157
Required spacing of Shear Reinf. sf,reqd mm 86.50 114.53 165.49 267.67 418.06 1026.38 1155.46 423.02 275.24 164.13 109.85 93.22
sf = Asf x fywd x cotfVed x hf) …. Eq. 10.23

(76)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

STRESS LIMIT CHECK FOR SLS-1 ( At 28 days ) (FOR PRECAST GIRDER ONLY 1.00 x G1 (FOR CHARACTERISTIC LOAD COMBINATION)
Design Flexural Moment MEd kN-m 0.000 254.232 455.613 577.103 750.292 854.206 888.843 854.206 750.292 577.103 455.613 254.232 0.000
Secant Mod.of elasticity of Conc Ect,eff = Ecm = MPa 33000 33000 33000 33000 33000 33000 33000 33000 33000 33000 33000 33000 33000
Elastic Modulus.for Steel Bars Es N/mm^2 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000
Modular ratio between Steel & Conc. m = Es / Ecm 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06
Total Area of main longitudinal Reinf. As mm2 9651 9651 9651 9651 14476 14476 14476 14476 14476 9651 9651 9651 9651
Effective depth of the section d,eff mm 1500 1500 1500 1500 1468 1468 1468 1468 1468 1500 1500 1500 1500
Width of Web bw mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Width of Deck Slab Bf mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
Let Depth of NA = dc mm 437 437 479 479 567 567 567 567 567 479 479 437 437
seg-1
Moment of compression area @ N.A.= ( A x y) 62156757 62156757 59696581 59696581 79090422 79090422 79090422 79090422 79090422 59696581 59696581 62156757 62156757
seg-2
For Seg.-1 Width, B mm 650 650 650 650 650 650 650 650 650 650 650 650 650
dc (Rect. Type) Depth, H mm 150 150 150 150 150 150 150 150 150 150 150 150 150
seg-3
Area, A mm2 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500
cg from NA mm 362.32 362.32 404.38 404.38 491.54 491.54 491.54 491.54 491.54 404.38 404.38 362.32 362.32
N A MOI, Icg mm4 1.298E+10 1.298E+10 1.613E+10 1.613E+10 2.374E+10 2.374E+10 2.374E+10 2.374E+10 2.374E+10 1.613E+10 1.613E+10 1.298E+10 1.298E+10
For Seg.-2 Top Width, B1 mm 650 650 650 650 650 650 650 650 650 650 650 650 650
(Trap. Type) Bott. Width, B2 mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Depth, H mm 0.00 0.00 75.00 75.00 75.00 75.00 75.00 75 75 75 75 0 0
Area, A mm2 0.0 0.0 35625.0 35625.0 35625.0 35625.0 35625.0 35625 35625 35625 35625 0 0
cg from NA mm 0.00 0.00 296.49 296.49 383.65 383.65 383.65 383.65 383.65 296.49 296.49 0.00 0.00
MOI, Icg mm4 0.00E+00 0.00E+00 3.15E+09 3.15E+09 5.26E+09 5.26E+09 5.26E+09 5.26E+09 5.26E+09 3.15E+09 3.15E+09 0.00E+00 0.00E+00
For Seg.-3 Width, B mm 650 650 300 300 300 300 300 300 300 300 300 650 650
(Rect. Type) Depth, H mm 287.32 287.32 254.38 254.38 341.54 341.54 341.54 341.5 341.5 254.4 254.4 287.3 287.3
Area, A mm2 186760.1 186760.1 76315.2 76315.2 102462.6 102462.6 102462.6 102462.6 102462.6 76315.2 76315.2 186760.1 186760.1
cg from NA mm 143.66 143.66 127.19 127.19 170.77 170.77 170.77 170.8 170.8 127.2 127.2 143.7 143.7
IcgMOI, mm4 5.14E+09 5.14E+09 1.65E+09 1.65E+09 3.98E+09 3.98E+09 3.98E+09 3.98E+09 3.98E+09 1.65E+09 1.65E+09 5.14E+09 5.14E+09
Moment of Tensile area about N.A. = m As (d,eff - dc) 62156757 62156757 59696581 59696581 79090422 79090422 79090422 79090422 79090422 59696581 59696581 62156757 62156757
Check of Depth of Neutal axis [Moment of (Comp. Area - Tensile Area) ≈ 0.0] 0 0 0 0 0 0 0 0 0 0 0 0 0
MOI of Reinf. about N.A. = m As (d,eff - dc)2 mm4 6.61E+10 6.61E+10 6.09E+10 6.09E+10 7.13E+10 7.13E+10 7.13E+10 7.13E+10 7.13E+10 6.09E+10 6.09E+10 6.61E+10 6.61E+10
Moment of Inertia of Cracked Section Icg mm4 (in conc. Units) 8.417E+10 8.417E+10 8.185E+10 8.185E+10 1.043E+11 1.043E+11 1.043E+11 1.043E+11 1.043E+11 8.185E+10 8.185E+10 8.417E+10 8.417E+10
Section Modulus for compression Zc = Icg / dc mm3 1.92E+08 1.92E+08 1.71E+08 1.71E+08 1.84E+08 1.84E+08 1.84E+08 1.84E+08 1.84E+08 1.71E+08 1.71E+08 1.92E+08 1.92E+08
Section Modulus at cg. of Reinf. Zt = Icg / (d-dc) mm3 7.92E+07 7.92E+07 8.02E+07 8.02E+07 1.16E+08 1.16E+08 1.16E+08 1.16E+08 1.16E+08 8.02E+07 8.02E+07 7.92E+07 7.92E+07
Concrete Stress at Bottom c = MEd / Zc N/mm^2 0.0 1.3 2.7 3.4 4.1 4.6 4.8 4.6 4.1 3.4 2.7 1.3 0.0
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
Check for Conc. Stresses c < c,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.
Stress at cg. of Reinf. s = ( MEd / Zt ) x (m) N/mm^2 0.0 19.5 34.4 43.6 39.3 44.8 46.6 44.8 39.3 43.6 34.4 19.5 0.0
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 19.9 35.2 44.5 41.0 46.7 48.6 46.7 41.0 44.5 35.2 19.9 0.0
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(77)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

STRESS LIMIT CHECK FOR SLS-2 ( At 35 days ) (FOR PRECAST GIRDER ONLY 1.00 x G1 JUST AFTER CASTING OF DECK & WITH SHUTTERING ON GIRDER Creep Coeff. φ(,t0) = 0.379
Design Flexural Moment MEd kN-m 0.000 628.210 1148.983 1468.724 1930.166 2216.622 2328.092 2216.622 1930.166 1468.724 1148.983 628.210 0.000
Secant Mod.of Elas. of Conc Ect,eff = Ecm /(1+) MPa 23930 23930 23930 23930 23930 23930 23930 23930 23930 23930 23930 23930 23930
Elastic Modulus.for Steel Bars Es N/mm^2 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000
Modular ratio between Steel & Conc. m = Es / Ecm 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36
Total Area of main longitudinal Reinf. As mm2 9651 9651 9651 9651 14476 14476 14476 14476 14476 9651 9651 9651 9651
Effective depth of the section d,eff mm 1500 1500 1500 1500 1468 1468 1468 1468 1468 1500 1500 1500 1500
Width of Web bw mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Width of Deck Slab Bf mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
Let Depth of NA = dc mm 499 499 554 554 648 648 648 648 648 554 554 499 499
seg-1
Moment of Compression Area @ N.A. = ( A x y) 80776279 80776279 76265893 76265893 99231033 99231033 99231033 99231033 99231033 76265893 76265893 80776279 80776279
seg-2
For Seg.-1 Width, B mm 650 650 650 650 650 650 650 650 650 650 650 650 650
dc (Rect. Type) Depth, H mm 150 150 150 150 150 150 150 150 150 150 150 150 150
seg-3
Area, A mm2 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500
cg from NA mm 424 424 479 479 573 573 573 573 573 479 479 424 424
N A MOI, Icg mm4 1.7673E+10 1.767E+10 2.26E+10 2.2596E+10 3.218E+10 3.218E+10 3.218E+10 3.218E+10 3.218E+10 2.26E+10 2.26E+10 1.767E+10 1.767E+10
For Seg.-2 Top Width, B1 mm 650 650 650 650 650 650 650 650 650 650 650 650 650
(Trap. Type) Bott. Width, B2 mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Depth, H mm 0 0 75 75 75 75 75 75 75 75 75 0 0
Area, A mm2 0.0 0.0 35625.0 35625.0 35625.0 35625.0 35625.0 35625 35625 35625 35625 0 0
cg from NA mm 0.00 0.00 371.57 371.57 464.93 464.93 464.93 464.93 464.93 371.57 371.57 0.00 0.00
MOI, Icg mm4 0 0 4.934E+09 4934351678 7.717E+09 7.717E+09 7.717E+09 7.717E+09 7.717E+09 4.934E+09 4.934E+09 0 0
For Seg.-3 Width, B mm 650 650 300 300 300 300 300 300 300 300 300 650 650
(Rect. Type) Depth, H mm 349 349 329 329 423 423 423 423 423 329 329 349 349
Area, A mm2 226551 226551 98838 98838 126848 126848 126848 126848 126848 98838 98838 226551 226551
cg from NA mm 174 174 165 165 211 211 211 211 211 165 165 174 174
IcgMOI, mm4 9.17E+09 9.17E+09 3.58E+09 3.58E+09 7.56E+09 7.56E+09 7.56E+09 7.56E+09 7.56E+09 3.58E+09 3.58E+09 9.17E+09 9.17E+09
Moment of Tensile area about N.A. = m As (d,eff - dc) 8.08E+07 8.08E+07 7.63E+07 7.63E+07 9.92E+07 9.92E+07 9.92E+07 9.92E+07 9.92E+07 7.63E+07 7.63E+07 8.08E+07 8.08E+07
Check of Depth of Neutal axis {Moment of (Comp. Area - Tensile Area) ≈ 0.0} 0 0 0 0 0 0 0 0 0 0 0 0 0
MOI of Reinf. about N.A. = m As (d,eff - dc)2 mm4 8.09E+10 8.09E+10 7.21E+10 7.21E+10 8.14E+10 8.14E+10 8.14E+10 8.14E+10 8.14E+10 7.21E+10 7.21E+10 8.09E+10 8.09E+10
Moment of Inertia of Cracked Section Icg mm4 (in conc. Units) 1.08E+11 1.08E+11 1.03E+11 1.03E+11 1.29E+11 1.29E+11 1.29E+11 1.29E+11 1.29E+11 1.03E+11 1.03E+11 1.08E+11 1.08E+11
Section Modulus for compression Zc = Icg / dc mm3 2.16E+08 2.16E+08 1.86E+08 1.86E+08 1.99E+08 1.99E+08 1.99E+08 1.99E+08 1.99E+08 1.86E+08 1.86E+08 2.16E+08 2.16E+08
Section Modulus at cg. of Reinf. Zt = Icg / (d-dc) mm3 1.08E+08 1.08E+08 1.09E+08 1.09E+08 1.57E+08 1.57E+08 1.57E+08 1.57E+08 1.57E+08 1.09E+08 1.09E+08 1.08E+08 1.08E+08
Concrete Stress at Gir. Top c = MEd / Zc N/mm^2 0.0 2.9 6.2 7.9 9.7 11.1 11.7 11.1 9.7 7.9 6.2 2.9 0.0
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
Check for Conc. Stresses c < c,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.
Stress at cg. of Reinf. s = ( MEd / Zt ) x (m) N/mm^2 0.0 48.8 88.0 112.4 102.7 117.9 123.9 117.9 102.7 112.4 88.0 48.8 0.0
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(78)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

STRESS LIMIT CHECK FOR SLS-3 ( At 49 days ) 1.00 x G1 + 1.00 x G12 JUST AFTER COMPOSITE ACTION & REMOVAL OF SHUTTERING Creep Coeff. φ(,t0) = 0.525

(FOR COMPOSITE SECTION) Removing of Shutter only G12 : Effect of Differential Shrinkage to be added in the stresses of concrete and steel
Addn. Design Flexural Moment MEd kN-m 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Secant Mod.of elasticity of Conc Ect,eff = Ecm / (1 +) MPa 21644 21644 21644 21644 21644 21644 21644 21644 21644 21644 21644 21644 21644
Elastic Modulus.for Steel Bars Es N/mm^2 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000
Modular ratio between Steel & Conc. m = Es / Ect,eff 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.24
Total Area of main longitudinal Reinf. As mm2 9651 9651 9651 9651 14476 14476 14476 14476 14476 9651 9651 9651 9651
Effective depth of the section d,eff mm 1720 1720 1720 1720 1688 1688 1688 1688 1688 1720 1720 1720 1720
Width of Web bw mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Width of Deck Slab Bf mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
Thickness of Top Flange (Top Slab) Tf mm 220 220 220 220 220 220 220 220 220 220 220 220 220
Let Depth of NA = dc mm 289 289 289 289 355 355 355 355 355 289 289 289 289
seg-1 Mom. of compression area @ N.A. = ( A x y) 1.28E+08 1.28E+08 1.28E+08 1.28E+08 1.78E+08 1.78E+08 1.78E+08 1.78E+08 1.78E+08 1.28E+08 1.28E+08 1.28E+08 1.28E+08
For Seg.-1 Width, B mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
seg-2
(Rect. Type) Depth, H mm 220 220 220 220 220 220 220 220 220 220 220 220 220
dc seg-3 Area, A mm2 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000
cg from NA mm 179.06 179.06 179.06 179.06 244.9 244.9 244.9 244.9 244.9 179.1 179.1 179.1 179.1
MOI, Icg mm4 2.54E+10 2.54E+10 2.54E+10 2.54E+10 4.51E+10 4.51E+10 4.51E+10 4.51E+10 4.51E+10 2.54E+10 2.54E+10 2.54E+10 2.54E+10
seg-4
For Seg.-2 Width, B mm 650 650 650 650 650 650 650 650 650 650 650 650 650
N A (Rect. Type) Depth, H mm 69 69 69 69 135 135 135 135 135 69 69 69 69
Area, A mm2 44890 44890 44890 44890 87687 87687 87687 87687 87687 44890 44890 44890 44890
cg from NA mm 34.53 34.53 34.53 34.53 67.45 67.45 67.45 67.45 67.45 34.53 34.53 34.53 34.53
MOI, Icg mm4 7.14E+07 7.14E+07 7.14E+07 7.14E+07 5.32E+08 5.32E+08 5.32E+08 5.32E+08 5.32E+08 7.14E+07 7.14E+07 7.14E+07 7.14E+07
For Seg.-3 Top Width, B1 mm 0 0 0 0 0 0 0 0 0 0 0 0 0
(Trap. Type) Bott. Width, B2 mm 0 0 0 0 0 0 0 0 0 0 0 0 0
Depth, H mm 0 0 0 0 0 0 0 0 0 0 0 0 0
Area, A mm2 0 0 0 0 0 0 0 0 0 0 0 0 0
cg from NA mm 0 0 0 0 0 0 0 0 0 0 0 0 0
MOI, Icg mm4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
For Seg.-4 Width, B mm 0 0 0 0 0 0 0 0 0 0 0 0 0
(Rect. Type) Depth, H mm 0 0 0 0 0 0 0 0 0 0 0 0 0
Area, A mm2 0 0 0 0 0 0 0 0 0 0 0 0 0
cg from NA mm 0 0 0 0 0 0 0 0 0 0 0 0 0
MOI, Icg mm4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Moment of Tensile area about N.A. = m As (d,eff - dc) 1.28E+08 1.28E+08 1.28E+08 1.28E+08 1.78E+08 1.78E+08 1.78E+08 1.78E+08 1.78E+08 1.28E+08 1.28E+08 1.28E+08 1.28E+08

