Exercises For Cascode Amplifiers: ECE 102, Fall 2012, F. Najmabadi
Exercises For Cascode Amplifiers: ECE 102, Fall 2012, F. Najmabadi
Exercises For Cascode Amplifiers: ECE 102, Fall 2012, F. Najmabadi
Cascode Amplifiers
ro 2 (1 + g m 2 ro1 ) + ro1
≈ g m ro2 + ro ≈ ( g m ro )ro g m ro2
R2 = ro (1 + g m ro ) + ro
≈ g m ro2 + ro ≈ ( g m ro )ro
ro + R2 r + ( g m ro )ro
R3 = = o = ro
1 + g m ro 1 + g m ro
F. Najmabadi, ECE102, Fall 2012 (4/26)
From previous slide:
ro + R2 r + ( g m ro )ro
R3 = ≈ o = ro
1 + g m ro 1 + g m ro
CS amplifier:
Av = − g m (ro || R3 ) = − g m (ro || ro )
v1 = −0.5 g m ro vi
v1 0.5 g m ro vi
i3 = − = = 0.5 g m vi
R3 ro
F. Najmabadi, ECE102, Fall 2012 (5/26)
From previous slide:
R2 ≈ ( g m ro )ro
Cascode amplifier
(we can use cascode gain to find v2)
i5 = i4 = 0.5 g m vi
v1 = −0.5 g m ro vi v2 = −0.5( g m ro ) 2 vi
ro
Q3 is NOT an Amp
(input at the drain)
ro (1+gm ro )
R2 = ro (1 + g m ro ) + ro
v2
CG Amp
(input at the source
Output at the drain)
CS Amp
(input at the gate
Output at the drain)
v2 = −0.5( g m ro ) 2 vi
ro
v3 = v2 ≈ −0.5 g m ro vi
ro (1 + g m ro )
F. Najmabadi, ECE102, Fall 2012 (10/26)
Exercise 3: Due to manufacturing error, the input terminal of a cascode
amplifier is mis-configured as is shown. Compute vo. Assume identical
transistors are identical.
RS = ro
Av = g m (ro || R2 ) ≈ g m ro
This is a CG configuration
RS = ro From previous
problem: R3 = r o
Q1 does not affect the gain, but it changes the input resistance to:
Ri = RS || R3 = ro || ro = 0.5ro
R3 ≈ ro
Av = Av1 Av 2 = − g m2 ro (ro || ro || R p )
F. Najmabadi, ECE102, Fall 2012 (15/26)
When a resistor is placed between Drain and Source of a transistor,
there is a simpler and more elegant way to solve the signal circuit
ro′ = ro || R
Av = Av1 Av 2 ≈ − g m2 ro (ro || ro || R p )
ro′ = ro || R p
ro′ + R2 1 ( g m ro )ro r
R3 = ≈ + ≈ ro × o
1 + g m ro′ g m g m ro′ ro′
W 2 20
I D1 = 0.5µ nCox VOV 1 = 0 . 5 × 200 × 10 −6
× × (0.3) 2
L 1 0.18
11 final –P5
I D 4 = I D 3 = I D 2 = I D1 = 1 mA
W 2 20
I D 3 = 10 −3 = 0.5µ p Cox VOV 3 = 0 . 5 × 50 × 10 −6
× × VOV
2
3
L 3 0.18
VOV 3 = 0.6 V
2 I D1 2 ×10 −3 1 1
gm2 = g m1 = = = 6.67 ×10 −3 A/V ro 2 = ro1 = = = 10 k
VOV 1 0.3 λn I D1 0.1×10 −3
2 I D 3 2 ×10 −3 1 1
g m 4 = g m3 = = = 3.33 ×10 −3 A/V ro 4 = ro 3 = = =5k
VOV 3 0.6 λ p I D1 0.2 ×10 −3
R1 = ro 3 (1 + g m 3 ro 4 ) + ro 4
R1 = 5 ×103 (1 + 3.33 ×10-3 × 5 ×103 ) + 5 ×103 = 93.3 k
Av Avo (RL→ ∞ )
Q2 (CG):
RL′ = RL || R1 = 100k || 93.3k = 48.4k RL′ = R1 = 93.3k
ro 2 || RL′ = 10k || 48.4k = 8.29k ro 2 || RL′ = 10k || 93.3k = 9.03k
Av 2 ≈ g m 2 (ro 2 || RL′ ) = 55.3 Av 2 ≈ g m 2 (ro 2 || RL′ ) = 60.2
R’L1 = Ri2:
KCL : I D 2 = 2 I D1 = I D1 + I D 3 → I D 3 = I D1 Bias
I D 5 = I D 4 = I D 3 = I D1 & I D 2 = 2 I D1
W 2
I D = 0.5µCox VOV →
L
VOV 5 = VOV 4 = VOV 3 = VOV 1 & VOV 2 = 2 VOV 1
2I D g m 5 = g m 4 = g m 3 = g m1
gm = →
VOV 2 I D 2 2 × 2 I D1 2I
gm2 = = = 2 × D1 = 2 g m1
VOV 2 2 VOV 1 VOV 1
1
ro = → ro 5 = ro 4 = ro 3 = ro1
λI D
1 1 1
ro 2 = = = 0.5 × = 0.5ro1
λI D 2 λ × 2 I D1 λI D1
CG Amp
Signal
CS Amp
R2 = ro 4 (1 + g m 4 ro 5 ) + ro 5
R2 ≈ ( g m1ro1 )ro1
Ro = R1 || R2
R2 = ro 4 (1 + g m 4 ro 5 ) + ro 5 ≈ g m1ro21
R1 :
Ro1 = ro 2 || R4 = (0.5ro1 ) || ro1 = 0.33ro1
R1 = ro 3 (1 + g m 3 Ro1 ) + Ro1
= ro1 (1 + 0.33 g m1ro1 ) + 0.33 g m1ro1 ≈ 0.33 g m1ro21