(79)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

Check of Depth of Neutal axis {Moment of (Comp. Area - Tensile Area) ≈ 0.0} 0 0 0 0 0 0 0 0 0 0 0 0 0
MOI of Reinf. about N.A. = m As (d,eff - dc)
2
mm4 1.83E+11 1.83E+11 1.83E+11 1.83E+11 2.38E+11 2.38E+11 2.38E+11 2.38E+11 2.38E+11 1.83E+11 1.83E+11 1.83E+11 1.83E+11
Moment of Inertia of Cracked Section Icg mm4 (in conc. Units) 2.08E+11 2.08E+11 2.08E+11 2.08E+11 2.83E+11 2.83E+11 2.83E+11 2.83E+11 2.83E+11 2.08E+11 2.08E+11 2.08E+11 2.08E+11
Section Modulus for Slab Top Zc,slab = Icg / dc mm3 7.20E+08 7.20E+08 7.20E+08 7.20E+08 7.98E+08 7.98E+08 7.98E+08 7.98E+08 7.98E+08 7.20E+08 7.20E+08 7.20E+08 7.20E+08
Section Modulus for Girder Top Zc,gir = Icg/(dc-Tf) mm3 3.01E+09 3.01E+09 3.01E+09 3.01E+09 2.10E+09 2.10E+09 2.10E+09 2.10E+09 2.10E+09 3.01E+09 3.01E+09 3.01E+09 3.01E+09
Section Modulus at cg. of Reinf. Zt = Icg / (d-dc) mm3 1.45E+08 1.45E+08 1.45E+08 1.45E+08 2.13E+08 2.13E+08 2.13E+08 2.13E+08 2.13E+08 1.45E+08 1.45E+08 1.45E+08 1.45E+08
Conc. Stress at Top of Slab c1 = MEd/Zc,slab N/mm^2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Conc. Stress at Top of Slab due to Diff. Shrinkage c2 N/mm^2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
Total Stress at top of Slab c1 + c2 N/mm^2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
Conc. Stress at Top of Gir. c1 = MEd/Zc,gir N/mm^2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Conc. Stress at Top of Gir. due to Diff. Shrinkage c2 N/mm^2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Conc. Stress at Top of Gir. From SLS-2 c3 N/mm^2 0.0 2.9 6.2 7.9 9.7 11.1 11.7 11.1 9.7 7.9 6.2 2.9 0.0
Total Stress at top of Girder c1 + c2 + c3 N/mm^2 0.7 3.6 6.9 8.6 10.4 11.8 12.4 11.8 10.4 8.6 6.9 3.6 0.7
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max 
= (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd / Zt ) x (m) N/mm^2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stress at extreme layer of Reinf. due to Diff. Shrink. s N/mm^2 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Steel Stress at extreme layer from SLS-2 s3 N/mm^2 0.00 49.84 89.84 114.84 107.17 123.07 129.26 123.07 107.17 114.84 89.84 49.84 0.00
Total Stress at extreme layer s1 + s2 +s3 N/mm^2 0.28 50.13 90.13 115.13 107.45 123.36 129.55 123.36 107.45 115.13 90.13 50.13 0.28
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(80)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

STRESS LIMIT CHECK FOR SLS-4 ( At 63 days ) Load Case Load Types for Load Combination → DL SIDL(Fix) SIDL(Vary) Diff. SH. CWLL/SPV Impact (LL) FPLL [TG] [Wind]
AT THE OPENING FOR TRAFFIC LC1/SLS4 Load Comb. (CWLL Leading+TG accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q1 + 1.00 x Q2 + 0.75 x Q5 + 0.60 x Q8
Creep Coeff. φ(,t0) = 0.609 LC2/SLS4 Load Comb. (TG Leading+CWLL accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 0.75 x Q1 + 0.75 x Q2 + 0.75 x Q5 + 1.00 x Q8
LC3/SLS4 Load Comb. (CWLL Leading+Wind accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q1 + 1.00 x Q2 + 0.75 x Q5 + 0.60 x Q9
LC4/SLS4 Load Comb. (Wind Leading+CWLL accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 0.75 x Q1 + 0.75 x Q2 + 0.75 x Q5 + 1.00 x Q9
LC5/SLS4 Load Comb. (SPV-385T) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q3
(FOR COMPOSITE SECTION) (G12 : Effect of Diff. Shrinkage) & (Q8 : Effect of TG) to be added in the stresses of concrete and steel
Addn. Design Flexural Moment MEd1 kN-m LC1/SLS4 0.0 762.5 1417.5 1821.8 2389.9 2750.1 2901.5 2777.4 2423.6 1881.9 1474.0 795.8 127.6
Addn. Design Flexural Moment MEd2 kN-m LC2/SLS4 0.0 626.1 1160.6 1489.9 1956.1 2249.1 2369.7 2267.4 1976.4 1527.3 1191.8 636.0 95.7
Addn. Design Flexural Moment MEd3 kN-m LC3/SLS4 0.5 795.6 1478.7 1900.1 2493.3 2868.4 3024.9 2895.8 2527.0 1960.0 1534.4 827.6 129.7
Addn. Design Flexural Moment MEd4 kN-m LC4/SLS4 0.9 681.3 1262.5 1620.6 2128.4 2446.3 2575.3 2464.7 2148.7 1657.5 1292.4 688.9 99.3
Addn. Design Flexural Moment MEd5 kN-m LC5/SLS4 63.4 304.6 498.1 613.8 781.8 877.1 908.4 875.8 777.7 609.6 491.0 301.4 135.9
Secant Mod.of elasticity of Conc Ect,eff = Ecm/(1 +) MPa 20510 20510 20510 20510 20510 20510 20510 20510 20510 20510 20510 20510 20510
Elastic Modulus.for Steel Bars Es N/mm^2 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000
Modular ratio between Steel & Conc. m = Es / Ect,eff 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75
2
Total Area of main longitudinal Reinf. As mm 9651 9651 9651 9651 14476 14476 14476 14476 14476 9651 9651 9651 9651
Effective depth of the section d,eff mm 1720 1720 1720 1720 1688 1688 1688 1688 1688 1720 1720 1720 1720
Width of Web bw mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Width of Deck Slab Bf mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
Thickness of Top Flange (Top Slab) Tf mm 220 220 220 220 220 220 220 220 220 220 220 220 220
Let Depth of NA = dc mm 297 297 297 297 365 365 365 365 365 297 297 297 297
seg-1 Mom. of Compression Area @ N.A. = ( A x y) 1.34E+08 1.34E+08 1.34E+08 1.34E+08 1.87E+08 1.87E+08 1.87E+08 1.87E+08 1.87E+08 1.34E+08 1.34E+08 1.34E+08 1.34E+08
For Seg.-1 Width, B mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
seg-2
(Rect. Type) Depth, H mm 220 220 220 220 220 220 220 220 220 220 220 220 220
dc seg-3 Area, A mm2 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000
cg from NA mm 187.402459 187.40246 187.40246 187.4 255.4 255.4 255.4 255.4 255.4 187.4 187.4 187.4 187.4
MOI, Icg mm4 2.7564E+10 2.756E+10 2.756E+10 2.7564E+10 4.877E+10 4.877E+10 4.877E+10 4.877E+10 4.877E+10 2.756E+10 2.756E+10 2.756E+10 2.756E+10
seg-4
For Seg.-2 Width, B mm 650 650 650 650 650 650 650 650 650 650 650 650 650
N A (Rect. Type) Depth, H mm 77 77 77 77 145 145 145 145 145 77 77 77 77
Area, A mm2 50312 50312 50312 50312 94530 94530 94530 94530 94530 50312 50312 50312 50312
cg from NA mm 39 39 39 39 73 73 73 73 73 39 39 39 39
MOI, Icg mm4 1.00E+08 1.00E+08 1.00E+08 1.00E+08 6.66E+08 6.66E+08 6.66E+08 6.66E+08 6.66E+08 1.00E+08 1.00E+08 1.00E+08 1.00E+08
For Seg.-3 Top Width, B1 mm 0 0 0 0 0 0 0 0 0 0 0 0 0
(Trap. Type) Bott. Width, B2 mm 0 0 0 0 0 0 0 0 0 0 0 0 0
Depth, H mm 0 0 0 0 0 0 0 0 0 0 0 0 0
Area, A mm2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cg from NA mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MOI, Icg mm4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
For Seg.-4 Width, B mm 0 0 0 0 0 0 0 0 0 0 0 0 0

(81)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

(Rect. Type) Depth, H mm 0 0 0 0 0 0 0 0 0 0 0 0 0


Area, A mm2 0 0 0 0 0 0 0 0 0 0 0 0 0
cg from NA mm 0 0 0 0 0 0 0 0 0 0 0 0 0
Icg
MOI, mm4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Moment of Tensile area about N.A. = m As (d,eff - dc) 1.34E+08 1.34E+08 1.34E+08 1.34E+08 1.87E+08 1.87E+08 1.87E+08 1.87E+08 1.87E+08 1.34E+08 1.34E+08 1.34E+08 1.34E+08
Check of Depth of Neutal axis {Moment of (Comp. Area - Tensile Area) ≈ 0.0} 0 0 0 0 0 0 0 0 0 0 0 0 0
MOI of Reinf. about N.A. = m As (d,eff - dc)2 mm4 1.90E+11 1.90E+11 1.90E+11 1.90E+11 2.47E+11 2.47E+11 2.47E+11 2.47E+11 2.47E+11 1.90E+11 1.90E+11 1.90E+11 1.90E+11
Moment of Inertia of Cracked Section Icg mm4 (in conc. Units) 2.18E+11 2.18E+11 2.18E+11 2.18E+11 2.96E+11 2.96E+11 2.96E+11 2.96E+11 2.96E+11 2.18E+11 2.18E+11 2.18E+11 2.18E+11
Section Modulus for Slab Top Zc,slab = Icg / dc mm3 7.33E+08 7.33E+08 7.33E+08 7.33E+08 8.11E+08 8.11E+08 8.11E+08 8.11E+08 8.11E+08 7.33E+08 7.33E+08 7.33E+08 7.33E+08
Section Modulus for Girder Top Zc,gir = Icg/(dc-Tf) mm3 2.82E+09 2.82E+09 2.82E+09 2.82E+09 2.04E+09 2.04E+09 2.04E+09 2.04E+09 2.04E+09 2.82E+09 2.82E+09 2.82E+09 2.82E+09
Section Modulus at cg. of Reinf. Zt = Icg / (d-dc) mm3 1.53E+08 1.53E+08 1.53E+08 1.53E+08 2.24E+08 2.24E+08 2.24E+08 2.24E+08 2.24E+08 1.53E+08 1.53E+08 1.53E+08 1.53E+08
LC1/SLS4 STRESS CHECK FOR (CWLL LEADING + TEMPERATURE RISE CASE + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 1.0 1.9 2.5 2.9 3.4 3.6 3.4 3.0 2.6 2.0 1.1 0.2
Conc. Stress at Top of Slab due to Temp. Rise c2 N/mm^2 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 2.18 3.22 4.11 4.66 5.13 5.57 5.76 5.61 5.17 4.75 4.19 3.27 2.35
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.3 0.5 0.6 1.2 1.3 1.4 1.4 1.2 0.7 0.5 0.3 0.0
Conc. Stress at Top of Gir. due to Temp. Rise c2 N/mm^2 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 -0.19 2.99 6.49 8.35 10.69 12.31 12.94 12.32 10.71 8.37 6.51 3.00 -0.14
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.0 48.5 90.2 115.9 104.0 119.7 126.3 120.9 105.5 119.7 93.7 50.6 8.1
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 49.4 91.8 118.0 107.9 124.2 131.1 125.4 109.5 121.9 95.5 51.6 8.3
Stress at extreme layer of Reinf. Due to temp. Rise s2 N/mm^2 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.00 49.84 89.84 114.84 107.17 123.07 129.26 123.07 107.17 114.84 89.84 49.84 0.00
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 -8.24 91.00 173.43 224.62 206.88 239.05 252.08 240.28 208.40 228.52 177.09 93.16 0.03
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(82)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

LC1/SLS4 STRESS CHECK FOR (CWLL LEADING + TEMPERATURE FALL CASE + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 1.0 1.9 2.5 2.9 3.4 3.6 3.4 3.0 2.6 2.0 1.1 0.2
Conc. Stress at Top of Slab due to Temp. Fall c2 N/mm^2 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 -1.31 -0.27 0.63 1.18 1.64 2.08 2.27 2.12 1.68 1.26 0.70 -0.22 -1.13
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.3 0.5 0.6 1.2 1.3 1.4 1.4 1.2 0.7 0.5 0.3 0.0
Conc. Stress at Top of Gir. due to Temp. Fall c2 N/mm^2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 1.35 4.53 8.03 9.89 12.23 13.85 14.48 13.86 12.25 9.91 8.05 4.54 1.40
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.0 48.5 90.2 115.9 104.0 119.7 126.3 120.9 105.5 119.7 93.7 50.6 8.1
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 49.4 91.8 118.0 107.9 124.2 131.1 125.4 109.5 121.9 95.5 51.6 8.3
Stress at extreme layer of Reinf. Due to temp. Fall s2 N/mm^2 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.00 49.84 89.84 114.84 107.17 123.07 129.26 123.07 107.17 114.84 89.84 49.84 0.00
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 17.33 116.56 199.00 250.19 232.44 264.61 277.64 265.85 233.96 254.08 202.66 118.73 25.59
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

LC2/SLS4 STRESS CHECK FOR (CWLL ACOMPANYING + TEMPERATURE RISE LEADING + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd2/Zc,slab N/mm^2 0.0 0.9 1.6 2.0 2.4 2.8 2.9 2.8 2.4 2.1 1.6 0.9 0.1
Conc. Stress at Top of Slab due to Temp. Rise c2 N/mm^2 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 3.70 4.56 5.28 5.73 6.11 6.48 6.62 6.50 6.14 5.78 5.33 4.57 3.83
Conc. Stress at Top of Gir. c1 = MEd2/Zc,gir N/mm^2 0.0 0.2 0.4 0.5 1.0 1.1 1.2 1.1 1.0 0.5 0.4 0.2 0.0
Conc. Stress at Top of Gir. due to Temp. Rise c2 N/mm^2 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 -0.77 2.36 5.81 7.65 9.89 11.48 12.10 11.49 9.90 7.66 5.82 2.36 -0.74
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd2 / Zt ) x (m) N/mm^2 0.0 39.8 73.8 94.8 85.1 97.9 103.1 98.7 86.0 97.1 75.8 40.5 6.1
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 40.6 75.2 96.5 88.3 101.6 107.0 102.4 89.3 98.9 77.2 41.2 6.2
Stress at extreme layer of Reinf. Due to temp. Rise s2 N/mm^2 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3 -18.3
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 -15.57 74.84 149.46 195.80 179.95 209.09 220.73 209.92 180.87 198.22 151.48 75.48 -9.37
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(83)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

LC2/SLS4 STRESS CHECK FOR (CWLL ACOMPANYING + TEMPERATURE FALL LEADING + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd2/Zc,slab N/mm^2 0.0 0.9 1.6 2.0 2.4 2.8 2.9 2.8 2.4 2.1 1.6 0.9 0.1
Conc. Stress at Top of Slab due to Temp. Rise c2 N/mm^2 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 -2.11 -1.26 -0.53 -0.08 0.30 0.66 0.81 0.69 0.33 -0.03 -0.49 -1.24 -1.98
Conc. Stress at Top of Gir. c1 = MEd2/Zc,gir N/mm^2 0.0 0.2 0.4 0.5 1.0 1.1 1.2 1.1 1.0 0.5 0.4 0.2 0.0
Conc. Stress at Top of Gir. due to Temp. Rise c2 N/mm^2 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 1.80 4.92 8.38 10.21 12.46 14.05 14.66 14.05 12.47 10.23 8.39 4.93 1.83
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd2 / Zt ) x (m) N/mm^2 0.0 39.8 73.8 94.8 85.1 97.9 103.1 98.7 86.0 97.1 75.8 40.5 6.1
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 40.6 75.2 96.5 88.3 101.6 107.0 102.4 89.3 98.9 77.2 41.2 6.2
Stress at extreme layer of Reinf. Due to temp. Rise s2 N/mm^2 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 27.04 117.44 192.07 238.40 222.56 251.70 263.33 252.52 223.47 240.82 194.09 118.09 33.24
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

LC3/SLS4 STRESS CHECK FOR (CWLL LEADING + WIND DOWNWARD + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 1.1 2.0 2.6 3.1 3.5 3.7 3.6 3.1 2.7 2.1 1.1 0.2
Conc. Stress at Top of Slab due to Diff. Shrinkage c2 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 N/mm^2 -0.10 0.98 1.92 2.49 2.97 3.44 3.63 3.47 3.02 2.57 1.99 1.03 0.08
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.3 0.5 0.7 1.2 1.4 1.5 1.4 1.2 0.7 0.5 0.3 0.0
Conc. Stress at Top of Gir. due to Diff. Shrinkage c2 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c3 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 + c3 N/mm^2 0.69 3.88 7.38 9.25 11.62 13.24 13.88 13.25 11.63 9.27 7.40 3.89 0.73
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.0 50.6 94.0 120.8 108.5 124.8 131.6 126.0 110.0 124.7 97.6 52.6 8.3
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 51.5 95.8 123.1 112.6 129.6 136.6 130.8 114.1 127.0 99.4 53.6 8.4
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Steel Stress at extreme layer from SLS-2  N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 N/mm^2 2.79 104.14 188.39 240.70 222.54 255.39 268.65 256.63 224.06 244.57 192.00 106.21 11.16
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(84)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

LC4/SLS4 STRESS CHECK FOR (CWLL ACCOMPANYING + WIND DOWNWARD + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 0.9 1.7 2.2 2.6 3.0 3.2 3.0 2.6 2.3 1.8 0.9 0.1
Conc. Stress at Top of Slab due to Diff. Shrinkage c2 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 N/mm^2 -0.10 0.83 1.62 2.11 2.52 2.92 3.08 2.94 2.55 2.16 1.66 0.84 0.04
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.2 0.4 0.6 1.0 1.2 1.3 1.2 1.1 0.6 0.5 0.2 0.0
Conc. Stress at Top of Gir. due to Diff. Shrinkage c2 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c3 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 + c3 N/mm^2 0.69 3.84 7.31 9.15 11.44 13.03 13.66 13.04 11.45 9.16 7.32 3.84 0.72
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.1 43.3 80.3 103.1 92.6 106.5 112.1 107.3 93.5 105.4 82.2 43.8 6.3
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.1 44.1 81.8 105.0 96.1 110.5 116.3 111.3 97.0 107.4 83.7 44.6 6.4
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Steel Stress at extreme layer from SLS-2  N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 N/mm^2 2.81 96.74 174.39 222.58 206.06 236.32 248.34 237.15 206.98 224.98 176.32 97.23 9.19
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

LC5/SLS4 STRESS CHECK FOR (SPV-385T LOADING + DIFF. SHRINKAGE)


Conc. Stress at Top of Slab c1 = MEd2/Zc,slab N/mm^2 0.1 0.4 0.7 0.8 1.0 1.1 1.1 1.1 1.0 0.8 0.7 0.4 0.2
Conc. Stress at Top of Slab due to Diff. Shrinkage c2 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 N/mm^2 -0.01 0.32 0.58 0.74 0.86 0.98 1.02 0.98 0.86 0.73 0.57 0.31 0.09
Conc. Stress at Top of Gir. c1 = MEd2/Zc,gir N/mm^2 0.0 0.1 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.1 0.0
Conc. Stress at Top of Gir. due to Diff. Shrinkage c2 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c3 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 N/mm^2 0.71 3.70 7.04 8.79 10.78 12.26 12.84 12.26 10.77 8.79 7.03 3.70 0.74
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd2 / Zt ) x (m) N/mm^2 4.0 19.4 31.7 39.0 34.0 38.2 39.5 38.1 33.8 38.8 31.2 19.2 8.6
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 4.1 19.7 32.3 39.8 35.3 39.6 41.0 39.6 35.1 39.5 31.8 19.5 8.8
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Steel Stress at extreme layer from SLS-2 s3 N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 N/mm^2 6.86 72.33 124.87 157.36 145.24 165.45 173.05 165.39 145.05 157.09 124.41 72.13 11.57
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(85)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

STRESS LIMIT CHECK FOR SLS-5 (At infinity days ) Load Case Load Types for Load Combination → DL SIDL(Fix) SIDL(Vary) Diff. SH. CWLL/SPV Impact (LL) FPLL [TG] [Wind]
AT THE OPENING FOR TRAFFIC LC1/SLS5 Load Comb. (CWLL Leading+TG accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q1 + 1.00 x Q2 + 0.75 x Q5 + 0.60 x Q8
Creep Coeff. φ(,t0) = 1.661 LC2/SLS5 Load Comb. (TG Leading+CWLL accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 0.75 x Q1 + 0.75 x Q2 + 0.75 x Q5 + 1.00 x Q8
LC3/SLS5 Load Comb. (CWLL Leading+Wind accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q1 + 1.00 x Q2 + 0.75 x Q5 + 0.60 x Q9
LC4/SLS5 Load Comb. (Wind Leading+CWLL accompany) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 0.75 x Q1 + 0.75 x Q2 + 0.75 x Q5 + 1.00 x Q9
LC5/SLS5 Load Comb. (SPV-385T) 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 1.00 x Q3
(FOR COMPOSITE SECTION) (G12 : Effect of Diff. Shrinkage) & (Q8 : Effect of TG) to be added in the stresses of concrete and steel
Addn. Design Flexural Moment MEd1 kN-m LC1/SLS5 0.0 762.5 1417.5 1821.8 2389.9 2750.1 2901.5 2777.4 2423.6 1881.9 1474.0 795.8 127.6
Addn. Design Flexural Moment MEd2 kN-m LC2/SLS5 0.0 626.1 1160.6 1489.9 1956.1 2249.1 2369.7 2267.4 1976.4 1527.3 1191.8 636.0 95.7
Addn. Design Flexural Moment MEd3 kN-m LC3/SLS5 0.5 795.6 1478.7 1900.1 2493.3 2868.4 3024.9 2895.8 2527.0 1960.0 1534.4 827.6 129.7
Addn. Design Flexural Moment MEd4 kN-m LC4/SLS5 0.9 681.3 1262.5 1620.6 2128.4 2446.3 2575.3 2464.7 2148.7 1657.5 1292.4 688.9 99.3
Addn. Design Flexural Moment MEd5 kN-m LC5/SLS5 63.4 304.6 498.1 613.8 781.8 877.1 908.4 875.8 777.7 609.6 491.0 301.4 135.9
Secant Mod.of elasticity of Conc Ect,eff = Ecm/(1 +) MPa 12403 12403 12403 12403 12403 12403 12403 12403 12403 12403 12403 12403 12403
Elastic Modulus.for Steel Bars Es N/mm^2 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000
Modular ratio between Steel & Conc. m = Es / Ect,eff 16.13 16.13 16.13 16.13 16.13 16.13 16.13 16.13 16.13 16.13 16.13 16.13 16.13
Total Area of main longitudinal Reinf. As mm2 9651 9651 9651 9651 14476 14476 14476 14476 14476 9651 9651 9651 9651
Effective depth of the section d,eff mm 1720 1720 1720 1720 1688 1688 1688 1688 1688 1720 1720 1720 1720
Width of Web bw mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Width of Deck Slab Bf mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
Thickness of Top Flange (Top Slab) Tf mm 220 220 220 220 220 220 220 220 220 220 220 220 220
Let Depth of NA = dc mm 390 390 390 390 481 481 481 481 481 390 390 390 390
seg-1 Mom. of Compression Area @ N.A. = ( A x y) 2.07E+08 2.07E+08 2.07E+08 2.07E+08 2.82E+08 2.82E+08 2.82E+08 2.82E+08 2.82E+08 2.07E+08 2.07E+08 2.07E+08 2.07E+08
For Seg.-1 Width, B mm 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200
seg-2
(Rect. Type) Depth, H mm 220 220 220 220 220 220 220 220 220 220 220 220 220
dc seg-3 Area, A mm2 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000 704000
cg from NA mm 280 280 280 280 371 371 371 371 371 280 280 280 280
MOI, Icg mm4 5.8225E+10 5.822E+10 5.823E+10 5.8227E+10 9.948E+10 9.948E+10 9.948E+10 9.948E+10 9.948E+10 5.823E+10 5.823E+10 5.822E+10 5.822E+10
seg-4
For Seg.-2 Width, B mm 650 650 650 650 650 650 650 650 650 650 650 650 650
N A (Rect. Type) Depth, H mm 150 150 150 150 150 150 150 150 150 150 150 150 150
Area, A mm2 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500
cg from NA mm 95 95 95 95 186 186 186 186 186 95 95 95 95
MOI, Icg mm4 1.07E+09 1.07E+09 1.07E+09 1.07E+09 3.54E+09 3.54E+09 3.54E+09 3.54E+09 3.54E+09 1.07E+09 1.07E+09 1.07E+09 1.07E+09
For Seg.-3 Top Width, B1 mm 650 650 650 650 650 650 650 650 650 650 650 650 650
(Trap. Type) Bott. Width, B2 mm 650 650 554 554 300 300 300 300 300 554 554 650 650
Depth, H mm 0 0 20 20 75 75 75 75 75 20 20 0 0
Area, A mm2 0.0 0.0 12340.4 12340.4 35625.0 35625.0 35625.0 35625.0 35625.0 12340.4 12340.4 0.0 0.0
cg from NA mm 0.00 0.00 10.52 10.52 77.61 77.61 77.61 77.61 77.61 10.52 10.52 0.00 0.00
MOI, Icg mm4 0.00E+00 0.00E+00 1.80E+06 1.80E+06 2.31E+08 2.31E+08 2.31E+08 2.31E+08 2.31E+08 1.80E+06 1.80E+06 0.00E+00 0.00E+00

(86)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

For Seg.-4 Width, B mm 650 650 0 0 300 300 300 300 300 0 0 650 650
(Rect. Type) Depth, H mm 20 20 0 0 36 36 36 36 36 0 0 20 20
Area, A mm2 13316 13316 0 0 10652 10652 10652 10652 10652 0 0 13316 13316
cg from NA mm 10 10 0 0 18 18 18 18 18 0 0 10 10
Icg
MOI, mm4 1.86E+06 1.86E+06 0.00E+00 0.00E+00 4.48E+06 4.48E+06 4.48E+06 4.48E+06 4.48E+06 0.00E+00 0.00E+00 1.86E+06 1.86E+06
Moment of Tensile area about N.A. = m As (d,eff - dc) 2.07E+08 2.07E+08 2.07E+08 2.07E+08 2.82E+08 2.82E+08 2.82E+08 2.82E+08 2.82E+08 2.07E+08 2.07E+08 2.07E+08 2.07E+08
Check of Depth of Neutal axis {Moment of (Comp. Area - Tensile Area) ≈ 0.0} 0 0 0 0 0 0 0 0 0 0 0 0 0
MOI of Reinf. about N.A. = m As (d,eff - dc)2 mm4 2.75E+11 2.75E+11 2.75E+11 2.75E+11 3.40E+11 3.40E+11 3.40E+11 3.40E+11 3.40E+11 2.75E+11 2.75E+11 2.75E+11 2.75E+11
Moment of Inertia of Cracked Section Icg mm4 (in conc. Units) 3.34E+11 3.34E+11 3.34E+11 3.34E+11 4.44E+11 4.44E+11 4.44E+11 4.44E+11 4.44E+11 3.34E+11 3.34E+11 3.34E+11 3.34E+11
Section Modulus for Slab Top Zc,slab = Icg / dc mm3 8.56E+08 8.56E+08 8.56E+08 8.56E+08 9.23E+08 9.23E+08 9.23E+08 9.23E+08 9.23E+08 8.56E+08 8.56E+08 8.56E+08 8.56E+08
Section Modulus for Girder Top Zc,gir = Icg/(dc-Tf) mm3 1.96E+09 1.96E+09 1.96E+09 1.96E+09 1.70E+09 1.70E+09 1.70E+09 1.70E+09 1.70E+09 1.96E+09 1.96E+09 1.96E+09 1.96E+09
Section Modulus at cg. of Reinf. Zt = Icg / (d-dc) mm3 2.52E+08 2.52E+08 2.52E+08 2.52E+08 3.67E+08 3.67E+08 3.67E+08 3.67E+08 3.67E+08 2.52E+08 2.52E+08 2.52E+08 2.52E+08
LC1/SLS5 STRESS CHECK FOR (CWLL LEADING + TEMPERATURE RISE CASE + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 0.9 1.7 2.1 2.6 3.0 3.1 3.0 2.6 2.2 1.7 0.9 0.1
Conc. Stress at Top of Slab due to Temp. Rise c2 N/mm^2 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 2.18 3.07 3.84 4.31 4.77 5.16 5.32 5.19 4.81 4.38 3.90 3.11 2.33
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.4 0.7 0.9 1.4 1.6 1.7 1.6 1.4 1.0 0.8 0.4 0.1
Conc. Stress at Top of Gir. due to Temp. Rise c2 N/mm^2 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 -0.19 3.11 6.71 8.63 10.92 12.57 13.22 12.59 10.94 8.66 6.74 3.12 -0.12
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.0 48.9 90.9 116.8 104.9 120.7 127.4 121.9 106.4 120.7 94.5 51.0 8.2
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 49.8 92.6 119.0 108.9 125.3 132.2 126.5 110.4 122.9 96.3 52.0 8.3
Stress at extreme layer of Reinf. Due to temp. Rise s2 N/mm^2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2 -18.2
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.00 49.84 89.84 114.84 107.17 123.07 129.26 123.07 107.17 114.84 89.84 49.84 0.00
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 -13.62 86.02 168.79 220.20 202.42 234.73 247.82 235.98 203.96 224.13 172.48 88.20 -5.29
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(87)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

LC1/SLS5 STRESS CHECK FOR (CWLL LEADING + TEMPERATURE FALL CASE + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 0.9 1.7 2.1 2.6 3.0 3.1 3.0 2.6 2.2 1.7 0.9 0.1
Conc. Stress at Top of Slab due to Temp. Fall c2 N/mm^2 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21 -1.21
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 -1.31 -0.42 0.35 0.82 1.28 1.67 1.84 1.70 1.32 0.89 0.42 -0.38 -1.16
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.4 0.7 0.9 1.4 1.6 1.7 1.6 1.4 1.0 0.8 0.4 0.1
Conc. Stress at Top of Gir. due to Temp. Fall c2 N/mm^2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 1.35 4.65 8.25 10.17 12.46 14.11 14.76 14.13 12.48 10.20 8.28 4.66 1.42
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.0 48.9 90.9 116.8 104.9 120.7 127.4 121.9 106.4 120.7 94.5 51.0 8.2
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 49.8 92.6 119.0 108.9 125.3 132.2 126.5 110.4 122.9 96.3 52.0 8.3
Stress at extreme layer of Reinf. Due to temp. Fall s2 N/mm^2 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.00 49.84 89.84 114.84 107.17 123.07 129.26 123.07 107.17 114.84 89.84 49.84 0.00
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 28.65 128.29 211.07 262.47 244.70 277.01 290.10 278.26 246.23 266.40 214.76 130.47 36.99
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.
LC2/SLS5 STRESS CHECK FOR (CWLL ACOMPANYING + TEMPERATURE RISE LEADING + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd2/Zc,slab N/mm^2 0.0 0.7 1.4 1.7 2.1 2.4 2.6 2.5 2.1 1.8 1.4 0.7 0.1
Conc. Stress at Top of Slab due to Temp. Rise c2 N/mm^2 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 3.70 4.43 5.06 5.44 5.82 6.14 6.27 6.16 5.84 5.49 5.09 4.44 3.81
Conc. Stress at Top of Gir. c1 = MEd2/Zc,gir N/mm^2 0.0 0.3 0.6 0.8 1.1 1.3 1.4 1.3 1.2 0.8 0.6 0.3 0.0
Conc. Stress at Top of Gir. due to Temp. Rise c2 N/mm^2 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46 -1.46
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 -0.77 2.45 5.99 7.88 10.08 11.69 12.33 11.71 10.09 7.90 6.01 2.46 -0.72
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd2 / Zt ) x (m) N/mm^2 0.0 40.1 74.4 95.5 85.9 98.7 104.0 99.5 86.7 97.9 76.4 40.8 6.1
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 40.9 75.8 97.3 89.1 102.5 108.0 103.3 90.0 99.7 77.8 41.5 6.2
Stress at extreme layer of Reinf. Due to temp. Rise s2 N/mm^2 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3 -30.3
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 -25.74 64.99 139.89 186.40 170.54 199.79 211.47 200.62 171.46 188.84 141.93 65.64 -19.49
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(88)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

LC2/SLS5 STRESS CHECK FOR (CWLL ACOMPANYING + TEMPERATURE FALL LEADING + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd2/Zc,slab N/mm^2 0.0 0.7 1.4 1.7 2.1 2.4 2.6 2.5 2.1 1.8 1.4 0.7 0.1
Conc. Stress at Top of Slab due to Temp. Rise c2 N/mm^2 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01
Conc. Stress at Top of Slab due to Diff. Shrinkage c3 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 + c3 N/mm^2 -2.11 -1.38 -0.75 -0.37 0.01 0.33 0.46 0.35 0.03 -0.33 -0.72 -1.37 -2.00
Conc. Stress at Top of Gir. c1 = MEd2/Zc,gir N/mm^2 0.0 0.3 0.6 0.8 1.1 1.3 1.4 1.3 1.2 0.8 0.6 0.3 0.0
Conc. Stress at Top of Gir. due to Temp. Rise c2 N/mm^2 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
Conc. Stress at Top of Gir. due to Diff. Shrinkage c3 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c4 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 + c4 N/mm^2 1.80 5.02 8.56 10.45 12.65 14.26 14.89 14.27 12.66 10.46 8.58 5.03 1.84
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd2 / Zt ) x (m) N/mm^2 0.0 40.1 74.4 95.5 85.9 98.7 104.0 99.5 86.7 97.9 76.4 40.8 6.1
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 40.9 75.8 97.3 89.1 102.5 108.0 103.3 90.0 99.7 77.8 41.5 6.2
Stress at extreme layer of Reinf. Due to temp. Rise s2 N/mm^2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
Steel Stress at extreme layer from SLS-2 s4 N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 + s4 N/mm^2 44.71 135.45 210.35 256.86 240.99 270.25 281.93 271.08 241.92 259.30 212.39 136.10 50.96
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.
LC3/SLS5 STRESS CHECK FOR (CWLL LEADING + WIND DOWNWARD + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 0.9 1.7 2.2 2.7 3.1 3.3 3.1 2.7 2.3 1.8 1.0 0.2
Conc. Stress at Top of Slab due to Diff. Shrinkage c2 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 N/mm^2 -0.10 0.83 1.63 2.12 2.60 3.01 3.18 3.04 2.64 2.19 1.69 0.87 0.05
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.4 0.8 1.0 1.5 1.7 1.8 1.7 1.5 1.0 0.8 0.4 0.1
Conc. Stress at Top of Gir. due to Diff. Shrinkage c2 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c3 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 + c3 N/mm^2 0.69 4.00 7.61 9.55 11.86 13.52 14.17 13.53 11.88 9.58 7.64 4.02 0.75
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.0 51.0 94.8 121.8 109.4 125.9 132.8 127.1 110.9 125.7 98.4 53.1 8.3
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.0 52.0 96.6 124.1 113.6 130.7 137.8 131.9 115.1 128.0 100.2 54.0 8.5
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
Steel Stress at extreme layer from SLS-2  N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 N/mm^2 4.60 106.36 190.97 243.50 225.32 258.31 271.63 259.56 226.85 247.41 194.61 108.45 13.03
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(89)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

LC4/SLS5 STRESS CHECK FOR (CWLL ACCOMPANYING + WIND DOWNWARD + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd1/Zc,slab N/mm^2 0.0 0.8 1.5 1.9 2.3 2.6 2.8 2.7 2.3 1.9 1.5 0.8 0.1
Conc. Stress at Top of Slab due to Diff. Shrinkage c2 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 N/mm^2 -0.10 0.70 1.37 1.79 2.21 2.55 2.69 2.57 2.23 1.84 1.41 0.70 0.02
Conc. Stress at Top of Gir. c1 = MEd1/Zc,gir N/mm^2 0.0 0.3 0.6 0.8 1.2 1.4 1.5 1.4 1.3 0.8 0.7 0.4 0.1
Conc. Stress at Top of Gir. due to Diff. Shrinkage c2 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c3 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 + c3 N/mm^2 0.69 3.94 7.50 9.40 11.64 13.27 13.91 13.28 11.65 9.42 7.52 3.94 0.74
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd1 / Zt ) x (m) N/mm^2 0.1 43.7 80.9 103.9 93.4 107.4 113.0 108.2 94.3 106.3 82.9 44.2 6.4
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 0.1 44.5 82.5 105.8 97.0 111.4 117.3 112.3 97.9 108.2 84.4 45.0 6.5
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
Steel Stress at extreme layer from SLS-2  N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 N/mm^2 4.62 98.90 176.86 225.24 208.69 239.08 251.15 239.92 209.62 227.65 178.81 99.40 11.04
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.
LC5/SLS5 STRESS CHECK FOR (SPV-385T LOADING + DIFF. SHRINKAGE)
Conc. Stress at Top of Slab c1 = MEd2/Zc,slab N/mm^2 0.1 0.4 0.6 0.7 0.8 1.0 1.0 0.9 0.8 0.7 0.6 0.4 0.2
Conc. Stress at Top of Slab due to Diff. Shrinkage c2 N/mm^2 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Total Stress at top of Slab c1 + c2 N/mm^2 -0.03 0.26 0.48 0.62 0.75 0.85 0.88 0.85 0.74 0.61 0.47 0.25 0.06
Conc. Stress at Top of Gir. c1 = MEd2/Zc,gir N/mm^2 0.0 0.2 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.2 0.1
Conc. Stress at Top of Gir. due to Diff. Shrinkage c2 N/mm^2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Conc. Stress at Top of Gir. From SLS-2 c3 N/mm^2 0.00 2.91 6.17 7.89 9.71 11.15 11.71 11.15 9.71 7.89 6.17 2.91 0.00
Total Stress at top of Girder c1 + c2 c3 N/mm^2 0.72 3.75 7.11 8.89 10.85 12.35 12.93 12.35 10.85 8.89 7.11 3.75 0.76
Limiting Concrete Stress c,max = 0.48 x fck N/mm^2 Compression 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
t,max = (βcc(t)) x f ctm N/mm^2 Tension -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
Check for Conc. Stresses N/mm^2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Stress at cg. of Reinf. s = ( MEd2 / Zt ) x (m) N/mm^2 4.1 19.5 31.9 39.4 34.3 38.5 39.9 38.4 34.1 39.1 31.5 19.3 8.7
Stress at extreme layer of Reinf. s1 = s *d,ext / d,eff N/mm^2 4.1 19.9 32.5 40.1 35.6 40.0 41.4 39.9 35.4 39.8 32.1 19.7 8.9
Stress at extreme layer of Reinf. due to Diff. Shrink. s3 N/mm^2 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
Steel Stress at extreme layer from SLS-2 s3 N/mm^2 0.0 49.8 89.8 114.8 107.2 123.1 129.3 123.1 107.2 114.8 89.8 49.8 0.0
Total Stress at extreme layer s1 + s2 s3 N/mm^2 8.70 74.30 126.93 159.49 147.35 167.59 175.21 167.54 147.16 159.22 126.47 74.09 13.44
Limiting Tensile Stress s,max = Min(0.8 x fyk, 300) N/mm^2 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
Check for Stresses in Reinf. s < s,max) N/mm^2 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.

(90)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
DESIGN OF OUTER LONG. GIRDER (LG1)
Section under consideration 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec
Dist. of Section 'X' from cL of Left Support Unit ↓ 0.000 m 1.500 m 3.000 m 4.100 m 6.150 m 8.200 m 10.250 m 12.300 m 14.350 m 16.400 m 17.500 m 19.000 m 20.500 m

SLS CRACK CONTROL CHECK (FOR QUASI-PERMANENT LOAD COMBINATION) (Refer Cl:12.3.1 of IRC:112-2020)
INPUT Crack Width wk = sm - sm) x Sr,max AT THE OPENING FOR TRAFFIC 1.00 x G1 + 1.00 x G2 + 1.20 x G3 + 1.00 x G12 + 0.50 x Q8
Age at cracking = 63 days Short term or long term ? L (S or L)
fck = 40 MPa Cement type = N (S, N, or R)
fyk = 500 MPa Creep factor, φ = 0.609
DESCRIPTION SYMBOL UNITS 0.000 L Sec 0.073 L Sec 0.146 L Sec 0.200 L Sec 0.300 L Sec 0.400 L Sec 0.500 L Sec 0.600 L Sec 0.700 L Sec 0.800 L Sec 0.854 L Sec 0.927 L Sec 1.000 L Sec

Quasi-Permanent Moment Med KN-m 272.96 845.18 1538.79 1963.21 2584.58 2962.82 3102.35 2953.89 2564.89 1932.26 1494.03 784.83 0.00
Area of tension steel reinforcement As mm2 9651 9651 9651 9651 14476 14476 14476 14476 14476 9651 9651 9651 9651
Width of Web of Section bw mm 650 650 300 300 300 300 300 300 300 300 300 650 650
Overall Depth of Section h mm 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820 1820
Effective Depth of Section d mm 1720 1720 1720 1720 1688 1688 1688 1688 1688 1720 1720 1720 1720
Maxmum tension bar spacing S mm 100 100 100 100 100 100 100 100 100 100 100 100 100
Equivalent Max tension bar dia Øeq mm 32 32 32 32 32 32 32 32 32 32 32 32 32
Clear Cover to Main Reinforcement, As c mm 40 40 40 40 40 40 40 40 40 40 40 40 40
Modulus of elasticity of concrete = 22[(fck+10)/12.5]0.3 Ecm MPa 33346 33346 33346 33346 33346 33346 33346 33346 33346 33346 33346 33346 33346
Modulus of elasticity of steel Es MPa 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000
Modular ratio αe 9.65 9.65 9.65 9.65 9.65 9.65 9.65 9.65 9.65 9.65 9.65 9.65 9.65
mean concrete strength at cracking fcm,t MPa 52.86 52.86 52.86 52.86 52.86 52.86 52.86 52.86 52.86 52.86 52.86 52.86 52.86
mean concrete tensile strength fct,eff MPa 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03
Spacing Limit of Reinforcement 5 x (c+/2) mm 280.00 280.00 280.00 280.00 280.00 280.00 280.00 280.00 280.00 280.00 280.00 280.00 280.00
Actual Spacing of bonded reinforcement < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm < 280 mm
Hence, Maximum final crack spacing Sr,max = 3.4c+0.425 k1 k2 /ρp,eff)
Factor allowing for reinsforcement bond properties k1 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Factor allowing for strain distribution k2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Eff Depth of concrete in tension hc,eff is lesser of mm 250.00 250.00 250.00 250.00 330.00 330.00 330.00 330.00 330.00 250.00 250.00 250.00 250.00
(i) 2.5(h-d) mm 250.00 250.00 250.00 250.00 330.00 330.00 330.00 330.00 330.00 250.00 250.00 250.00 250.00
Where x = dc (ii) (h - x)/3 mm 507.53 507.53 507.53 507.53 484.86 484.86 484.86 484.86 484.86 507.53 507.53 507.53 507.53
(iii) (h/2) mm 910.00 910.00 910.00 910.00 910.00 910.00 910.00 910.00 910.00 910.00 910.00 910.00 910.00
Effective tension area of Concrete = b x hc,eff Ac,eff mm2 162500 162500 75000 75000 99000 99000 99000 99000 99000 75000 75000 162500 162500
Effective Reinforcement ratio As /Ac,eff ρp,eff 0.059 0.059 0.129 0.129 0.146 0.146 0.146 0.146 0.146 0.129 0.129 0.059 0.059
Hence, Maximum final crack spacing sr,max mm 227.60 227.60 178.28 178.28 173.20 173.20 173.20 173.20 173.20 178.28 178.28 227.60 227.60
Cracked Second Moment of Area (in steel units) INA mm4 2.24E+10 2.24E+10 2.24E+10 2.24E+10 3.04E+10 3.04E+10 3.04E+10 3.04E+10 3.04E+10 2.24E+10 2.24E+10 2.24E+10 2.24E+10
Stress in the tension reinf. for cracked section σsc MPa 17.36 53.75 97.86 124.86 112.47 128.93 135.00 128.54 111.62 122.89 95.02 49.91 0.00
Factor dependent on the duration of the load kt 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
average strain for crack width calculation εsm - εcm 0.0001 0.0002 0.0004 0.0005 0.0004 0.0005 0.0006 0.0005 0.0004 0.0005 0.0003 0.0001 0.0000
CALCULATED CRACK WIDTH wk mm 0.012 0.037 0.064 0.088 0.076 0.090 0.095 0.090 0.075 0.086 0.061 0.034 0.000
LIMITING CRACK WIDTH wmax mm 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300
Check for Crack Width O.K O.K O.K O.K O.K O.K O.K O.K O.K O.K O.K O.K O.K

(91)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm

Design of End Cross Girder Near Expansion Joint Location


The girders are supported directly over the bearings during service condition, where-as during jack-up condition the
superstructure is supported over diaphragm. Hence diaphragm is designed for jack-up condition.
No.of Bearings = 5 No.of Jacks = 4
c/c spacing of bearing along trans. Dir. = 3.624 m (SK)
Total Length of End Diaphragm = 15.233 m Thickness of Cross Girder = 0.400 m
Height of the girder section = 1.570 m c/c spacing between precast girder = 3.624 m (SK)
Height of the X-Girder (excluding Slab) = 1.350 m No. of precast girders = 5
Position of the Jack from cL of Nearest Bearing = 0.900 m (SQ) = 1.019 m (SK)
3.624 m 3.624 m 3.624 m 3.624 m

1 2 3 4 5 6 7 8

4
cL of Brg. cL of Brg. cL of Brg. cL of Brg. cL of Brg.

1.019 m 1.586 m 2.039 m 1.586 m 2.039 m 1.586 m 2.039 m 1.586 m 1.019 m


cL. of Jack cL. of Jack cL. of Jack cL. of Jack cL. of Jack cL. of Jack cL. of Jack cL. of Jack

CHECKING OF THE SECTION FOR JACKING CONDITION


SUMMARY OF SUPPORT REACTION at Proposed Jack Locations (Refer Attached Grilllage Analyis of Superstr.)
Support Reaction under each Jack Location Unit Jack-1 Jack-2 Jack-3 Jack-4
DL Reaction due to Girder SW+Deck Slab+Diaphragm (DL) kN 766.02 -123.39 332.76 218.18
SIDL Reaction (excluding Surfacing) (SIDL1) kN 214.420 -138.764 16.333 -6.862
SIDL Reaction (Dead Load of Surfacing) (SIDL2) kN 109.177 -19.081 47.611 30.477
Total Reaction kN 1089.61 -281.23 396.70 241.80

(92)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm

Capacity of Each Jack Required = 1089.612 x 1 = 1362.015 kN


Considering 80% efficiency of Jack 0.80
Capacity of each jack should not be less than 136 tonne
LOAD COMBINATIONS SLS : Service Limit State ULS : Ultimate Limit State
DESCRIPTION OF COMBINATION DETAILS OF FORCES COMBINATIONS WITH LOAD FACTORS PURPOSE OF CHECKING
RARE (CHARACTERISTIC) SLS 1 DL + SDL1 + SDL2 1.00 x G1 + 1.00 x G2 + 1.20 x G3 Maximum Stresses
FREQUENT SLS 2 DL + SDL1 + SDL2 1.00 x G1 + 1.00 x G2 + 1.20 x G3
QUASI-PERMANENT SLS 3 DL + SDL1 + SDL2 1.00 x G1 + 1.00 x G2 + 1.20 x G3 Crack Width
ULTIMATE(BASIC) ULS 1 factored (DL+SDL1+SDL2) 1.35 x G1 + 1.35 x G2 + 1.75 x G3 Str. Strength Check in ULS

SERVICEABILITY CHARACTERISTIC COMBINATION SLS-1 1.00 x G1 + 1.00 x G2 + 1.20 x G3


(Refer Attached Grilllage Analyis of Superstr.) (-ve for Hogging Moment) & (+ve for Sagging Moment)
Support Moment at Jack-1 Location = -688.000 kN-m Shear Force at Jack-1 Location = 499.000 kN
Support Moment at Jack-2 Location = 71.000 kN-m Shear Force at Jack-2 Location = 174.000 kN
Support Moment at Jack-3 Location = -119.000 kN-m Shear Force at Jack-3 Location = 52.000 kN
Support Moment at Jack-4 Location = -70.000 kN-m Shear Force at Jack-4 Location = 259.000 kN
Governing Forces for SLS Design
Span Moment for Span between Jack-1&2 = -299.000 kN-m Hogging Moment M_hog = 688.00 kN-m
Span Moment for Span between Jack-2&3 = 237.000 kN-m Sagging Moment M_sag = 237.00 kN-m
Span Moment for Span between Jack-3&4 = -84.000 kN-m Shear Force at Support S = 499.00 kN

(93)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm
ULTIMATE BASIC COMBINATION ULS-1 1.35 x G1 + 1.35 x G2 + 1.75 x G3
(Refer Attached Grilllage Analyis of Superstr.) (-ve for Hogging Moment) & (+ve for Sagging Moment)
Support Moment at Jack-1 Location = -938.000 kN-m Shear Force at Jack-1 Location = 680.000 kN
Support Moment at Jack-2 Location = 96.000 kN-m Shear Force at Jack-2 Location = 237.000 kN
Support Moment at Jack-3 Location = -162.000 kN-m Shear Force at Jack-3 Location = 71.000 kN
Support Moment at Jack-4 Location = -115.000 kN-m Shear Force at Jack-4 Location = 353.000 kN
Governing Forces for ULS Design
Span Moment for Span between Jack-1&2 = -407.000 kN-m Hogging Moment M_hog = 938.00 kN-m
Span Moment for Span between Jack-2&3 = 324.000 kN-m Sagging Moment M_sag = 324.00 kN-m
Span Moment for Span between Jack-3&4 = -115.000 kN-m Shear Force at Support S = 680.00 kN

DESIGN OF SECTION OF END DIAPHRAGM:-


Section will be designed as reinforced concrete for the ultimate limit state and checked for serviceability conditions.
ULS MOMENT CHECK FOR ULS-1 (FOR BASIC LOAD COMBINATION)
Assuming neutral axis lies within the Top Flange
Stress-Strain Relationship of Concrete at ULS : Considering Rectangular Stress Distribution
εc3 0.0018 Compressive strain at peak stress for Rectangle Stress Distribution
εcu3 0.0035 Ultimate compressive strain for Rectangle Stress Distribution
η 1.0 Coefficient to convert to rectangular stress block
λ 0.8 Coefficient to convert to rectangular stress block
0.67 Coefficient to convert the strength in test to strength in structral member for age t > 28 days
αc
1 Coefficient to convert the strength in test to strength in structral member for age t < 28 days
17.87 N/mm2 Compressive design strength of concrete: fcd = (c x fcu) /m for Basic and Seismic Combination for age t > 28 days
fcd
22.33 N/mm2 Compressive design strength of concrete: fcd = (c x fcu) / m for Accidental Combination for age t > 28 days
Overall depth of Section D = 1.570 m Span between Jacks L1 = 2.039 m
Effective Length of Diaphragm = 2.039 m Span between Jacks L2 = 1.586 m
Clear span x 1.15 or c/c between supports { Whichever is smaller }

(94)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm
L / D = 2.04 / 1.570 = 1.298 < 2.500
Hence Deep Beam
DESIGN AS DEEP BEAM AS PER IS:456-2000
Hence, there is no need to check the compression in the concrete and the area of the steel required may be calculated from the lever arm as given hereunder
Section will be designed as reinforced concrete for the ultimate limit state for Deep Beam.
Lever Arm Z = 0.200 x ( L + 2.000 x D )
= 0.200 x ( 2.039 + 2.000 x 1.570 ) = 1.036 m

CHECK FOR ULTIMATE HOGGING MOMENT [Jacking-up Case] [ Mu,hog = 938.00 kN-m ]
Reinforcement Reqd. For Hogging Moment:
Area of Negative Reinforcement = M = 938.000 x 1.00E+06 = 2083 mm^2
required fyk / s x Z 434.783 x 1036

MINIMUM REINFORCEMENT REQUIREMENTS


a) Min. Area of Reinf. For Crack Control As,min = kc x k x fct,eff x Act / ct As,min : min. area of reinforcing steel within tensile zone
(Refer Cl:12.3.3(2) of IRC:112-2020) = 675 mm^2 Coefficient k = 0.930
fct,eff = fctm = 3.00 MPa
b) Min. Long.Area of Reinf. As,min = 0.0013 bt x d x fctm / fyk > 0.0013 bt x d Coefficient, kc = 0.400
st
(Refer Cl:16.5.1.1 of IRC:112-2020) = 933 mm^2 x I crack = 813.619 mm
Where, 0.0013 bt x d x fctm / fyk = 933 mm^2 Area Act = 302553 mm^2
0.0013 bt x d = 777 mm^2 ct = fyk = 500 MPa

Reinf. reqd. for Hogging Moment (at Top) = 2083 or 675 or 933 {Whichever is greater}
= 2083 mm^2
This Steel will be provided in two Zones
Zone-1 Area of Steel provided in this zone = 0.500 x ( L / D - 0.500 ) x Total Steel for (-ve) moment
= 0.500 x ( 1.30 - 0.500 ) x 2083 = 832 mm^2

(95)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm
This Steel will be provided with a zone depth of = 0.200 x D = 0.200 x 1.570 = 0.314 m
At tension face near Top
Total cg. of Reinf. cg. of Total Considering clear cover to outermost steel = 40 mm
Area of Reinforcement Provided
Ast layers from Reinf. From
(FOR HOGGING MOMENT)
provided nearest Face nearest Face Effective Depth of the Section d,eff = 1570 -75.3
mm^2 mm mm = 1495 mm
4 bars- 20 mm dia. in 1st Layer 1885 mm^2 62 75.3
2 bars- 20 mm dia. in 2nd Layer > 102
0 bars- 12 mm dia. in 3rd Layer 832 138

Zone-2
This Steel will be provided with a zone depth of = 0.300 x 1.570 = 0.471 m on either side of mid section
This steel will be evenly distributed on both faces
Area of Steel provided in this Zone = 2083.0 - 831.6 = 1251 mm^2

Provide 12 mm dia bars @ 200 mm c/c in this zone

Nos. of bars in this zone = ( 942 / 200 + 1.00 ) x 2 = 12 bars

Provide 12 bars of 12 mm dia Ast provided = 1357 mm^2

CHECK FOR ULTIMATE SAGGING MOMENT [Jacking-up Case] [ Mu,sag = 324.00 kN-m ]
Reinforcement Reqd. For Sagging Moment:
Area of Negative Reinforcement = M = 324.000 x 1.00E+06 = 719 mm^2
required fyk / s x Z 434.783 x 1036

This Steel will be provided with a zone depth of = ( 0.250 x 1.570 - 0.050 x 2.04 )
= 0.291 m adjacent to the tension face near bottom

(96)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm
MINIMUM REINFORCEMENT REQUIREMENTS
a) Min. Area of Reinf. For Crack Control As,min = kc x k x fct,eff x Act / ct As,min : min. area of reinforcing steel within tensile zone
(Refer Cl:12.3.3(2) of IRC:112-2020) = 666.27 mm^2 Coefficient k = 0.930
fct,eff = fctm = 3 MPa
b) Min. Long.Area of Reinf. As,min = 0.0013 bt x d x fctm / fyk > 0.0013 bt x d Coefficient kc = 0.400
(Refer Cl:16.5.1.1 of IRC:112-2020) = 932.25 mm^2 x Ist crack = 823.727 mm
Where, 0.0013 bt x d x fctm / fyk = 932.25 mm^2 Area Act = 298509 mm^2
0.0013 bt x d = 777 mm^2 ct = fyk = 500 MPa

Reinf. reqd. for Sagging Moment (at Bottom) = 719 or 666 or 932 {Whichever is greater}

= 932 mm^2

Total cg. of Reinf. cg. of Total Considering clear cover to outermost steel = 40 mm
Area of Reinforcement Provided Ast layers from Reinf. From
(FOR SAGGING MOMENT) provided nearest Face nearest Face Effective Depth of the Section d,eff = 1570 -76.0
mm^2 mm mm = 1494 mm
4 bars- 25 mm dia. in 1st Layer 2592 mm^2 64.5 76.0
2 bars- 20 mm dia. in 2nd Layer > 112
0 bars- 20 mm dia. in 3rd Layer 932 152

Side Face Reinforcement (Refer Cl:16.9(4) of IRC:112-2020)


Side Face Minimum Max. Spacing Provided Vertical Reinforcement
DESCRIPTION Reinforcement Side Face of Side Face Diameter of Provided Ast prov.
@ 0.15% of Area Reinforcement Reinforcement bars Spacing of bars Check
mm2/m per face mm2/m per face mm mm mm mm2/m
12 200
For Vertical Side Face Reinforcement 300 150 200 565.5 Okay
0 200
12 200
For Horizontal Side Face Reinforcement 300 150 200 565.5 Okay
0 200
(97)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm

ULS SHEAR CHECK FOR ULS-1 (FOR BASIC LOAD COMBINATION)


VEd = Su = 680.000 KN Long Term Assuming neutral axis lies within the top flange
At Root of
Section under consideration Unit ↓ References
Cantilever
Ultimate Design Shear Force VEd kN 680.0
Co-existing ULS Flexural Moment MEd kN-m 938.0
Axial Force force NEd kN 0.00
Smallest width of cross-section in tensile area b mm 400.00
Eff. Depth to centroid of main Reinf. d mm 1494.67
Characteristic strength of concrete fck MPa 40.00
Design value of conc. compression Strength fcd MPa 17.87
Mean Comp. Stress in Concrete at cg. of Sec. cp MPa 0.00
cp = NEd / Ac < 0.2 fcd
Shear capacity without Design Shear Reinforcement Refer Cl. 10.3.2 of IRC: 112-2011
0.33
Shear Resistance without Shear Reinforcement
VRd,c = [ 0.12 K (80 x 1 x fck )^ + 0.15 cp ] x bw x d
Allowance for size effect K = 1 + (200/d) < 2.0 1.37
Reinforcement ratio 1 = Asl /(bw x d) < 0.02 0.003
Longitudinal Reinf. (Asl) 1885 mm^2
VRd,c = kN 210.11
min = 0.031 (K) x (fck)
^3/2 ^1/2
0.31 (Refer Eq:10-3 of IRC:112-2011)
VRd,c(min) =(min+0.15 x cp) x bw x d VRd,c(min) kN 187.10 (Refer Eq:10-1 of IRC:112-2011)
Hence, adopted for VRd,c for CheckingVRd,c kN 210.11
< VEd
Check for Requirement for Shear Reinforcement Required

(98)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm
Shear Reinforcement Provided
Dia of Shear Stirrups  mm 12
Numbers of Legs of Link Reinf Nos. 2 legged
Spacing of Link Reinf. Provided mm @200 mm c/c
Area of Shear Reinforcement Asw mm
2
226
Overall depth of End diaphragm D mm 1570
Depth from comp. fiber dt mm 1512
Yield Strength of Shear Stirrups fyv MPa 500
Shear Reinf. Design Strength fywd MPa 400.00
Using Vertical Links for Shear Reinf.  = /2 Cot () 0.00
Strength Reduction Factor  0.52 (Refer Eq:10-6 of IRC:112-2011)
Strength Reduction Factor  0.52 (Refer Cl:10.3.1 of IRC:112-2011)
Allowance for the state of stress in compression chord cw 1.00 (Refer Eq:10-9 of IRC:112-2011)
Effective Design Shear Force VEd kN 680.00
Inner Lever Arm z mm 1360.80
Consider Conc. Strut Angle be  cotθ + tanθ 7.47 (Using Eq:10-8 of IRC:112-2011)
cotØmin/max 1 ←max / min → 2.5 taking VRd,s
 is the smallest angle before Hence, cotθ equal to VRd,max 2.50
concrete crushing starts. Hence, θ deg. 21.80
VRd,max kN 1752.48
> VEd
Check for ULS Shear Resistance O.K..
Required spacing of Shear Reinf. s,reqd mm 452.66 (Refer Eq:10-7 of IRC:112-2011)
s = Asw x z x fywd x cotVEd)
Requirement of MinimumShear Reinforcement
Min.Shear Reinf. Ratio (0.072 x (fck)0.5/fyw) w,min 0.0009 (Refer Eq:10.20 of IRC:112-2011)
Max.Spacing of Shear Reinf.=0.75d (1+cot) sl,max mm 1121.00
Adopted Spacing for Shear Links s mm 200.00

(99)
Project Designed by:
Client Checked by:
Job Name Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰ Skew Date & Rev.
Design of End Diaphragm

Design of Hanging Reinforcement (Refer Cl. 29.3.3 of IS:456-2000 )


Main Gider ULS Shear is transferred to the top of Expansion Joint Pier Diaphragm by means of hanging-up reinforcement within
the width of the diaphragm

Ultimate Design Shear Force [ VEd ] for Hanging Reinf. = 1440.6 kN


Required Reinforcement for Hanging Reinf. = VEd = 1440552.45 = 3313.3 mm^2
fyk / s 435
Distribution Length for Hanging Reinf. = Width of the Diaphragm = 400 mm

Provided Hanging-Up Reinforcement = 6 Nos. - 2 legged - 20 mm dia = 3769.9 mm^2


OK

(100)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A

Load 1

(A-1)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A

STAAD FLOOR ANALYSIS OF COMPOSITE GIRDER & DECK FOR DL,SIDL (20.5M-28SK)
START JOB INFORMATION
ENGINEER DATE 20-June-2022
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 0.725 0 0; 3 2.225 0 0; 4 3.725 0 0; 5 4.825 0 0; 6 6.875 0 0;
7 8.925 0 0; 8 10.975 0 0; 9 13.025 0 0; 10 15.075 0 0; 11 17.125 0 0;
12 18.225 0 0; 13 19.725 0 0; 14 21.225 0 0; 15 21.95 0 0; 16 0.133 0 0.25;
17 0.858 0 0.25; 18 2.358 0 0.25; 19 3.858 0 0.25; 20 4.958 0 0.25;
21 7.008 0 0.25; 22 9.058 0 0.25; 23 11.108 0 0.25; 24 13.158 0 0.25;
25 15.208 0 0.25; 26 17.258 0 0.25; 27 18.358 0 0.25; 28 19.858 0 0.25;
29 21.358 0 0.25; 30 22.083 0 0.25; 31 0.851 0 1.6; 32 1.576 0 1.6;
33 3.076 0 1.6; 34 4.576 0 1.6; 35 5.676 0 1.6; 36 7.726 0 1.6; 37 9.776 0 1.6;
38 11.826 0 1.6; 39 13.876 0 1.6; 40 15.926 0 1.6; 41 17.976 0 1.6;
42 19.076 0 1.6; 43 20.576 0 1.6; 44 22.076 0 1.6; 45 22.801 0 1.6;
46 1.701 0 3.2; 47 2.426 0 3.2; 48 3.926 0 3.2; 49 5.426 0 3.2; 50 6.526 0 3.2;
51 8.576 0 3.2; 52 10.626 0 3.2; 53 12.676 0 3.2; 54 14.726 0 3.2;
(A-2)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
55 16.776 0 3.2; 56 18.826 0 3.2; 57 19.926 0 3.2; 58 21.426 0 3.2;
59 22.926 0 3.2; 60 23.651 0 3.2; 61 2.552 0 4.8; 62 3.277 0 4.8;
63 4.777 0 4.8; 64 6.277 0 4.8; 65 7.377 0 4.8; 66 9.427 0 4.8;
67 11.477 0 4.8; 68 13.527 0 4.8; 69 15.577 0 4.8; 70 17.627 0 4.8;
71 19.677 0 4.8; 72 20.777 0 4.8; 73 22.277 0 4.8; 74 23.777 0 4.8;
75 24.502 0 4.8; 76 3.403 0 6.4; 77 4.128 0 6.4; 78 5.628 0 6.4;
79 7.128 0 6.4; 80 8.228 0 6.4; 81 10.278 0 6.4; 82 12.328 0 6.4;
83 14.378 0 6.4; 84 16.428 0 6.4; 85 18.478 0 6.4; 86 20.528 0 6.4;
87 21.628 0 6.4; 88 23.128 0 6.4; 89 24.628 0 6.4; 90 25.353 0 6.4;
91 4.254 0 8; 92 4.979 0 8; 93 6.479 0 8; 94 7.979 0 8; 95 9.079 0 8;
96 11.129 0 8; 97 13.179 0 8; 98 15.229 0 8; 99 17.279 0 8; 100 19.329 0 8;
101 21.379 0 8; 102 22.479 0 8; 103 23.979 0 8; 104 25.479 0 8; 105 26.204 0 8;
106 5.104 0 9.6; 107 5.829 0 9.6; 108 7.329 0 9.6; 109 8.829 0 9.6;
110 9.929 0 9.6; 111 11.979 0 9.6; 112 14.029 0 9.6; 113 16.079 0 9.6;
114 18.129 0 9.6; 115 20.179 0 9.6; 116 22.229 0 9.6; 117 23.329 0 9.6;
118 24.829 0 9.6; 119 26.329 0 9.6; 120 27.054 0 9.6; 121 5.955 0 11.2;
122 6.68 0 11.2; 123 8.18 0 11.2; 124 9.68 0 11.2; 125 10.78 0 11.2;
126 12.83 0 11.2; 127 14.88 0 11.2; 128 16.93 0 11.2; 129 18.98 0 11.2;
130 21.03 0 11.2; 131 23.08 0 11.2; 132 24.18 0 11.2; 133 25.68 0 11.2;
134 27.18 0 11.2; 135 27.905 0 11.2; 136 6.806 0 12.8; 137 7.531 0 12.8;
(A-3)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
138 9.031 0 12.8; 139 10.531 0 12.8; 140 11.631 0 12.8; 141 13.681 0 12.8;
142 15.731 0 12.8; 143 17.781 0 12.8; 144 19.831 0 12.8; 145 21.881 0 12.8;
146 23.931 0 12.8; 147 25.031 0 12.8; 148 26.531 0 12.8; 149 28.031 0 12.8;
150 28.756 0 12.8; 151 7.657 0 14.4; 152 8.382 0 14.4; 153 9.882 0 14.4;
154 11.382 0 14.4; 155 12.482 0 14.4; 156 14.532 0 14.4; 157 16.582 0 14.4;
158 18.632 0 14.4; 159 20.682 0 14.4; 160 22.732 0 14.4; 161 24.782 0 14.4;
162 25.882 0 14.4; 163 27.382 0 14.4; 164 28.882 0 14.4; 165 29.607 0 14.4;
166 8.374 0 15.75; 167 9.099 0 15.75; 168 10.599 0 15.75; 169 12.099 0 15.75;
170 13.199 0 15.75; 171 15.249 0 15.75; 172 17.299 0 15.75; 173 19.349 0 15.75;
174 21.399 0 15.75; 175 23.449 0 15.75; 176 25.499 0 15.75; 177 26.599 0 15.75;
178 28.099 0 15.75; 179 29.599 0 15.75; 180 30.324 0 15.75; 181 8.507 0 16;
182 9.232 0 16; 183 10.732 0 16; 184 12.232 0 16; 185 13.332 0 16;
186 15.382 0 16; 187 17.432 0 16; 188 19.482 0 16; 189 21.532 0 16;
190 23.582 0 16; 191 25.632 0 16; 192 26.732 0 16; 193 28.232 0 16;
194 29.732 0 16; 195 30.457 0 16;
***************************************
MEMBER INCIDENCES
1 1 2; 2 2 3; 3 3 4; 4 4 5; 5 5 6; 6 6 7; 7 7 8; 8 8 9; 9 9 10; 10 10 11;
11 11 12; 12 12 13; 13 13 14; 14 14 15; 15 16 17; 16 17 18; 17 18 19; 18 19 20;
19 20 21; 20 21 22; 21 22 23; 22 23 24; 23 24 25; 24 25 26; 25 26 27; 26 27 28;
(A-4)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
27 28 29; 28 29 30; 29 31 32; 30 32 33; 31 33 34; 32 34 35; 33 35 36; 34 36 37;
35 37 38; 36 38 39; 37 39 40; 38 40 41; 39 41 42; 40 42 43; 41 43 44; 42 44 45;
43 46 47; 44 47 48; 45 48 49; 46 49 50; 47 50 51; 48 51 52; 49 52 53; 50 53 54;
51 54 55; 52 55 56; 53 56 57; 54 57 58; 55 58 59; 56 59 60; 57 61 62; 58 62 63;
59 63 64; 60 64 65; 61 65 66; 62 66 67; 63 67 68; 64 68 69; 65 69 70; 66 70 71;
67 71 72; 68 72 73; 69 73 74; 70 74 75; 71 76 77; 72 77 78; 73 78 79; 74 79 80;
75 80 81; 76 81 82; 77 82 83; 78 83 84; 79 84 85; 80 85 86; 81 86 87; 82 87 88;
83 88 89; 84 89 90; 85 91 92; 86 92 93; 87 93 94; 88 94 95; 89 95 96; 90 96 97;
91 97 98; 92 98 99; 93 99 100; 94 100 101; 95 101 102; 96 102 103; 97 103 104;
98 104 105; 99 106 107; 100 107 108; 101 108 109; 102 109 110; 103 110 111;
104 111 112; 105 112 113; 106 113 114; 107 114 115; 108 115 116; 109 116 117;
110 117 118; 111 118 119; 112 119 120; 113 121 122; 114 122 123; 115 123 124;
116 124 125; 117 125 126; 118 126 127; 119 127 128; 120 128 129; 121 129 130;
122 130 131; 123 131 132; 124 132 133; 125 133 134; 126 134 135; 127 136 137;
128 137 138; 129 138 139; 130 139 140; 131 140 141; 132 141 142; 133 142 143;
134 143 144; 135 144 145; 136 145 146; 137 146 147; 138 147 148; 139 148 149;
140 149 150; 141 151 152; 142 152 153; 143 153 154; 144 154 155; 145 155 156;
146 156 157; 147 157 158; 148 158 159; 149 159 160; 150 160 161; 151 161 162;
152 162 163; 153 163 164; 154 164 165; 155 166 167; 156 167 168; 157 168 169;
158 169 170; 159 170 171; 160 171 172; 161 172 173; 162 173 174; 163 174 175;
(A-5)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
164 175 176; 165 176 177; 166 177 178; 167 178 179; 168 179 180; 169 181 182;
170 182 183; 171 183 184; 172 184 185; 173 185 186; 174 186 187; 175 187 188;
176 188 189; 177 189 190; 178 190 191; 179 191 192; 180 192 193; 181 193 194;
182 194 195; 183 1 16; 184 16 31; 185 31 46; 186 46 61; 187 61 76; 188 76 91;
189 91 106; 190 106 121; 191 121 136; 192 136 151; 193 151 166; 194 166 181;
195 2 17; 196 17 32; 197 32 47; 198 47 62; 199 62 77; 200 77 92; 201 92 107;
202 107 122; 203 122 137; 204 137 152; 205 152 167; 206 167 182; 207 3 18;
208 18 33; 209 33 48; 210 48 63; 211 63 78; 212 78 93; 213 93 108; 214 108 123;
215 123 138; 216 138 153; 217 153 168; 218 168 183; 219 4 19; 220 19 34;
221 34 49; 222 49 64; 223 64 79; 224 79 94; 225 94 109; 226 109 124;
227 124 139; 228 139 154; 229 154 169; 230 169 184; 231 5 20; 232 20 35;
233 35 50; 234 50 65; 235 65 80; 236 80 95; 237 95 110; 238 110 125;
239 125 140; 240 140 155; 241 155 170; 242 170 185; 243 6 21; 244 21 36;
245 36 51; 246 51 66; 247 66 81; 248 81 96; 249 96 111; 250 111 126;
251 126 141; 252 141 156; 253 156 171; 254 171 186; 255 7 22; 256 22 37;
257 37 52; 258 52 67; 259 67 82; 260 82 97; 261 97 112; 262 112 127;
263 127 142; 264 142 157; 265 157 172; 266 172 187; 267 8 23; 268 23 38;
269 38 53; 270 53 68; 271 68 83; 272 83 98; 273 98 113; 274 113 128;
275 128 143; 276 143 158; 277 158 173; 278 173 188; 279 9 24; 280 24 39;
281 39 54; 282 54 69; 283 69 84; 284 84 99; 285 99 114; 286 114 129;
(A-6)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
287 129 144; 288 144 159; 289 159 174; 290 174 189; 291 10 25; 292 25 40;
293 40 55; 294 55 70; 295 70 85; 296 85 100; 297 100 115; 298 115 130;
299 130 145; 300 145 160; 301 160 175; 302 175 190; 303 11 26; 304 26 41;
305 41 56; 306 56 71; 307 71 86; 308 86 101; 309 101 116; 310 116 131;
311 131 146; 312 146 161; 313 161 176; 314 176 191; 315 12 27; 316 27 42;
317 42 57; 318 57 72; 319 72 87; 320 87 102; 321 102 117; 322 117 132;
323 132 147; 324 147 162; 325 162 177; 326 177 192; 327 13 28; 328 28 43;
329 43 58; 330 58 73; 331 73 88; 332 88 103; 333 103 118; 334 118 133;
335 133 148; 336 148 163; 337 163 178; 338 178 193; 339 14 29; 340 29 44;
341 44 59; 342 59 74; 343 74 89; 344 89 104; 345 104 119; 346 119 134;
347 134 149; 348 149 164; 349 164 179; 350 179 194; 351 15 30; 352 30 45;
353 45 60; 354 60 75; 355 75 90; 356 90 105; 357 105 120; 358 120 135;
359 135 150; 360 150 165; 361 165 180; 362 180 195;
***********************************
START GROUP DEFINITION
MEMBER
_LG1 29 TO 42
_LG2 57 TO 70
_LG3 85 TO 98
_LG4 113 TO 126
(A-7)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
_LG5 141 TO 154
_LONG 29 TO 42 57 TO 70 85 TO 98 113 TO 126 141 TO 154
_TRANSDUM 183 TO 194 351 TO 362
_ENDX-GIR 197 TO 204 341 TO 348
_LONGDUM 1 TO 28 43 TO 56 71 TO 84 99 TO 112 127 TO 140 155 TO 182
_TS1 195 196 205 206 339 340 349 350
_TS2 207 TO 218 327 TO 338
_TS3 219 TO 230 315 TO 326
_TS4 231 TO 242 303 TO 314
_TS5 255 TO 290
_TS6 243 244 253 254 291 292 301 302
_INTXGIR 269 TO 276
END GROUP DEFINITION
***********************************
MEMBER PROPERTY INDIAN
*LONG DUMMY MEMBERS
1 TO 28 43 TO 56 71 TO 84 99 TO 112 127 TO 140 155 TO 181 -
182 PRIS AX 0.001 IX 0.0001 IZ 0.0001
*TRANS DUMMY MEMBER
183 TO 194 351 TO 362 PRIS AX 0.001 IX 0.0001 IZ 0.0001
(A-8)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
**OUTER L-GIRDER (LG1 & LG5)
29 30 41 42 141 142 153 154 PRIS AX 1.744 IX 0.097 IZ 0.572
31 40 143 152 PRIS AX 1.544 IX 0.038 IZ 0.529
32 TO 39 144 TO 151 PRIS AX 1.363 IX 0.02 IZ 0.491
***INNER L-GIRDER (LG2, LG3, LG4)
57 58 69 70 85 86 97 98 113 114 125 126 PRIS AX 1.744 IX 0.097 IZ 0.572
59 68 87 96 115 124 PRIS AX 1.544 IX 0.038 IZ 0.529
60 TO 67 88 TO 95 116 TO 123 PRIS AX 1.363 IX 0.02 IZ 0.491
***END X-GIRDER
197 TO 204 341 TO 348 PRIS AX 0.839 IX 0.033 IZ 0.197
***INT X-GIRDER
*269 TO 276 PRIS AX 1.034 IX 0.015 IZ 0.216
**TRANS. SLAB MEMBER
195 196 205 206 339 340 349 350 PRIS AX 0.33 IX 0.003 IZ 0.001
207 TO 218 327 TO 338 PRIS AX 0.33 IX 0.001 IZ 0.001
219 TO 230 315 TO 326 PRIS AX 0.286 IX 0.002 IZ 0.001
231 TO 242 303 TO 314 PRIS AX 0.347 IX 0.003 IZ 0.001
243 TO 254 291 TO 302 PRIS AX 0.451 IX 0.004 IZ 0.002
255 TO 266 279 TO 290 PRIS AX 0.451 IX 0.004 IZ 0.002
267 TO 278 PRIS AX 0.451 IX 0.004 IZ 0.002
(A-9)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
***********************************
SUPPORTS
32 62 92 122 152 FIXED BUT FX FZ MX MY MZ
44 74 104 134 164 PINNED
DEFINE MATERIAL START
ISOTROPIC MATERIAL1
E 3.2e+07
POISSON 0.2
DENSITY 25
END DEFINE MATERIAL
CONSTANTS
MATERIAL MATERIAL1 ALL
*****************************************
LOAD 1 SIDL-1
MEMBER LOAD
***DUE TO MEDIAN SIDE CRASH BARRIER
15 TO 28 UNI GY -8
***DUE TO OUTER SIDE CRASH BARRIER
155 TO 168 UNI GY -8
*******************
(A-10)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
LOAD 2 SIDL-2
**DUE TO W/C ON MAIN CARRIAGEWAY
**75mm THK WC = 0.075*24=1.8 kN/m^2
FLOOR LOAD
YRANGE 0 0 FLOAD -1.8 XRANGE 0.132 30.33 ZRANGE 0.25 15.75 GY
****************
PERFORM ANALYSIS
FINISH

STAAD FLOOR ANALYSIS OF 20.5M-28SK RCC BEAM & SLAB FOR CWLL(2L-CL.A)
START JOB INFORMATION
ENGINEER DATE 20-June-2022
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 0.725 0 0; 3 2.225 0 0; 4 3.725 0 0; 5 4.825 0 0; 6 6.875 0 0;
7 8.925 0 0; 8 10.975 0 0; 9 13.025 0 0; 10 15.075 0 0; 11 17.125 0 0;
(A-11)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
12 18.225 0 0; 13 19.725 0 0; 14 21.225 0 0; 15 21.95 0 0; 16 0.133 0 0.25;
17 0.858 0 0.25; 18 2.358 0 0.25; 19 3.858 0 0.25; 20 4.958 0 0.25;
21 7.008 0 0.25; 22 9.058 0 0.25; 23 11.108 0 0.25; 24 13.158 0 0.25;
25 15.208 0 0.25; 26 17.258 0 0.25; 27 18.358 0 0.25; 28 19.858 0 0.25;
29 21.358 0 0.25; 30 22.083 0 0.25; 31 0.851 0 1.6; 32 1.576 0 1.6;
33 3.076 0 1.6; 34 4.576 0 1.6; 35 5.676 0 1.6; 36 7.726 0 1.6; 37 9.776 0 1.6;
38 11.826 0 1.6; 39 13.876 0 1.6; 40 15.926 0 1.6; 41 17.976 0 1.6;
42 19.076 0 1.6; 43 20.576 0 1.6; 44 22.076 0 1.6; 45 22.801 0 1.6;
46 1.701 0 3.2; 47 2.426 0 3.2; 48 3.926 0 3.2; 49 5.426 0 3.2; 50 6.526 0 3.2;
51 8.576 0 3.2; 52 10.626 0 3.2; 53 12.676 0 3.2; 54 14.726 0 3.2;
55 16.776 0 3.2; 56 18.826 0 3.2; 57 19.926 0 3.2; 58 21.426 0 3.2;
59 22.926 0 3.2; 60 23.651 0 3.2; 61 2.552 0 4.8; 62 3.277 0 4.8;
63 4.777 0 4.8; 64 6.277 0 4.8; 65 7.377 0 4.8; 66 9.427 0 4.8;
67 11.477 0 4.8; 68 13.527 0 4.8; 69 15.577 0 4.8; 70 17.627 0 4.8;
71 19.677 0 4.8; 72 20.777 0 4.8; 73 22.277 0 4.8; 74 23.777 0 4.8;
75 24.502 0 4.8; 76 3.403 0 6.4; 77 4.128 0 6.4; 78 5.628 0 6.4;
79 7.128 0 6.4; 80 8.228 0 6.4; 81 10.278 0 6.4; 82 12.328 0 6.4;
83 14.378 0 6.4; 84 16.428 0 6.4; 85 18.478 0 6.4; 86 20.528 0 6.4;
87 21.628 0 6.4; 88 23.128 0 6.4; 89 24.628 0 6.4; 90 25.353 0 6.4;
91 4.254 0 8; 92 4.979 0 8; 93 6.479 0 8; 94 7.979 0 8; 95 9.079 0 8;
96 11.129 0 8; 97 13.179 0 8; 98 15.229 0 8; 99 17.279 0 8; 100 19.329 0 8;
(A-12)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
101 21.379 0 8; 102 22.479 0 8; 103 23.979 0 8; 104 25.479 0 8; 105 26.204 0 8;
106 5.104 0 9.6; 107 5.829 0 9.6; 108 7.329 0 9.6; 109 8.829 0 9.6;
110 9.929 0 9.6; 111 11.979 0 9.6; 112 14.029 0 9.6; 113 16.079 0 9.6;
114 18.129 0 9.6; 115 20.179 0 9.6; 116 22.229 0 9.6; 117 23.329 0 9.6;
118 24.829 0 9.6; 119 26.329 0 9.6; 120 27.054 0 9.6; 121 5.955 0 11.2;
122 6.68 0 11.2; 123 8.18 0 11.2; 124 9.68 0 11.2; 125 10.78 0 11.2;
126 12.83 0 11.2; 127 14.88 0 11.2; 128 16.93 0 11.2; 129 18.98 0 11.2;
130 21.03 0 11.2; 131 23.08 0 11.2; 132 24.18 0 11.2; 133 25.68 0 11.2;
134 27.18 0 11.2; 135 27.905 0 11.2; 136 6.806 0 12.8; 137 7.531 0 12.8;
138 9.031 0 12.8; 139 10.531 0 12.8; 140 11.631 0 12.8; 141 13.681 0 12.8;
142 15.731 0 12.8; 143 17.781 0 12.8; 144 19.831 0 12.8; 145 21.881 0 12.8;
146 23.931 0 12.8; 147 25.031 0 12.8; 148 26.531 0 12.8; 149 28.031 0 12.8;
150 28.756 0 12.8; 151 7.657 0 14.4; 152 8.382 0 14.4; 153 9.882 0 14.4;
154 11.382 0 14.4; 155 12.482 0 14.4; 156 14.532 0 14.4; 157 16.582 0 14.4;
158 18.632 0 14.4; 159 20.682 0 14.4; 160 22.732 0 14.4; 161 24.782 0 14.4;
162 25.882 0 14.4; 163 27.382 0 14.4; 164 28.882 0 14.4; 165 29.607 0 14.4;
166 8.374 0 15.75; 167 9.099 0 15.75; 168 10.599 0 15.75; 169 12.099 0 15.75;
170 13.199 0 15.75; 171 15.249 0 15.75; 172 17.299 0 15.75; 173 19.349 0 15.75;
174 21.399 0 15.75; 175 23.449 0 15.75; 176 25.499 0 15.75; 177 26.599 0 15.75;
178 28.099 0 15.75; 179 29.599 0 15.75; 180 30.324 0 15.75; 181 8.507 0 16;
182 9.232 0 16; 183 10.732 0 16; 184 12.232 0 16; 185 13.332 0 16;
(A-13)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
186 15.382 0 16; 187 17.432 0 16; 188 19.482 0 16; 189 21.532 0 16;
190 23.582 0 16; 191 25.632 0 16; 192 26.732 0 16; 193 28.232 0 16;
194 29.732 0 16; 195 30.457 0 16; 196 -0.1 0 0;
197 0.033 0 0.25; 198 0.751 0 1.6; 199 1.601 0 3.2; 200 2.452 0 4.8;
201 3.303 0 6.4; 202 4.154 0 8; 203 5.004 0 9.6; 204 5.855 0 11.2;
205 6.706 0 12.8; 206 7.557 0 14.4; 207 8.274 0 15.75; 208 8.407 0 16;
209 22.05 0 0; 210 22.183 0 0.25; 211 22.901 0 1.6; 212 23.751 0 3.2;
213 24.602 0 4.8; 214 25.453 0 6.4; 215 26.304 0 8; 216 27.154 0 9.6;
217 28.005 0 11.2; 218 28.856 0 12.8; 219 29.707 0 14.4; 220 30.424 0 15.75;
221 30.557 0 16;
***************************************
MEMBER INCIDENCES
1 1 2; 2 2 3; 3 3 4; 4 4 5; 5 5 6; 6 6 7; 7 7 8; 8 8 9; 9 9 10; 10 10 11;
11 11 12; 12 12 13; 13 13 14; 14 14 15; 15 16 17; 16 17 18; 17 18 19; 18 19 20;
19 20 21; 20 21 22; 21 22 23; 22 23 24; 23 24 25; 24 25 26; 25 26 27; 26 27 28;
27 28 29; 28 29 30; 29 31 32; 30 32 33; 31 33 34; 32 34 35; 33 35 36; 34 36 37;
35 37 38; 36 38 39; 37 39 40; 38 40 41; 39 41 42; 40 42 43; 41 43 44; 42 44 45;
43 46 47; 44 47 48; 45 48 49; 46 49 50; 47 50 51; 48 51 52; 49 52 53; 50 53 54;
51 54 55; 52 55 56; 53 56 57; 54 57 58; 55 58 59; 56 59 60; 57 61 62; 58 62 63;
59 63 64; 60 64 65; 61 65 66; 62 66 67; 63 67 68; 64 68 69; 65 69 70; 66 70 71;
67 71 72; 68 72 73; 69 73 74; 70 74 75; 71 76 77; 72 77 78; 73 78 79; 74 79 80;
(A-14)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
75 80 81; 76 81 82; 77 82 83; 78 83 84; 79 84 85; 80 85 86; 81 86 87; 82 87 88;
83 88 89; 84 89 90; 85 91 92; 86 92 93; 87 93 94; 88 94 95; 89 95 96; 90 96 97;
91 97 98; 92 98 99; 93 99 100; 94 100 101; 95 101 102; 96 102 103; 97 103 104;
98 104 105; 99 106 107; 100 107 108; 101 108 109; 102 109 110; 103 110 111;
104 111 112; 105 112 113; 106 113 114; 107 114 115; 108 115 116; 109 116 117;
110 117 118; 111 118 119; 112 119 120; 113 121 122; 114 122 123; 115 123 124;
116 124 125; 117 125 126; 118 126 127; 119 127 128; 120 128 129; 121 129 130;
122 130 131; 123 131 132; 124 132 133; 125 133 134; 126 134 135; 127 136 137;
128 137 138; 129 138 139; 130 139 140; 131 140 141; 132 141 142; 133 142 143;
134 143 144; 135 144 145; 136 145 146; 137 146 147; 138 147 148; 139 148 149;
140 149 150; 141 151 152; 142 152 153; 143 153 154; 144 154 155; 145 155 156;
146 156 157; 147 157 158; 148 158 159; 149 159 160; 150 160 161; 151 161 162;
152 162 163; 153 163 164; 154 164 165; 155 166 167; 156 167 168; 157 168 169;
158 169 170; 159 170 171; 160 171 172; 161 172 173; 162 173 174; 163 174 175;
164 175 176; 165 176 177; 166 177 178; 167 178 179; 168 179 180; 169 181 182;
170 182 183; 171 183 184; 172 184 185; 173 185 186; 174 186 187; 175 187 188;
176 188 189; 177 189 190; 178 190 191; 179 191 192; 180 192 193; 181 193 194;
182 194 195; 183 1 16; 184 16 31; 185 31 46; 186 46 61; 187 61 76; 188 76 91;
189 91 106; 190 106 121; 191 121 136; 192 136 151; 193 151 166; 194 166 181;
195 2 17; 196 17 32; 197 32 47; 198 47 62; 199 62 77; 200 77 92; 201 92 107;
202 107 122; 203 122 137; 204 137 152; 205 152 167; 206 167 182; 207 3 18;
(A-15)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
208 18 33; 209 33 48; 210 48 63; 211 63 78; 212 78 93; 213 93 108; 214 108 123;
215 123 138; 216 138 153; 217 153 168; 218 168 183; 219 4 19; 220 19 34;
221 34 49; 222 49 64; 223 64 79; 224 79 94; 225 94 109; 226 109 124;
227 124 139; 228 139 154; 229 154 169; 230 169 184; 231 5 20; 232 20 35;
233 35 50; 234 50 65; 235 65 80; 236 80 95; 237 95 110; 238 110 125;
239 125 140; 240 140 155; 241 155 170; 242 170 185; 243 6 21; 244 21 36;
245 36 51; 246 51 66; 247 66 81; 248 81 96; 249 96 111; 250 111 126;
251 126 141; 252 141 156; 253 156 171; 254 171 186; 255 7 22; 256 22 37;
257 37 52; 258 52 67; 259 67 82; 260 82 97; 261 97 112; 262 112 127;
263 127 142; 264 142 157; 265 157 172; 266 172 187; 267 8 23; 268 23 38;
269 38 53; 270 53 68; 271 68 83; 272 83 98; 273 98 113; 274 113 128;
275 128 143; 276 143 158; 277 158 173; 278 173 188; 279 9 24; 280 24 39;
281 39 54; 282 54 69; 283 69 84; 284 84 99; 285 99 114; 286 114 129;
287 129 144; 288 144 159; 289 159 174; 290 174 189; 291 10 25; 292 25 40;
293 40 55; 294 55 70; 295 70 85; 296 85 100; 297 100 115; 298 115 130;
299 130 145; 300 145 160; 301 160 175; 302 175 190; 303 11 26; 304 26 41;
305 41 56; 306 56 71; 307 71 86; 308 86 101; 309 101 116; 310 116 131;
311 131 146; 312 146 161; 313 161 176; 314 176 191; 315 12 27; 316 27 42;
317 42 57; 318 57 72; 319 72 87; 320 87 102; 321 102 117; 322 117 132;
323 132 147; 324 147 162; 325 162 177; 326 177 192; 327 13 28; 328 28 43;
329 43 58; 330 58 73; 331 73 88; 332 88 103; 333 103 118; 334 118 133;
(A-16)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
335 133 148; 336 148 163; 337 163 178; 338 178 193; 339 14 29; 340 29 44;
341 44 59; 342 59 74; 343 74 89; 344 89 104; 345 104 119; 346 119 134;
347 134 149; 348 149 164; 349 164 179; 350 179 194; 351 15 30; 352 30 45;
353 45 60; 354 60 75; 355 75 90; 356 90 105; 357 105 120; 358 120 135;
359 135 150; 360 150 165; 361 165 180; 362 180 195; 501 196 197; 502 197 198;
503 198 199; 504 199 200; 505 200 201; 506 201 202; 507 202 203; 508 203 204;
509 204 205; 510 205 206; 511 206 207; 512 207 208; 513 209 210; 514 210 211;
515 211 212; 516 212 213; 517 213 214; 518 214 215; 519 215 216; 520 216 217;
521 217 218; 522 218 219; 523 219 220; 524 220 221;
***********************************
START GROUP DEFINITION
MEMBER
_LG1 29 TO 42
_LG2 57 TO 70
_LG3 85 TO 98
_LG4 113 TO 126
_LG5 141 TO 154
_LONG 29 TO 42 57 TO 70 85 TO 98 113 TO 126 141 TO 154
_TRANSDUM 183 TO 194 351 TO 362
_ENDX-GIR 197 TO 204 341 TO 348
_LONGDUM 1 TO 28 43 TO 56 71 TO 84 99 TO 112 127 TO 140 155 TO 182
(A-17)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
_TS1 195 196 205 206 339 340 349 350
_TS2 207 TO 218 327 TO 338
_TS3 219 TO 230 315 TO 326
_TS4 231 TO 242 303 TO 314
_TS5 255 TO 290
_TS6 243 244 253 254 291 292 301 302
_INTXGIR 269 TO 276
END GROUP DEFINITION
***********************************
MEMBER PROPERTY INDIAN
*LONG DUMMY MEMBERS
1 TO 28 43 TO 56 71 TO 84 99 TO 112 127 TO 140 155 TO 181 -
182 PRIS AX 0.001 IX 0.0001 IZ 0.0001
*TRANS DUMMY MEMBER
183 TO 194 351 TO 362 PRIS AX 0.001 IX 0.0001 IZ 0.0001
*ADDITIONAL TRANS DUMMY MEMBER
501 TO 524 PRIS AX 0.001 IX 0.0001 IZ 0.0001
**OUTER L-GIRDER (LG1 & LG5)
29 30 41 42 141 142 153 154 PRIS AX 1.744 IX 0.097 IZ 0.572
31 40 143 152 PRIS AX 1.544 IX 0.038 IZ 0.529
32 TO 39 144 TO 151 PRIS AX 1.363 IX 0.02 IZ 0.491
(A-18)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
***INNER L-GIRDER (LG2, LG3, LG4)
57 58 69 70 85 86 97 98 113 114 125 126 PRIS AX 1.744 IX 0.097 IZ 0.572
59 68 87 96 115 124 PRIS AX 1.544 IX 0.038 IZ 0.529
60 TO 67 88 TO 95 116 TO 123 PRIS AX 1.363 IX 0.02 IZ 0.491
***END X-GIRDER
197 TO 204 341 TO 348 PRIS AX 0.839 IX 0.033 IZ 0.197
***INT X-GIRDER
*269 TO 276 PRIS AX 1.034 IX 0.015 IZ 0.216
**TRANS. SLAB MEMBER
195 196 205 206 339 340 349 350 PRIS AX 0.33 IX 0.003 IZ 0.001
207 TO 218 327 TO 338 PRIS AX 0.33 IX 0.001 IZ 0.001
219 TO 230 315 TO 326 PRIS AX 0.286 IX 0.002 IZ 0.001
231 TO 242 303 TO 314 PRIS AX 0.347 IX 0.003 IZ 0.001
243 TO 254 291 TO 302 PRIS AX 0.451 IX 0.004 IZ 0.002
255 TO 266 279 TO 290 PRIS AX 0.451 IX 0.004 IZ 0.002
267 TO 278 PRIS AX 0.451 IX 0.004 IZ 0.002
***********************************
SUPPORTS
32 62 92 122 152 FIXED BUT FX FZ MX MY MZ
44 74 104 134 164 PINNED
**DUMMY SUPPORTS
(A-19)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
196 TO 221 FIXED BUT FX FZ MX MY MZ
DEFINE MATERIAL START
ISOTROPIC MATERIAL1
E 3.2e+07
POISSON 0.2
DENSITY 25
END DEFINE MATERIAL
CONSTANTS
MATERIAL MATERIAL1 ALL
*****************************************
**************************************
DEFINE MOVING LOAD FILE IRCMOVE.TXT
TYPE 1 CLA-1T
TYPE 2 CLA_R-1T
****************************************
*DUE TO Cl.A (2 LANES)
**CL.A-2L (TWO TRAIN) MOVING FORWARD
LOAD GENERATION 80
TYPE 1 -18.321 0 0.9 XINC 0.509
TYPE 1 -18.321 0 2.7 XINC 0.509
TYPE 1 -18.321 0 4.4 XINC 0.509
(A-20)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
TYPE 1 -18.321 0 6.2 XINC 0.509
LOAD GENERATION 80
TYPE 1 -18.043 0 1.424 XINC 0.509
TYPE 1 -18.043 0 3.224 XINC 0.509
TYPE 1 -18.043 0 4.924 XINC 0.509
TYPE 1 -18.043 0 6.724 XINC 0.509
LOAD GENERATION 80
TYPE 1 -17.765 0 1.947 XINC 0.509
TYPE 1 -17.765 0 3.747 XINC 0.509
TYPE 1 -17.765 0 5.447 XINC 0.509
TYPE 1 -17.765 0 7.247 XINC 0.509
LOAD GENERATION 80
TYPE 1 -17.486 0 2.471 XINC 0.509
TYPE 1 -17.486 0 4.271 XINC 0.509
TYPE 1 -17.486 0 5.971 XINC 0.509
TYPE 1 -17.486 0 7.771 XINC 0.509
LOAD GENERATION 80
TYPE 1 -17.208 0 2.994 XINC 0.509
TYPE 1 -17.208 0 4.794 XINC 0.509
TYPE 1 -17.208 0 6.494 XINC 0.509
TYPE 1 -17.208 0 8.294 XINC 0.509
(A-21)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
LOAD GENERATION 80
TYPE 1 -16.93 0 3.518 XINC 0.509
TYPE 1 -16.93 0 5.318 XINC 0.509
TYPE 1 -16.93 0 7.018 XINC 0.509
TYPE 1 -16.93 0 8.818 XINC 0.509
LOAD GENERATION 80
TYPE 1 -16.651 0 4.041 XINC 0.509
TYPE 1 -16.651 0 5.841 XINC 0.509
TYPE 1 -16.651 0 7.541 XINC 0.509
TYPE 1 -16.651 0 9.341 XINC 0.509
**CL.A-2L (TWO TRAIN) MOVING BACKWARD
LOAD GENERATION 80
TYPE 2 -18.321 0 0.9 XINC 0.509
TYPE 2 -18.321 0 2.7 XINC 0.509
TYPE 2 -18.321 0 4.4 XINC 0.509
TYPE 2 -18.321 0 6.2 XINC 0.509
LOAD GENERATION 80
TYPE 2 -18.043 0 1.424 XINC 0.509
TYPE 2 -18.043 0 3.224 XINC 0.509
TYPE 2 -18.043 0 4.924 XINC 0.509
TYPE 2 -18.043 0 6.724 XINC 0.509
(A-22)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
LOAD GENERATION 80
TYPE 2 -17.765 0 1.947 XINC 0.509
TYPE 2 -17.765 0 3.747 XINC 0.509
TYPE 2 -17.765 0 5.447 XINC 0.509
TYPE 2 -17.765 0 7.247 XINC 0.509
LOAD GENERATION 80
TYPE 2 -17.486 0 2.471 XINC 0.509
TYPE 2 -17.486 0 4.271 XINC 0.509
TYPE 2 -17.486 0 5.971 XINC 0.509
TYPE 2 -17.486 0 7.771 XINC 0.509
LOAD GENERATION 80
TYPE 2 -17.208 0 2.994 XINC 0.509
TYPE 2 -17.208 0 4.794 XINC 0.509
TYPE 2 -17.208 0 6.494 XINC 0.509
TYPE 2 -17.208 0 8.294 XINC 0.509
LOAD GENERATION 80
TYPE 2 -16.93 0 3.518 XINC 0.509
TYPE 2 -16.93 0 5.318 XINC 0.509
TYPE 2 -16.93 0 7.018 XINC 0.509
TYPE 2 -16.93 0 8.818 XINC 0.509
LOAD GENERATION 80
(A-23)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
TYPE 2 -16.651 0 4.041 XINC 0.509
TYPE 2 -16.651 0 5.841 XINC 0.509
TYPE 2 -16.651 0 7.541 XINC 0.509
TYPE 2 -16.651 0 9.341 XINC 0.509
****************************************
PERFORM ANALYSIS
FINISH

STAAD FLOOR ANALYSIS OF 20.5M-28SK RCC BEAM & SLAB FOR CWLL(CL.70RW)
**************************************
DEFINE MOVING LOAD FILE IRCMOVE.TXT
TYPE 1 C70R1-1T
TYPE 2 C70R1R-1T
****************************************
*DUE TO Cl.70R WHEELED (1 LANE)
**CL.70RW (ONE TRAIN) MOVING FORWARD
LOAD GENERATION 70
TYPE 1 -12.267 0 2.13 XINC 0.505
TYPE 1 -12.267 0 4.06 XINC 0.505
LOAD GENERATION 70
TYPE 1 -11.961 0 2.707 XINC 0.505
(A-24)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
TYPE 1 -11.961 0 4.637 XINC 0.505
LOAD GENERATION 70
TYPE 1 -11.654 0 3.284 XINC 0.505
TYPE 1 -11.654 0 5.214 XINC 0.505
LOAD GENERATION 70
TYPE 1 -11.347 0 3.861 XINC 0.505
TYPE 1 -11.347 0 5.791 XINC 0.505
LOAD GENERATION 70
TYPE 1 -11.04 0 4.438 XINC 0.505
TYPE 1 -11.04 0 6.368 XINC 0.505
LOAD GENERATION 70
TYPE 1 -10.733 0 5.015 XINC 0.505
TYPE 1 -10.733 0 6.945 XINC 0.505
LOAD GENERATION 70
TYPE 1 -10.426 0 5.592 XINC 0.505
TYPE 1 -10.426 0 7.522 XINC 0.505
LOAD GENERATION 70
TYPE 1 -10.12 0 6.169 XINC 0.505
TYPE 1 -10.12 0 8.099 XINC 0.505
**CL.70RW (ONE TRAIN) MOVING BACKWARD
LOAD GENERATION 70
(A-25)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
TYPE 2 -12.267 0 2.13 XINC 0.505
TYPE 2 -12.267 0 4.06 XINC 0.505
LOAD GENERATION 70
TYPE 2 -11.961 0 2.707 XINC 0.505
TYPE 2 -11.961 0 4.637 XINC 0.505
LOAD GENERATION 70
TYPE 2 -11.654 0 3.284 XINC 0.505
TYPE 2 -11.654 0 5.214 XINC 0.505
LOAD GENERATION 70
TYPE 2 -11.347 0 3.861 XINC 0.505
TYPE 2 -11.347 0 5.791 XINC 0.505
LOAD GENERATION 70
TYPE 2 -11.04 0 4.438 XINC 0.505
TYPE 2 -11.04 0 6.368 XINC 0.505
LOAD GENERATION 70
TYPE 2 -10.733 0 5.015 XINC 0.505
TYPE 2 -10.733 0 6.945 XINC 0.505
LOAD GENERATION 70
TYPE 2 -10.426 0 5.592 XINC 0.505
TYPE 2 -10.426 0 7.522 XINC 0.505
LOAD GENERATION 70
(A-26)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
TYPE 2 -10.12 0 6.169 XINC 0.505
TYPE 2 -10.12 0 8.099 XINC 0.505
****************************************
PERFORM ANALYSIS
FINISH

STAAD FLOOR ANALYSIS OF 20.5M-28SK RCC BEAM & SLAB FOR CWLL(CL.SPV385T)
*************************************
DEFINE MOVING LOAD FILE IRCMOVE.TXT
TYPE 1 SPV385F-1T
TYPE 2 SPV385B-1T
****************************************
*DUE TO SPV 385T (1 LANE)
**SPV 385T (ONE TRAIN) MOVING FORWARD
LOAD GENERATION 100
TYPE 1 -35.044 0 6.425 XINC 0.604
TYPE 1 -35.044 0 7.175 XINC 0.604
TYPE 1 -35.044 0 8.225 XINC 0.604
TYPE 1 -35.044 0 8.975 XINC 0.604
LOAD GENERATION 80
TYPE 1 -34.884 0 6.725 XINC 0.755
(A-27)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
TYPE 1 -34.884 0 7.475 XINC 0.755
TYPE 1 -34.884 0 8.525 XINC 0.755
TYPE 1 -34.884 0 9.275 XINC 0.755
LOAD GENERATION 80
TYPE 1 -34.725 0 7.025 XINC 0.755
TYPE 1 -34.725 0 7.775 XINC 0.755
TYPE 1 -34.725 0 8.825 XINC 0.755
TYPE 1 -34.725 0 9.575 XINC 0.755
**SPV 385T (ONE TRAIN) MOVING BACKWARD
LOAD GENERATION 100
TYPE 2 -35.044 0 6.425 XINC 0.604
TYPE 2 -35.044 0 7.175 XINC 0.604
TYPE 2 -35.044 0 8.225 XINC 0.604
TYPE 2 -35.044 0 8.975 XINC 0.604
LOAD GENERATION 80
TYPE 2 -34.884 0 6.725 XINC 0.755
TYPE 2 -34.884 0 7.475 XINC 0.755
TYPE 2 -34.884 0 8.525 XINC 0.755
TYPE 2 -34.884 0 9.275 XINC 0.755
LOAD GENERATION 80
TYPE 2 -34.725 0 7.025 XINC 0.755
(A-28)
Project Designed by:

Client Checked by:


Simply Supported RCC Precast Girder & CIP Deck Slab Superstr. (22m eff. Span)-28⁰
Job Name Date & Rev.
Skew
Staad Input for CWLL and SIDL on the Deck - Using Grillage Analysis Annexure-A
TYPE 2 -34.725 0 7.775 XINC 0.755
TYPE 2 -34.725 0 8.825 XINC 0.755
TYPE 2 -34.725 0 9.575 XINC 0.755
****************************************
PERFORM ANALYSIS
FINISH

(A-29)

You might also like